1. Field of the Invention
The present invention relates to a cooling apparatus of an air-cooled engine which includes a cooling fan fixed to a crankshaft and a fan housing surrounding the cooling fan.
2. Description of the Related Art
In order to cool a cylinder and a cylinder head of an air-cooled engine, typically, the air-cooled engine is equipped with a shroud covering the cylinder and the cylinder head. The shroud circulates cooling air delivered from the interior of a fan housing along the outer circumferential surfaces of the cylinder and the cylinder head. Japanese Patent Application Laid-Open (JP-A) No. 06-42347 discloses the above configuration.
In addition, in order to improve the cooling efficiency in the cylinder head, Japanese Patent Application Laid-Open (JP-A) No. 2001-241355 discloses the air-cooled engine which includes a cooling apparatus having a shroud and a cooling air passage passing into the cylinder head.
In the former conventional art, since the cylinder and the cylinder head are cooled from only the outer circumferential surfaces thereof. Therefore, when an engine rotational speed is low so that the amount of the cooling air from a cooling fan is small, a portion or location to become hot in the cylinder head, e.g., the vicinity of an exhaust passage or a forming wall of a combustion chamber, cannot be cooled sufficiently.
In the latter conventional art, since the cooling apparatus has the cooling air passage in the cylinder head in addition to the shroud, the cooling effect in the vicinity of the exhaust passage in the cylinder head is improved. However, when the cooling air passage is simply formed in the cylinder head, it is difficult to supply a large amount of the cooling air to the cooling air passage. Thereby, the cooling air passage cannot be used efficiently. In the latter conventional art, the inlet area of the cooling air passage is increased to ensure the amount of the cooling air.
The present invention is related to a cooling apparatus cooling an engine body comprising of a cylinder and a cylinder head, and an object of the present invention is to provide the cooling apparatus of the engine which is capable of increasing the coolability of each location in the cylinder head and reducing the weight of the cylinder.
The present invention has been made to solve the above problems, and provides a cooling apparatus of an engine including a cooling fan fixed to one end of a crankshaft, a fan housing surrounding the cooling fan, a shroud guiding cooling air discharged from the interior of the fan housing to the outer circumferential surface of an engine body portion, a cooling air passage formed in a cylinder head composing the engine body portion and passing throughout in the cylinder head from one side surface of the cylinder head to the other side surface thereof, and a narrowed or throttle guide portion formed in the shroud and guiding the cooling air from the interior of the fan housing to an inlet opening of the one side surface of the cooling air passage.
In the above configuration, the present invention preferably adopts the following configurations.
(a) The cooling air passage is contacted with a forming wall of an exhaust passage in the cylinder head or passes near the forming wall.
(b) The cooling air passage supplies the cooling air flowing through the cooling air passage to an ignition plug.
(c) The cooling air passage is formed so as to pass through between a forming wall of a push rod insertion hole for intake valve and a forming wall of a push rod insertion hole for exhaust valve.
(d) The cooling air passage is formed in a substantially cross shape seen in a cylinder centerline direction. In this case, preferably, the cooling air passage formed in a substantially cross shape has three outlet openings, and one of the three outlet opens is opened in the same direction as the inlet of an intake passage.
the cooling air passage formed in a substantially cross shape has three outlet openings, one of the three outlet openings is opened in the same direction as the inlet of an intake passage, and the outlet opening is limited in the relief amount of the cooling air from the outlet opening by either or both of a gasket and an insulator arranged at the inlet of the intake passage.
(e) The shroud is spaced from the outer circumferential surface of the engine body portion in the upstream portion of the flow of the cooling air relative to the narrowed guide portion more largely than in the downstream portion of the flow of the cooling air. The narrowed guide portion is inclined so as to be close to the outer circumferential surface of the engine body portion toward the inlet opening of the cooling air passage.
(f) A cover portion which closes a space between the outer circumferential surface of the engine body portion and the shroud from above is formed at the upper end of the shroud.
