The present invention relates to a cooling apparatus, and, more particularly to, a cooling apparatus including a non-freezing apparatus.
Supercooling means the phenomenon that a molten object or a solid is not changed although it is cooled to a temperature below the phase transition temperature in an equilibrium state. A material has a stable state at every temperature. If the temperature is slowly changed, the constituent elements of the material can follow the temperature changes, maintaining the stable state at each temperature. However, if the temperature is suddenly changed, since the constituent elements cannot be changed to the stable state at each temperature, the constituent elements maintain a stable state of the initial temperature, or some of the constituent elements fail to be changed to a state of the final temperature.
For example, when water is slowly cooled, it is not temporarily frozen at a temperature below 0° C. However, when water enters a supercooled state, it has a kind of quasi-stable state. As this unstable equilibrium state is easily broken even by slight stimulation, water tends to move to a more stable state. That is, if a small piece of material is put into the supercooled liquid, or if the liquid is suddenly shaken, the liquid starts to be frozen at once such that its temperature reaches the freezing point, and maintains a stable equilibrium state at this temperature.
In general, an electrostatic atmosphere is made in a refrigerator and meat and fish are thawed in the refrigerator at a minus temperature. In addition to the meat and fish, fruit is kept fresh in the refrigerator.
This technology uses a supercooling phenomenon. The supercooling phenomenon indicates the phenomenon that a molten object or a solid is not changed although it is cooled to a temperature below the phase transition temperature in an equilibrium state. This technology includes Korean Patent Publication No. 2000-0011081 titled “Electrostatic field processing method, electrostatic field processing apparatus, and electrodes therefor”.
A keeping-cool room 1 is composed of a thermal insulator 2 and an outer wall 5. A mechanism (not shown) controlling a temperature inside the room 1 is installed therein. A metal shelf 7 installed in the room 1 has a two-layer structure. Target objects to be thawed or freshness-kept and ripened such as vegetables, meat and marine products are loaded on the respective layers. The metal shelf 7 is insulated from the bottom of the room 1 by an insulator 9. In addition, since a high voltage generator 3 can generate 0 to 5000 V of DC and AC voltages, an insulation plate 2a such as vinyl chloride, etc. is covered on the inside of the thermal insulator 2. A high-voltage cable 4 outputting the voltage of the high voltage generator 3 is connected to the metal shelf 7 after passing through the outer wall 5 and the thermal insulator 2.
When a user opens a door installed at the front of the keeping-cool room 1, a safety switch 13 (see
One end O1 of the output of the secondary side of the boosting transformer 17 is connected to the metal shelf 7 insulated from the keeping-cool room 1 through the high-voltage cable 4, and the other end O2 of the output is grounded. Moreover, since the outer wall 5 is grounded, if the user touches the outer wall 5 of the keeping-cool room 1, he/she does not get an electric shock. Further, in
In the prior art, an electric field or a magnetic field is applied to the received object to be cooled, such that the received object enters a supercooled state. Accordingly, a complicated apparatus for producing the electric field or the magnetic field should be provided to keep the received object in the supercooled state, and the power consumption is increased during the production of the electric field or the magnetic field. Additionally, the apparatus for producing the electric field or the magnetic field should further include a safety device (e.g., an electric or magnetic field shielding structure, an interception device, etc.) for protecting the user from high power, when producing or intercepting the electric field or the magnetic field.
Japanese Patent Publication No. 2001-4260 discloses a supercooling control refrigerator which includes a temperature detection means and a control means controlling the temperature at a given set temperature in an openable/closable thermal insulation unit and which keeps the goods cold at a temperature below the freezing point during the supercooling operation. However, since the refrigerator controls the rotation number of a cool air circulation fan to adjust the temperature in the thermal insulation unit, if the temperature in the unit is reduced to a temperature below the set temperature, there is no means for raising the temperature to the set temperature within a short time. When the temperature in the unit is maintained at a temperature below the set temperature for a predetermined time, the goods intended to be stored in a supercooled state are frozen. In addition, the frozen goods cannot be thawed and stored again in the supercooled state. The refrigerator has low stability in maintaining a non-frozen state.
