This invention relates to a cooling arrangement and related method in which at least one selected surface in a coolant circuit has a surface configuration adapted to inhibit changes in boiling state, such as departure from nucleate boiling to a film boiling state.
Heat transfer in coolant circuits can be enhanced by maintaining the coolant in a nucleate boiling heat transfer regime. However, during nucleate boiling heat transfer, the heat flux can reach critical heat flux (CHF) at which point further increases in heat flux cause a departure from nucleate boiling (DNB). This phenomenon is illustrated graphically in
Due to the benefits of nucleate boiling heat transfer, efforts have been made use nucleate boiling heat transfer while avoiding damage from film boiling. For example, in U.S. Pat. No. 4,474,231 to Staub et al., the entirety of an immersed surface is provided with a plurality of cavities configured in a manner intended to avoid film boiling at the surface. Although the Staub et al. arrangement may be advantageous in preventing film boiling at the surface, the Staub et al arrangement is subject to improvement since not all surfaces in a coolant circuit are equally susceptible to the high heat flux that results in departure from nucleate boiling. Thus, use of the Staub et al. approach can incur more expense than needed to achieve the desired result of avoiding film boiling. In addition, the Staub et al. arrangement only increases the critical heat flux associated with departure from nucleate boiling but does not change the superheat gradient during nucleate boiling heat transfer. Moreover, the Staub et al. approach is not useful if forming cavities on the parent surface to be cooled is not possible or not practical.
Accordingly, there is a need for a cost-effective and flexible cooling arrangement in which a surface configuration tending to inhibit boiling state transitions (e.g. transitions to film boiling) is applied to only selected surfaces in the coolant circuit that are considered susceptible to film boiling.
In accordance with one aspect of this invention, a cooling arrangement utilizing a coolant having a boiling state comprises a coolant circuit having a high-heat surface therein to be cooled, the high-heat surface having a tendency to experience high heat flux in comparison to adjacent surfaces in the coolant circuit. A surface configuration is provided on at least a portion of the high-heat surface. The surface configuration tends to inhibit a change in boiling state of the coolant. In one embodiment, the cooling arrangement comprises an insert having an insert surface forming at least a portion of the coolant circuit surface, and the surface configuration is provided on at least a portion of the insert surface.
According to another aspect of this invention, a method for altering the boiling character of a coolant on a surface in a coolant circuit is disclosed. The method comprises identifying a high-heat surface in the coolant circuit having a tendency to experience high heat flux in comparison to adjacent surfaces in the coolant circuit, and providing a surface configuration on at least a portion of the high-heat surface. The surface configuration tends to inhibit a change in boiling state of the coolant. In one embodiment, the method includes providing an insert having an insert surface adapted to form at least a portion of the coolant circuit surface, and positioning the insert in the coolant circuit.
Other features and aspects of this invention will be apparent from the following description and the accompanying drawings.
The coolant circuit insert 10 can be formed as a metal body, preferably using non-ferrous metal such as stainless steel or aluminum to avoid rusting or corrosion from exposure to the coolant, or the insert 10 may be formed from silicon, a suitable polymer, or any other material having suitable heat transfer characteristics. The illustrated insert 10 has a planar insert surface 12 and is thus configured for use in forming a planar surface in the coolant circuit.
Normal handling of metal parts such as the insert 10 can leave a surface that, although perhaps smooth to the naked eye, has many random surface cavities. Prior to or potentially after forming the nucleation cavities 16 in the insert surface 12, the insert surface 12 can be polished or otherwise processed to remove the randomly spaced and randomly sized cavities and scratches in the surface. By removing the random cavities on the surface 12, nucleation will occur only at the nucleation cavities 16, whose size and shape and locations are selected as described below to inhibit departure from nucleate boiling. For example, since random small cavities smaller than nucleation cavities 16 are removed from the surface 12, increasing heat flux after nucleation begins at cavities 16 does not activate additional cavities that would otherwise be activated and increase the level of nucleate boiling. Of course, the benefits of this invention can be achieved to at least some extent if the insert surface 12 is not polished.