(1) According to the present invention, the shroud flows the cooling air along the outer circumferential surface of the engine body portion to cool the engine body portion from the outer circumference thereof, of course, the cooling air flowing through the cooling air passage in the cylinder head can effectively cool each location in the cylinder head, and the narrowed guide portion formed in the shroud forcefully delivers the cooling air into the cooling air passage, so that the coolability of each location in the cylinder head can be further improved. In addition, the cooling air passage is formed, so that the weight of the cylinder head can be reduced.
(2) According to the configuration (a), the exhaust passage and its vicinity which are particularly likely to be hot in the cylinder head can be cooled locally, efficiently, and forcefully.
(3) According to the configuration (b), the ignition plug which is likely to be hot together with the exhaust passage can be cooled locally and efficiently by the cooling air.
(4) According to the configuration (c), the cooling air passage is formed so as to pass through between the forming wall of the push rod insertion hole for the intake valve and the forming wall of the push rod insertion hole for the exhaust valve, so that the waste space between the forming walls of the push rod insertion holes for the intake valve and the push rod insertion hole for the exhaust valve can be effectively used as the cooling air passage and that the cooling air passage can be easily formed at the time of casting the cylinder head.
(5) According to the configuration (d), the cooling air passage is formed in a substantially cross shape, so that the cooling air can be supplied over a wide range in the cylinder head to improve the coolability of the cylinder head and that further weight reduction can be achieved. In addition, the temperature increase is less in the vicinity of the intake passage than other locations, but the outlet opening in the vicinity of the intake passage is limited in the relief amount of the cooling air by either or both of the gasket and the insulator, so that the amount of the cooling air to other locations which are likely to be hot can be increased to further improve the cooling efficiency.
(6) According to the configuration (e), the narrowed guide portion can be formed by easy processing or working of forming the inclined surface in the shroud. That is, the cooling air can be efficiently delivered into the cooling air passage by the easy processing.
(7) According to the configuration (f), the cover portion at the upper end of the shroud can prevent the cooling air from being relieved upward from the interior of the shroud, so that the cooling effect of the cylinder body portion by means of the cooling air and the supply of the cooling air into the cooling air passage can be further increased.
The above and other objects, features and advantages of the present invention will be become more apparent from the following description taken in connection with the accompanying drawings, in which:
In
A fan housing 32 is attached to the left side surface of the crankcase 1, and a recoil starter 11 is provided on the left side of the fan housing 32. A crankcase cover 13 is provided on the right side of the crankcase 1. The right end of the crankshaft 6 projects from the crankcase cover 13, the right end being a power taking-out portion (crankshaft 6).
An intake port 15 is formed on the left side surface of the cylinder head 3, and a carburetor 20 is connected to a connecting surface (attaching surface) formed along the peripheral edge of the intake port 15 via a first gasket 16, an insulator for heat insulation 17, and a second gasket 18. An exhaust port 21 is formed on the right side surface of the cylinder head 3. In addition, an ignition plug 23 is attached to the substantially center of the left and right width of the cylinder head 3 in the rear half portion on the upper surface of the cylinder head 3.
In
In
In
The first cooling air outlet 32a projects forward and upward so as to deliver cooling air from the front half portion of a left side surface 5b of the engine body portion 5 (the cylinder 2 and the cylinder head 3) to the front surface 5a of the engine body portion 5. The second cooling air outlet 32b projects substantially upward so as to deliver the cooling air from the rear half portion of the left side surface 5b of the engine body portion 5 (the cylinder 2 and the cylinder head 3) to a rear surface 5d of the engine body portion 5.
Returning to
The first cooling air passage 45 has an inlet opening 45a opened in the front surface of the cylinder head 3 (the front surface 5a of the engine body portion 5). The first cooling air passage 45 extends rearward from the inlet opening 45a, passes through between a forming wall 53a of a push rod insertion hole for exhaust valve 53 and a forming wall 54a of a push rod insertion hole for suction valve 54, and passes through between a forming wall 51a of an exhaust passage 51 and a forming wall 52a of an intake passage 52. The first cooling air passage 45 has an outlet opening 45b opened rearward in the vicinity of the ignition plug 23. A push rod for exhaust valve 56 is arranged in the push rod insertion hole for exhaust valve 53, and a push rod for exhaust valve 57 is arranged in the push rod insertion hole for suction valve 54.