Korean Patent Registration No. 10-850062 describes a refrigerator having a space for receiving food and a storing room for cooling the space, the refrigerator including a cool air flowing space directly cooling the food receiving space and a thermal insulation layer insulating the cool air flowing space from the space, and storing the food in a supercooled state. However, if the temperature in the refrigerator is reduced to a temperature below a set temperature, there is no construction for raising the temperature. Therefore, the refrigerator also has low stability in maintaining a non-frozen state.
Japanese Patent Publication No. 2008-267646 discloses a refrigerator with a supercooling room which includes a freezing chamber with a temperature control means therein to continuously adjust the temperature between 0° C. and a temperature of a freezing temperature zone by stages, the supercooling room disposed in the freezing chamber and receiving the cool air from the freezing chamber, and a control apparatus controlling the freezing chamber so that the food stored in the supercooling room can be maintained in a supercooled state at a temperature below the freezing point without being frozen. The temperature of the freezing chamber or a switching chamber in which the supercooling room is installed is controlled to adjust the temperature of the supercooling room. The supercooling room is sealed with respect to the freezing chamber or the switching chamber such that a temperature change in the supercooling room is limited. However, when the food is stored in the supercooled state by slowing down the temperature change in the supercooling room by indirect cooling, it takes a long time for the food to reach the supercooled state. Moreover, if the temperature in the refrigerator is reduced to a temperature below a set temperature, there is no construction for raising the temperature. Accordingly, the refrigerator also has low stability in maintaining a non-frozen state.
An object of the present invention is to provide a cooling apparatus including a non-freezing apparatus which can stably store a liquid in a container in a supercooled state by maintaining an upper space receiving an upper portion of the container at a higher temperature than a lower space receiving a lower portion of the container.
Another object of the present invention is to provide a cooling apparatus including a non-freezing apparatus which can rapidly change a liquid to a supercooled state by producing a forcible flow using a flow fan.
A further object of the present invention is to provide a cooling apparatus including a non-freezing apparatus which can stably adjust the temperature inside the non-freezing apparatus by selectively introducing the cool air from a cooling space using a damper. A still further object of the present invention is to provide a cooling apparatus including a non-freezing apparatus which can improve a thermal insulation effect of a door opening and closing the non-freezing apparatus by forming the door using a plurality of door panels.
A still further object of the present invention is to provide a cooling apparatus including a non-freezing apparatus which can prevent the mixing of a discharged flow and an introduced flow and the generation of the eddy current by using a bulkhead provided between a damper and a discharge hole, the damper introducing the cool air into a rear space of the non-freezing apparatus, the discharge hole being formed to discharge the cool air from the rear space of the non-freezing apparatus to a cooling space.
According to an aspect of the present invention, there is provided a cooling apparatus, including: a cooling space; a door opening and closing the cooling space; and a non-freezing apparatus installed in the cooling space or the door, an upper space thereof being maintained in a higher temperature region than a lower space thereof.
In addition, the non-freezing apparatus includes a damper controlling the inflow of the cool air from the cooling space.
Moreover, the rear surface of the non-freezing apparatus is spaced apart from the cooling apparatus by a given gap.
Further, the non-freezing apparatus includes a flow fan producing a forcible flow.
Furthermore, the non-freezing apparatus includes a separation film limiting the flow between the lower space and the upper space.
Still furthermore, the non-freezing apparatus includes a casing defining the lower space, the upper space and a rear space.
Still furthermore, the non-freezing apparatus includes a door opening and closing a storing space defined in the non-freezing apparatus.
Still furthermore, the door of the non-freezing apparatus includes a plurality of door panels.
Still furthermore, the non-freezing apparatus includes an upper heater and a lower heater heating the upper space and the lower space, respectively.
According to another aspect of the present invention, there is provided a cooling apparatus, including: a cooling space; a door opening and closing the cooling space; and a non-freezing apparatus installed in the cooling space or the door and including an outer casing defining the external appearance, a lower casing located in the outer casing and defining a lower space, and an upper casing located in the outer casing and defining an upper space, the lower space and the upper space being maintained in different temperature regions.