The nucleation cavities 16 can be formed as blind recesses in the insert surface 12 or, alternatively, the nucleation cavities can be formed by forming holes or passages that extend from the insert surface 12 through to the opposite surface of the insert 10. In the latter case, the thickness of the insert 10 defines the depth of the cavities 16, with the bottom wall of the cavities 16 being formed by the parent surface of the coolant circuit to which the insert 10 is mounted. The nucleation cavities 16 can be formed by any suitable process, such as use of a laser or by stamping the surface, as with a diamond-headed indenter for example. An Nd:YAG laser system or an Excimer laser system are examples of laser systems considered suitable for use in creating the nucleation cavities 16, but other laser systems capable of machining or etching cavities having the desired shape and dimensions could be used.
Optimal cavity spacing S and cavity diameter d for any given application can be determined by analysis and limited experimentation. As apparent from the drawings, cavity spacings such as a, b (
where νfg is the specific volume of evaporation, σ is surface tension, and hfg is the enthalpy of evaporation, Tsat is the coolant saturation temperature, and ΔT is the superheat temperature (Ts–Tsat). Thus, for superheat temperatures below ΔT, only cavities having a radius of greater than rmin will produce nucleation. Nucleation cavity diameter d can be selected to be in the range of about 10 μm to about 250 μm, especially for conventional coolant liquids with superheat temperatures up to about 10° C. In addition, interaction between adjacent nucleation sites can have the effect of making bubble formation and departure unpredictable, since departing bubbles can create turbulence that affect the formation and departure of bubbles at adjacent nucleation sites. To avoid interaction between nucleation sites, the nucleation cavities 16 can be spaced by a distance S where the ratio of cavity spacing S to the bubble departure diameter Db is greater than or equal to about three (S/Db≧3). Of course, cavity spacing slightly less than three may be sufficient to avoid interaction between nucleation sites in some cases. Bubble departure diameter Db can be predicted by the equation
where ρ1 is the liquid coolant density, ρv is the vapor coolant density, α is the thermal diffusivity, g is the gravitational constant, Cp is specific heat, ΔT is the superheat temperature Ts–Tsat, and λ is the latent heat of evaporization. For excess temperature or superheat ΔT in the range of about 1° C. to about 10° C., bubble diameter of conventional coolant is predicted to be in the range of about 0.1 mm to about 1.4 mm. Thus, in an effort to avoid nucleation site interaction, spacing S between nucleation cavities 16 can be selected to be in the range of about 0.3 mm to about 4.2 mm.
Although not necessarily the case, a larger cavity diameter d will typically be associated with smaller cavity spacing S and vice versa. This is generally true due to the interaction between bubble departure diameter, superheat, and desired cavity spacing. As mentioned above, bubble departure diameter Db determines the desired spacing of nucleation cavities if site interaction is to be avoided. Bubble departure diameter Db is a function, in part, of superheat ΔT. Thus, higher levels of superheat ΔT results in larger diameter bubbles and thus in a selection of larger spacing S between nucleation cavities 16. At the same time, higher levels of superheat ΔT activates smaller diameter nucleation cavities. Thus, cavity diameter d and cavity spacing S can be selected based on the superheat temperature ΔT at which start of nucleate boiling is desired, where increasing the target superheat temperature ΔT associated with onset of nucleate boiling results in selecting a larger cavity spacing and a smaller cavity diameter d.
As mentioned above, a spacing S between adjacent cavities 16 that is sufficient to avoid undesired interaction between adjacent cavities 16 can be desirable. In this regard, the undesired interaction is one where a bubble from one cavity 16 might merge before departure with a bubble formed at a nearby cavity 16, which could lead to a large bubble overlying the surface 12 between the cavities 16 and thus to localized film boiling. In some situations, a smaller cavity spacing S may in fact be desirable to ensure that nucleation starts at most or all of the cavities 16, thereby increasing the heat transfer effects. It is possible that a cavity 16 may not nucleate except at extraordinarily high levels of heat flux because no residual vapor is trapped in the cavity 16. If the cavity spacing S is sufficiently small, turbulence or other forces can cause some bubbles to transit or transfer between cavities 16 before the buoyancy of the bubble is sufficiently high to cause normal bubble departure as discussed above. In this case, a bubble can transit along the surface 12 toward another cavity 16, the bubble being held to the surface 12 by surface tension that exceeds the bubble's buoyancy force. As the bubble transits laterally from its initial cavity 16, the bubble is sheared at or about the opening of the cavity 16, thus leaving a residual amount of vapor in the initial cavity 16 that can grow to form a new bubble, thereby allowing continued nucleation at the initial cavity 16. If the transiting bubble reaches another cavity 16 before its buoyancy exceeds surface tension, then the bubble will deposit vapor into the new cavity 16 and will grow until it reaches its usual bubble departure size. When the bubble departs the new cavity 16 in normal fashion, the departure shearing mentioned above will leave residual vapor in the cavity 16. As a result, the new cavity 16 will continue to nucleate. In this way, the transit of bubbles across the surface 12 can allow a higher number of the cavities 16 to begin to nucleate, thus increasing the heat transfer effects of the nucleate boiling. If the positive effects of bubble transit across the surface 12 is desired, the cavity spacing S should be selected to be sufficiently large to avoid undesirable interaction but sufficiently small to allow for bubble transit. In this regard, the ratio of cavity spacing S to the bubble departure diameter Db can be selected to be greater than or equal to about one (S/Db≧1). A ratio of one or just marginally greater than one may be satisfactory, and observations indicate that a ratio of 2 is too large to allow for beneficial bubble transit effects. If liquid is flowing across the surface or the liquid is otherwise turbulent, then the ratio S/Db might be selected to be somewhat higher than in no-flow or low-turbulence conditions since the flow or turbulence can encourage bubble transit.