In the second cooling air passage 46, a passage portion extending rightward from the crossing portion of the first cooling air passage 45 and the second cooling air passage 46 passes through between the forming wall 51a of the exhaust passage 51 and the forming wall 53a of the push rod insertion hole for exhaust valve 53, and an outlet opening 46a is opened in the right side surface 5c of the engine body portion 5. Further, a passage portion extending leftward from the crossing portion of the first cooling air passage 45 and the second cooling air passage 46 passes through between the forming wall 52a of the suction passage 52 and the forming wall 54a of the push rod insertion hole for suction valve 54, and an outlet opening 46b is opened in the left side surface 5b of the engine body portion 5.
In
The narrowed guide portion 41b is formed in the position which substantially corresponds to the inlet opening 45a at the front end of the first cooling air passage 45, and is inclined rearward so that the right side portion of the narrowed guide portion 41b closes to the front surface 5a of the engine body portion 5. With this, the cooling air delivered from the fan housing 32 into the bulging portion 41a1 is forcefully guided to the inlet opening 45a of the first cooling air passage 45, and is supplied into the first cooling air passage 45. An inclination angle θ2 of the narrowed guide portion 41b, that is, the inclination angle θ2 with respect to a line N substantially parallel to the axial line O1 of the crankshaft 6, is formed at about 40° to 50° in the embodiment, but can be set to an arbitrary angle of 15° to 90°.
In
In
(1) In
(2) Part of the cooling air generated in the fan housing 32 cools the front half portion of the left side surface 5b of the engine body portion 5 in the first cooling air outlet portion 32a, and is delivered into the bulging portion 41a1 of the shroud 41. The remaining cooling air generated in the fan housing 32 cools the rear half portion of the left side surface 5b of the engine body portion 5 in the second cooling air outlet portion 32b, and is delivered to the rear surface 5d of the engine body portion 5 to cool the rear surface 5d of the engine body portion 5.
(3) In
The cooling air delivered from the inlet opening 45a at the front end into the first cooling air passage 45 passes through between the forming walls 53a and 54a of the push rod insertion holes 53 and 54 to the crossing portion of the cooling air passages 45 and 46, and most of the cooling air flows rearward while being brought into contact with the forming wall 51a of the exhaust passage 51 and the forming wall 52a of the suction passage 52, cools the exhaust passage 51 and the intake passage 52, and is supplied to the ignition plug 23. The cooling air cools the ignition plug 23 and is discharged rearward from the outlet opening 45b at the rear end.
(6) In addition, part of the cooling air which has reached the crossing portion of the cooling air passages 45 and 46 flows rightward in the right portion of the second cooling air passage 46 while cooling the forming wall 51a of the exhaust passage 51, and is discharged from the outlet opening 46a at the right end. On the other hand, in the cooling air which attempts to flow from the crossing portion of the cooling air passages 45 and 46 leftward in the left portion of the second cooling air passage 46, the flow of the cooling air to the left portion of the second cooling air passage 46 is limited because the extending portion 18a of the second gasket 18 shown in
(1) In the cooling apparatus of the engine including the cooling fan 31, the fan housing 32, and the shroud 41 which guides the cooling air discharged from the interior of the fan housing 32 to the outer circumferential surface of the engine body portion 5, the cylinder head 3 composing the engine body portion 5 is formed with the cooling air passage 44 passing into the cylinder head 3, and the shroud 41 is formed with the narrowed or throttle guide portion 41b which guides the cooling air from the interior of the fan housing 32 to the inlet opening 45a of the cooling air passage 44. Whereby, the shroud 41 flows the cooling air along the outer circumferential surface of the engine body portion 5 to cool the engine body portion 5 from the outer circumference thereof. Moreover the cooling air flowing through the cooling air passage 44 in the cylinder head 3 can effectively cool each location in the cylinder head 3.