In addition, the non-freezing apparatus includes a rear space located at the rear of the lower space and the upper space.
Moreover, a printed circuit board casing receiving a printed circuit board is mounted at an upper portion of the rear space of the non-freezing apparatus.
Further, the non-freezing apparatus includes a damper installed at a lower portion of the rear space.
Furthermore, the non-freezing apparatus includes a spacing member provided on the rear surface of the outer casing and maintaining a gap between non-freezing apparatus and the installation surface.
Still furthermore, a discharge hole for discharging the flow from the lower space to the rear space is formed in the rear surface of the lower casing.
Still furthermore, the non-freezing apparatus includes a discharge hole formed in the rear space to discharge the flow from the rear space to the cooling space.
Still furthermore, the non-freezing apparatus includes a damper installed at a lower portion of the rear space and controlling the inflow of the cool air from the cooling space, and a bulkhead preventing the flow between the damper and the discharge hole.
Still furthermore, the non-freezing apparatus includes a discharge hole formed in the bottom surface of the lower space to discharge the flow from the lower space to the cooling space.
According to the cooling apparatus provided by the present invention, the temperature of the upper space of the non-freezing apparatus is maintained to be higher than that of the lower space thereof, which prevents the ice crystal formation in the upper portion of the liquid. Therefore, the liquid can be stably maintained in the supercooled state.
The non-freezing apparatus of the cooling apparatus provided by the present invention includes the separation film formed between the upper space of a high temperature and the lower space of a low temperature and limiting the heat exchange between the upper space and the lower space, thereby stably maintaining the liquid in the supercooled state. According to the cooling apparatus provided by the present invention, since the non-freezing apparatus is spaced apart from the installation surface of the cooling apparatus by a given gap, the temperature of the installation surface of the cooling apparatus less affects the non-freezing apparatus, and the cool air can be introduced and discharged through the gap. Accordingly, the food stored in the non-freezing apparatus can be cooled to the non-frozen state within a short time.
According to the cooling apparatus provided by the present invention, since the non-freezing apparatus is spaced apart from the installation surface of the cooling apparatus by a given gap, the temperature of the installation surface of the cooling apparatus less affects the non-freezing apparatus. Thus, the heating value of the heater can be reduced, and thus the energy efficiency can be improved.
The non-freezing apparatus of the cooling apparatus provided by the present invention includes the flow fan producing a forcible flow, so that the liquid contained in the container can have the utmost uniform temperature distribution.
Hereinafter, the present invention will be described in detail with reference to the exemplary embodiments and the accompanying drawings.
For example, it is assumed that a cooling temperature of the cooling space S is lowered from a room temperature to a temperature below 0° C. (the phase transition temperature of water) or a temperature below the phase transition temperature of the liquid L. While the cooling is carried out, it is intended to maintain the water or the liquid L in a supercooled state at a temperature below the maximum ice crystal formation zone (about −1° C. to −5° C.) of the water in which the formation of ice crystals is maximized, or at a cooling temperature below the maximum ice crystal formation zone of the liquid L.
The liquid L is evaporated during the cooling such that vapor is introduced into a gas Lg (or a space) in the container C. In a case where the container C is closed by a cover Ck, the gas Lg may be supersaturated due to the evaporated vapor. In this description, the container C may selectively include the cover Ck. If the container C includes the cover Ck, it can prevent, to some extent, the cool air from being introduced directly from the cooling space or from reducing the temperature of the surface of the liquid L or the temperature of the gas Lg thereon.
When the cooling temperature reaches or exceeds a temperature of the maximum ice crystal formation zone of the liquid L, the vapor in the gas Lg or the water drops on the inner wall of the container C may be frozen. Alternatively, the condensation occurs in a contact portion of the surface Ls of the liquid L and the inner wall of the container C (almost the same as the cooling temperature of the cooling space S) such that the condensed liquid L may form ice crystal nucleuses which are ice crystals.