The depth of the nucleation cavities 16 is selected to be at least sufficient that surface tension will not preclude coolant from entering the cavities. Preferably, however, the depth of the nucleation cavities is selected to be at least equal to the diameter d of the nucleation cavities 16, thus provide a depth-to-width ration of at least 1. Of course, the depth-to-width ratio can be greater than 1 without departing from the scope of this invention. The nucleation cavities 16 may have a variety of shape, such as shapes that have parallel sidewalls and thus a uniform cross-sectional area along the depth of the cavity 16 as shown in
Referring back to
The inserts 10 can be secured to the cylinder head 20 in a variety of manners. Where the locations within the cooling passages 30, 32, 34, 36 are accessible after casting of the cylinder head, the inserts 10 can be held in position by suitable fastening means, such a “cool-shrink” fitting as mentioned above, press-fitting, welding, or use of adhesives. In many cases, however, the desirable locations for inserts 10 are locations that are not easily accessible after the cylinder head 20 has been cast. In those cases, the inserts 10 can be positioned in the cast cylinder head 20 during the casting process. The inserts 10 would be positioned into the sand mold used to cast the cylinder head 20 so that, when molten metal is poured or injected into the mold, the inserts would adhere to the resultant cylinder head 20 is the selected locations.
In some cases, the surfaces of the cylinder head 20 or other coolant circuit surfaces may be readily accessible after the casting or other forming process. In those cases, the surface configuration of this invention can be provided without use of an insert by optionally polishing or otherwise preparing the coolant circuit surface and forming the surface configuration, such as the matrix 14 of nucleation cavities 16, directly on the parent surface. For internal combustion engine applications, however, it is expected that this method may have limited application since most coolant circuit surfaces will not be sufficiently accessible.
Although the preferred embodiments of this invention have been described herein, improvements and modifications may be incorporated without departing from the scope of the following claims. For example, although this invention is described in detail in the context of a cooling arrangement for an internal combustion engine, this invention may also be applied to any application in which selected surface in a coolant circuit have a tendency to experience higher levels of heat flux compared to adjacent surface and/or are more susceptible to film boiling.
Number | Date | Country | Kind |
---|---|---|---|
02258581 | Dec 2002 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3313276 | Ito et al. | Apr 1967 | A |
3384160 | Beurtheret | May 1968 | A |
3836293 | Lamm | Sep 1974 | A |
3964445 | Ernest et al. | Jun 1976 | A |
4037998 | Goloff | Jul 1977 | A |
4050507 | Chu et al. | Sep 1977 | A |
4093755 | Dahl et al. | Jun 1978 | A |
4136427 | Shum | Jan 1979 | A |
4434842 | Gregory | Mar 1984 | A |
4474231 | Staub et al. | Oct 1984 | A |
4531900 | Jones et al. | Jul 1985 | A |
4619316 | Nakayama et al. | Oct 1986 | A |
4653572 | Bennett et al. | Mar 1987 | A |
4768484 | Scarselletta | Sep 1988 | A |
5031579 | Evans | Jul 1991 | A |
5530295 | Mehr | Jun 1996 | A |
5544696 | Leland | Aug 1996 | A |
6371199 | Gebhart | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
0 206 124 | Dec 1986 | EP |
Number | Date | Country | |
---|---|---|---|
20040200442 A1 | Oct 2004 | US |