The present invention relates to an arrangement of cooling holes in an aerofoil of a gas turbine engine.
Gas turbine blades and vanes, particularly those in the hot turbines, may require cooling and it is well known to provide a coolant flow to an internal passage of the component. Holes are provided through walls of the component so that the coolant removes heat from the wall and may form a coolant film over an external surface of the component.
U.S. Pat. No. 5,062,768 discloses a turbine blade having a wall defining multiple angled cooling holes that intersect and have a single exit. Where the holes intersect there is a constriction. This arrangement is characterised in that the cross-sectional area of flow for the coolant is greater at the exit than at the intersection, thereby avoiding blockages at the exit.
U.S. Pat. No. 5,370,499 discloses a turbine aerofoil wall having a mesh cooling hole arrangement which includes first and second pluralities of cooling holes between internal and external surfaces. The cooling holes of each plurality extend generally parallel to one another and intersect leaving internal nodes. Coolant jets interact with one another at these intersections and cause a restriction of the flow, thereby producing a pressure drop. The area of the flow inlets is substantially less than the area of the flow outlets.
Although these and other conventional cooling arrangements are adequate to cool aerofoils, there is a desire to reduce the amount of coolant required thereby minimising parasitic losses and improve the efficiency of the gas turbine engine. There is also a desire to tailor the amount of cooling in certain regions of the aerofoil that may be subject to a varying temperature profile.
Therefore it is an object of the present invention to provide an aerofoil with a more efficient cooling arrangement.
In accordance with the present invention an aerofoil for a gas turbine engine comprising a pressure wall and a suction wall and defining leading and trailing edges, the walls define a passage into which is supplied a cooling fluid, an array of cooling holes is provided through at least one of the walls to allow the cooling fluid to flow from an interior surface to an exterior surface; the array of holes comprise two groups, the holes of each group are angled to intersect the holes of the other group and are characterised in that the holes of at least one of the groups comprises two or more holes at different angles to one another to vary the porosity of the wall.
Preferably, the array of holes comprising the two groups in a single row of holes.
Alternatively, there are two or more row of holes, each row comprising the two groups.
Preferably, the array of holes comprises the two groups in two or more rows of holes.
Optionally, the two or more rows of holes are divergent.
Optionally, the two or more rows of holes are convergent.
Alternatively, the holes of at least one of the groups comprise all holes at different angles to one another.
Optionally, some of the holes of at least one of the groups comprise consecutive holes inclined at increasingly steep angles to one another.
Alternatively, some of the holes of both groups comprises consecutive holes inclined at increasingly steep angles to one another and together are positioned so that they both increase the porosity of the region.
Preferably, the porosity of the wall varies through the thickness of the wall.
Preferably, the porosity of the wall is greater at its exterior surface than its internal surface.
The present invention will be more fully described by way of example with reference to the accompanying drawings in which:
Referring to
The gas turbine engine 10 works in the conventional manner so that air entering the intake 11 is accelerated by the fan 12 to produce two air flows: a first airflow A into the intermediate pressure compressor 13 and a second airflow B which passes through the bypass ducts 22 to provide propulsive thrust. The intermediate pressure compressor 13 compresses the airflow A directed into it before delivering that air to the high pressure compressor 14 where further compression takes place.
The compressed air exhausted from the high-pressure compressor 14 is directed into the combustion equipment 15 where it is mixed with fuel and the mixture combusted. The resultant hot combustion products then expand through, and thereby drive the high, intermediate and low-pressure turbines 16, 17, 18 before being exhausted through the nozzle 19 to provide additional propulsive thrust. The high, intermediate and low-pressure turbines 16, 17, 18 respectively drive the high and intermediate pressure compressors 14, 13 and the fan 12 by suitable interconnecting shafts.
Referring now to
The interior of the aerofoil 36 can contain a chordwise succession of substantially mutually parallel cooling air passages 61 (see, e.g., our U.S. Pat. No. 4,940,388 for exemplary details), which passages extend spanwise of the aerofoil. One or more of the passages are connected to a cooling air entry port 40 provided in the side face of an upper root shank portion 42 just below the underside of inner platform 34. This receives low pressure cooling air, which cools the aerofoil 36 by taking heat from the internal surface of the aerofoil as it flows through the internal passage and out through holes (not shown) in the shroud 38 and also through the spanwise row of closely spaced small holes 44 in the trailing edge 46 of the aerofoil. The interior of the aerofoil 36 can also contain in combination with these passages a radial succession of substantially mutually parallel chordwise passages. Others of the internal passages are connected to another cooling air entry port (not shown) located at the base 47 of the “fir-tree” root portion 32, where high pressure cooling air enters and cools the internal surfaces of the aerofoil 36 by its circulation through the passages and eventual exit through holes (not shown) in the shroud 38. It is also utilised to film-cool the external surface of the pressure wall 48 of the aerofoil 36 by means of spanwise extending rows of film cooling holes 50 to 53.
Referring now to
In this embodiment, the arrangement of holes is such that the region 66 of wall 48 is more porous than region 68 and therefore there is a greater flow of coolant therethrough and a greater surface area over which the coolant flows, thereby region 66 is cooled more than region 68. This arrangement is particularly suitable where the blade's aerofoil 36 is subject to a varying temperature profile over its radial height, the hottest working gas temperature impinging on region 66. Alternatively, this arrangement may be used where the temperature of the coolant changes such that as the coolant increases in temperature, there is a corresponding increase in porosity to compensate for the lower temperature differential between coolant and wall.
In the preferred embodiment shown in
It should be noted that the holes of each of the two (or more) groups of holes 62 and 64 have their longitudinal axes lying substantially in a single plane (i.e. the plane defined by the section A-A in
In an alternative embodiment of the present invention shown in
It should be appreciated that the planes of each of the two (or more) rows are preferably and substantially normal to the surface 56, but may be at any other suitable angle.
In yet another embodiment of the present invention each of the individual holes of either or both the groups of holes 62, 64, whether in one row or two or more, may be angled relative to a common plane (e.g. Section A-A in
Various modifications may be made without departing from the scope of the present invention. For example, two or more adjacent holes may be parallel and angled differently than the next two or more parallel holes; consecutive holes may be inclined at increasingly steep angles relative to one another i.e. the holes are not equally incremented in their angles.
Although the arrangement of cooling holes has been described in relation to rows of cooling holes extending generally in a radial direction, the present invention is equally applicable to a transverse row of cooling holes, such that
It should be appreciated that the porosity of the wall 48, 49 also varies through the thickness of the wall and in the example shown in
The Applicants have found that the present invention has produced a 50% increase in a convective cooling parameter (the product of the cooling hole convective heat transfer coefficient and the exposed holes surface area). This arrangement allows either less coolant mass flow to maintain a constant wall temperature, or a lower wall temperature for a given coolant mass flow. This arrangement has provided a significant, about 50 degrees, wall temperature reduction for the same mass flow of coolant using conventional non-intersecting cooling hole arrangements.
Number | Date | Country | Kind |
---|---|---|---|
0709562.3 | May 2007 | GB | national |