For example, when the ice crystal nucleuses in the gas Lg are lowered and infiltrated into the liquid L through the surface Ls of the liquid L, the liquid L is released from the supercooled state and caused to be frozen. That is, the supercooling of the liquid L is released.
Alternatively, as the ice crystal nucleuses are brought into contact with the surface Ls of the liquid L, the liquid L may be released from the supercooled state and caused to be frozen.
Therefore, the non-freezing apparatus of the present invention applies or supplies energy (e.g., thermal energy) to the container C received in the cooling space S and the liquid L to control the temperature of the gas Lg and the liquid L, so that the liquid L can be maintained in a non-frozen state, i.e., a supercooled state below its phase transition temperature. Here, the gas Lg is located at a top layer portion of the liquid L in contact therewith. In this description, it is defined as a liquid top layer portion (or received object top layer portion). The liquid top layer portion may be an oil layer which can float in the liquid L or an object which contains plastic or other resin, in addition to the liquid Lg. In this embodiment, for convenience, the liquid L is described as an example. However, the present invention can be applied to general received objects such as meat, fish, vegetables, fruit, etc.
The maintenance of the supercooled state using the temperature control will be described in detail with reference to
In
Accordingly, the liquid L in the container C maintains the supercooled state at a temperature below its phase transition temperature or a temperature below its maximum ice crystal formation zone.
Moreover, when the cooling temperature in the cooling space S is a considerably low temperature, e.g., −20° C., although the energy is applied to an upper portion of the container C, the liquid L which is the received object may not be able to maintain the supercooled state. There is a need that the energy should be applied to a lower portion of the container C to some extent. When the energy applied to the upper portion of the container C is relatively larger than the energy applied to the lower portion of the container C, the temperature of the upper portion of the container C can be maintained higher than the phase transition temperature or a temperature of the maximum ice crystal formation zone. Further, the temperature of the liquid L in the supercooled state can be adjusted by the energy applied to the lower portion of the container C and the energy applied to the upper portion of the container C.
The liquid L has been described as an example with reference to
Furthermore, the energy used in the present invention may be thermal energy, electric or magnetic energy, ultrasonic-wave energy, light energy, and so on.
The non-freezing apparatus 2000 according to the embodiment of the present invention includes a casing 100 defining the inner space for storing a container and a door 200 opening and closing the casing 100, and is installed in a cooling apparatus 1000 storing food at a temperature below 0° C. such as a freezing chamber of the cooling apparatus 1000. The casing 100, which separates the outer space, i.e., the space of the cooling apparatus 1000 in which the non-freezing apparatus 2000 is installed from the inner space of the non-freezing apparatus 2000, includes outer casings 110 and 120 forming the external appearance of the non-freezing apparatus 2000. The outer casings 110 and 120 include a front outer casing 110 and a rear outer casing 120. The front outer casing 110 forms the external appearance of the front and lower portions of the non-freezing apparatus 2000, and the rear outer casing 120 forms the external appearance of the rear and upper portions of the non-freezing apparatus 2000. The casing 100 enables upper and lower portions of container containing a liquid to be located and stored in different temperature regions. More specifically, the lower portion of the container is located in a temperature region (about −1° C. to −5° C.) of the maximum ice crystal formation zone, and the upper portion of the container is located in a higher temperature region (about −1° C. to 2° C.) in which the ice crystals are not easily formed. For this purpose, the casing 100 includes a lower space 100L having the temperature region (about −1° C. to −5° C.) of the maximum ice crystal formation zone, and an upper space 1000 having the temperature region (about −1° C. to 2° C.) in which the ice crystals are not easily formed. The upper space 1000 and the lower space 100L are separated by a bulkhead 140. The casing 100 includes a lower casing 130 defining the lower space 100L with the bulkhead 140 and an upper casing 150 defining the upper space 1000 with the bulkhead 140.