In addition, the narrowed guide portion 41b formed in the shroud 41 can forcefully deliver part of the cooling air into the cooling air passage 44, so that the coolability in each location in the cylinder head 3 can be further improved. In addition, the cooling air passage 44 is formed in the cylinder head 3, so that the weight of the cylinder head 3 can be reduced.
(2) The cooling air flowing in the cooling air passage 44 is brought into contact with the forming wall 51a of the exhaust passage 51 which particularly becomes hot in the cylinder head 3, so that the exhaust passage 51 can be effectively cooled.
(3) In addition, the cooling air passage 44 supplies the cooling air flowing through the cooling air passage 44 to the ignition plug 23, so that the ignition plug 23 which is likely to be hot together with the exhaust passage 51 can be cooled locally and efficiently by the cooling air.
(4) The first cooling air passage 45 of the cooling air passage 44 is formed so as to pass through between the forming wall 54a of the push rod insertion hole for intake valve 54 and the forming wall 53a of the push rod insertion hole for exhaust valve 53, so that the waste space between the forming walls 53a and 54a can be effectively used as the cooling air passage 44 and that the cooling air passage can be easily formed at the time of casting the cylinder head.
(5) The cooling air passage 44 includes the first cooling air passage 45 and the second cooling air passage 46 which are arranged in a substantially cross shape seen in the cylinder centerline C1 direction, so that the cooling area of the cooling air flowing in the cylinder head 3 is increased to enable the interior of the cylinder head 3 to be cooled over a wide range, thereby improving the coolability in the cylinder head 3, and further weight reduction of the cylinder head 3 can be achieved.
(6) In the cooling air passage 44 formed in a substantially cross shape, the outlet opening 46b opened in the same direction as the inlet (intake port 15) of the intake passage 52 is limited in the relief amount of the cooling air by the extending portion 18a of one second gasket 18 arranged between the inlet of the intake passage 52 and the carburetor 20, so that the cooling air flowing to the side of intake passage 52 is limited and the amount of the cooling air flowing to the side of the exhaust passage 51 is increased. Namely, since the vicinity of the exhaust passage 51 which is likely to be hot is cooled by the increased cooling air to be increased, the cooling efficiency in the entire cylinder head 3 is improved. In addition, the second gasket 18 serves as a cooling air passage limiting member, so that no new members are required to be provided.
(7) The shroud 41 is formed with the bulging portion 41a1 on the upstream side of the flow of the cooling air relative to the narrowed or throttle guide portion 41b so as to be largely spaced from the front surface 5a of the engine body portion 5, and the narrowed guide portion 41b is inclined so as to be close to the outer circumferential surface of the engine body portion 5 toward the inlet opening 45a of the cooling air passage 44, so that the cooling air can be forcefully delivered and can efficiently delivered into the cooling air passage 44. In addition, the narrowed guide portion 41b can be provided by easy bending processing.
(8) The cover portion 41d having a shape corresponding to the shape of the front surface of the cylinder head 3 is integrally formed at the upper end of the shroud 41 to prevent the cooling air from being relieved upward from the interior of the shroud 41, so that the cooling effect of the engine body portion 5 by means of the cooling air and the supply of the cooling air into the cooling air passage can be further improved.
(1) In the embodiment, as shown in
(2) As a fuel supply apparatus which supplies a fuel to the intake passage, in addition to the carburetor as in the embodiment, the present invention is applicable to an engine including a throttle body having an injector.
(3) The present invention is not limited to the single cylinder inclination type engine, and is applicable to an engine in which a cylinder is formed so that its cylinder centerline is substantially vertical and a multiple cylinder engine.
(4) The shape of the passed cooling air passage is not limited to a substantially cross shape, and can be a simple straight line, an L-shape, and a Y-shape.
(5) In the present invention, various modifications and changes can be made without departing from the spirit and scope of the present invention described in the claims.
Number | Date | Country | Kind |
---|---|---|---|
P2010-288581 | Dec 2010 | JP | national |