A flow fan 170 is installed at the rear of the lower space 100L so that the liquid stored in the lower portion of the container located in the lower space 100L can rapidly reach the temperature region (about −1° C. to −5° C.) of the maximum ice crystal formation zone and have a supercooled state. In addition, a lower heater (not shown) is provided to adjust the temperature of the lower space 100L. An upper heater (not shown) is installed adjacent to the upper casing 150 so that the upper portion of the container located in the upper space 1000 can be maintained in the temperature region (about −1° C. to 2° C.) in which the ice crystals are not easily formed. Moreover, a separation film 142 made of an elastic material is installed on the bulkhead 140 to prevent the heat exchange from occurring between the upper space 1000 and the lower space 100L having different temperatures due to a forcible flow produced by the flow fan 170. Further, preferably, fixing plates 144, which can be fixed to the bulkhead 140 by screws or the like, are provided to press the separation film 142 in the up-down direction to fix the separation film 142 to the bulkhead 140.
Meanwhile, a thermal insulator 112 for insulating the lower space 100L from the outer space is provided at the lower portions of the outer casings 110 and 120, and a thermal insulator 122 for insulating the upper space 1000 from the outer space is provided at the upper portions of the outer casings 110 and 120. In addition, a power switch 182, a display unit 184 and the like are installed between the front outer casing 110 and the thermal insulator 122, and the PCB (not shown) controlling electronic components, such as the power switch 182, the display unit 184, the upper and lower heaters (not shown), the flow fan 170 and a damper 190, and a PCB installation portion 186 are installed between the rear outer casing 120 and the thermal insulator 122. The rear outer casing 120 further includes an opening portion 124 through which the PCB installation portion 186 can be detached in an assembled state of the outer casings 110 and 120 for the PCB installation, and a PCB cover 124c covering the opening portion 124 after the mounting of the PCB installation portion 186.
In the meantime, a bulkhead is formed to prevent the cool air from flowing from the lower portion of the rear space 100R to the upper portion thereof and reducing the temperature of the upper space 1000. A rib 120r formed on the rear outer casing 120 and a rib 140r formed on the bulkhead 140 of the upper portion of the lower casing 130 to protrude from the lower casing 130 backwards overlap with each other, thereby forming the bulkhead. Preferably, a rib 150r having a shape corresponding to that of the bulkhead 140 of the upper portion of the lower casing 130 is provided at the lower portion of the upper casing 150 to protrude therefrom backwards. The rib 120r formed on the rear outer casing 120, the rib 140r formed on the bulkhead 140 and the rib 150r formed on the upper casing 150 overlap with each other, thus forming the bulkhead of the rear space 100R.
The door 200 is installed on the front surface of the front outer casing 110 to open and close the lower space 100L. The door 200 includes a door panel 220 made of a transparent or semitransparent material in a door casing 210, a door frame 230 fixed to the door casing 210 and fixing the door panel 220 therewith, and a gasket 240 mounted at the rear of the door frame 230 and sealing up between the door 200 and the front outer casing 110. The non-freezing apparatus 2000 according to the embodiment of the present invention includes a plurality of door panels 220. The respective door panels 220 are installed between the door casing 210 and the door frame 230 with a gap such that air layers are formed between the door panels 220. The air layers not only compensate for a low thermal insulation property of the door 200 but also prevent the frosting of the door 200, i.e., the door panels 220. The gasket 240 is made of an elastic material to seal up the gap between the door 100 and the front outer casing 110, thereby preventing the heat exchange from occurring between the cooling space 1300 and 1400 in which the non-freezing apparatus 2000 is mounted and the inside of the non-freezing apparatus 2000. That is, the gasket 240 can prevent leakage of the cool or hot air.
Meanwhile, a rear space R is defined by the rear outer casing 120, the lower casing 130 and the upper casing 150. The flow fan 170, the damper 190 and the lower heater (not shown) are installed in the rear space R. Particularly, the PCB installation portion 186 is installed at the upper portion of the rear space R to be detachable therefrom. The lower heater (not shown), the upper heater (not shown), the lower sensor (not shown), the upper sensor (not shown), the flow fan 170, the damper 190, the power switch 182 and the display unit 184 are connected to the PCB through an electric wire. The PCB is fixed in the PCB installation portion 186, and then the PCB installation portion 186 is fitted into a groove formed in the thermal insulator 122 of the upper space through the opening portion 124 formed in the rear outer casing 120. The electric wire connecting the PCB to the respective electronic components is connected to the PCB with a sufficient length to pull out the PCB installation portion 186 through the opening portion 124 of the rear outer casing 120. Accordingly, when the PCB is to be repaired or replaced, it is not necessary to separate the front outer casing 110 from the rear outer casing 120, which improves the convenience of maintenance and repair. In addition, grooves 136 and 156 are provided in the upper portion of the lower casing 130 and the lower portion of the upper casing 150, respectively, so that the electric wire connecting the PCB to the respective electronic components can be fitted thereinto. The upper portion of the lower casing 130 and the lower portion of the upper casing 150 are fixed to each other in an overlapping manner. The separation film 142 or the fixing plate 144 described above are located between the upper portion of the lower casing 130 and the lower portion of the upper casing 150. Moreover, when the PCB installation portion 186 is inserted into the thermal insulator 122 of the upper space in the rear outer casing 120, the opening portion 124 is closed by the PCB cover 124c. If the cool air of the cooling space infiltrates through the opening portion 124 during the operation, there is the possibility of lowering the temperature of the upper space 1000 which should be maintained at a higher temperature than that of the lower space 100L, in addition to the cooling space. Therefore, there is a disadvantage in that a heating value of the upper heater (not shown) should be increased. When the opening portion 124 is closed by the PCB cover 124c, the energy efficiency can be improved and the liquid can be stably changed to the supercooled state.
Meanwhile, fourth discharge holes 350a and 350b are further formed in the lower casing 130 to be located inside the bulkheads 330a and 330b. That is, the bulkheads 330a and 330b exist between the fourth discharge holes 350a and 350b, and the first discharge holes 310a, 310b, 310c and 310d and the second discharge holes 320a and 320b. In a state where the damper 190 is closed, when the flow fan 170 is operated, the flow discharged from the rear space 100R to the lower space 100L through the discharge grill 172 is circulated in the lower space 100L and discharged again to the rear space 100R through the fourth discharge holes 350a and 350b. That is, when it is determined that the temperature of the lower space 100L reaches an appropriate temperature for storing the liquid in the supercooled state, in a state where the damper 190 is closed, the flow is circulated between the lower space 100L and the rear space 100R through the discharge grill 172 and the fourth discharge holes 350a and 350b, and the cool air is not introduced any more from the external cooling space.
Referring to
In the meantime, a plurality of ribs 125 are formed on the rear surface of the rear outer casing 120. The ribs 125 serve to leave a spacing between the rear surface of the rear outer casing 120 and the installation surface. When the non-freezing apparatus 2000 is installed in the cooling apparatus 1000 like the embodiment of the present invention, the ribs 125 maintain a spacing between the inner surface of the cooling apparatus 1000 and the rear surface of the rear outer casing 120. The inner surface of the cooling apparatus 1000 includes the inner surfaces of the freezing chamber door 1100 and the refrigerating chamber door 1200. In addition, a separate rib 126 is provided to enclose the fifth discharge holes 360a, 360b and 360c formed in the center of the rear surface of the rear outer casing 120 so that the flow discharged through the fifth discharge holes 360a, 360b and 360c of the rear outer casing 120 can be guided to the lower portion of the rear outer casing 120. The separate rib 126 encloses the fifth discharge holes 360a, 360b and 360c in three sides except the lower side such that the flow discharged through the fifth discharge holes 360a, 360b and 360c is naturally guided to the lower side of the non-freezing apparatus 2000.
The present invention has been described in detail in connection with the exemplary embodiments and the accompanying drawings. However, the scope of the present invention is not limited thereto but is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0001668 | Jan 2009 | KR | national |
10-2009-0108306 | Nov 2009 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2010/000094 | 1/7/2010 | WO | 00 | 9/1/2011 |