This invention relates generally to centrifugal blowers, and more particularly to centrifugal blowers for use in automotive climate control systems.
Centrifugal blowers typically include impellers having a plurality of blades that redirect an incoming airflow toward a radial direction as the airflow moves from the impeller inlet to the impeller outlet. The blades are typically attached to a hub for rotation therewith. An electric motor rotates the impeller at the required speed. The electric motor requires cooling and therefore has an airflow path through the motor.
In automotive climate control applications (i.e., heating, ventilation, and air conditioning), water can enter the inlet of a climate control blower assembly. The water must be prevented from propagating from the blower inlet to the inner workings of the electric motor. Some previous methods to prevent water from entering the motor have been unsuccessful; others, while successful, require the motor cooling air path to be created by joining the blower assembly to the main climate control module that includes the volute.
Other cooling air paths involve positioning the cooling hole or inlet high in the volute, just downstream of the volute tongue. The path then turns downward towards the motor flange where the motor flange assembles to the volute. The motor flange and a cover/cap piece then form the rest of the air path towards the bottom of the motor. The high position of the cooling path inlet is effective at preventing water from entering, but the cooling path design requires design details in both the volute and the blower assembly.
The present invention provides a motor cooling air path that prevents water from entering the motor, even if the assembly is tilted up to twenty-five degrees from its installed position. This is achieved by designing the air path with an incline or change in elevation that prevents water from traveling over the top of the incline and into the motor. The pressure differential between the cooling path inlet in the volute and outlet at the drive end of the motor drive the air over the incline and through the motor.
The invention provides a means of preventing water from entering the motor and is self-contained in the blower assembly. This allows the blower assembly to be used in different HVAC modules without the HVAC module manufacturer needing to modify its parts to accommodate the blower motor cooling requirement.
The invention also provides a centrifugal blower comprising a centrifugal fan including a hub adapted for rotation about a central axis, and a plurality of blades coupled for rotation with the hub. The blower also comprises a motor having a drive end and an opposite end, the motor including a drive shaft drivingly connected to the hub of the centrifugal fan, the drive shaft extending from the drive end of the motor, and the motor having therethrough a motor airflow path for cooling the motor, the motor airflow path having an inlet near the opposite end of the motor. The blower also comprises housing structure including a blower housing portion at least partially defining a space in which the fan is substantially enclosed, the space having an inlet and an outlet. The housing structure also includes a motor housing portion supporting the motor, and a flange portion at least partially supporting the motor housing portion on the blower housing portion. The housing structure also includes a cooling air path having an inlet communicating with the space and an outlet communicating with the inlet of the motor airflow path, the cooling air path having an upstream portion that extends axially in the direction from the opposite end of the motor toward the drive end of the motor, and the cooling air path having a downstream portion that extends axially in the direction from the drive end of the motor toward the opposite end of the motor.
The invention also provides a method of mounting a centrifugal blower in a vehicle, the method comprising providing a centrifugal blower as described above, and mounting the blower in a vehicle such that the central axis extends non-vertically and non-horizontally, and such that the inlet of the cooling air path is substantially directly below the axis.
Other features and aspects of the present invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings.
In the drawings, wherein like reference numerals indicate like parts:
Before any features of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The use of letters to identify elements of a method or process is simply for identification and is not meant to indicate that the elements should be performed in a particular order.
A centrifugal blower 10 embodying the invention is illustrated in
Referring to
The motor 30 has a drive end (the upper end in
The blower housing 40 cooperates with the motor flange 60 to form a volute or scroll, as is known in the art. The volute defines a space 90 in which the fan 20 is substantially enclosed, the space 90 having an inlet 94 and an outlet 98 (
The motor housing 50 supports the motor 30. In the illustrated construction, the motor housing 50 is defined in part by the motor flange 60. More particularly, a generally cylindrical part 102 of the motor flange 60 extends downwardly around the upper part of the motor 30. The motor housing 50 also includes a separate cover 106 that extends in part over the lower end of the motor 30.
The motor flange 60 is connected to the blower housing 40 and cooperates with the blower housing to form the volute, as described above. Specifically, the motor flange 60 has a generally bell-shaped surface 110 that forms part of the volute and that is in closely-spaced, facing relationship with the lower edges of the fan blades. The motor flange 60 also has a generally cylindrical surface 114 that extends generally parallel to, or is centered on, the axis 74, and that extends downwardly from the lower end of the bell-shaped surface 110.
The blower 10 also includes a cooling air path (indicated by the arrows in
The cooling air path also has an outlet 128 communicating with the inlet of the motor airflow path, i.e., with the cooling air inlet of the motor 30. Between the inlet 124 and the outlet 128, the cooling air path has an upstream portion 132 that extends radially inwardly and axially upwardly from the inlet 124. The upstream portion 132 of the cooling air path is defined in part by a ramped surface 136 on the cover 106, and in part by a generally downwardly facing surface 140 on the motor flange 60. The upstream portion 132 of the cooling air path also includes a wall 144 that extends downwardly toward and terminates at a point spaced above the ramped surface 136. The upstream portion 132 further includes a dam 148 that extends upwardly from the ramped surface 136 at the innermost end of the ramped surface 136. The dam 148 and the wall 144 create a labyrinth structure that resists downstream water flow in the upstream portion 132 of the cooling air path. Referring to
The cooling air path also has a downstream portion 152 that extends axially or downwardly from the radially inward end of the upstream portion 132, and that extends substantially the entire length of motor 30. The downstream portion 152 is defined on the outside by the cover 106 and on the inside by the cylindrical portion 102 of the flange 60 and by the motor 30. More particularly, the cover 106 includes an axial portion 162 that extends upwardly and over the cylindrical portion 102 of the motor flange 60. Extending outwardly and downwardly from the upper end of the axial portion 162 is an angled portion 166 that includes the ramped surface 136.
The cooling air path substantially prevents water from entering the motor 30, even if the blower 10 is tilted up to twenty-five degrees (in any direction) from its installed position.
Cooling air exiting the motor 30 via cooling air outlets at the upper end of the motor flows through a second cooling air path that includes the axial gap 78 between the upper end of the flange 60 and the fan hub 70.
Many automotive HVAC blower assemblies are oriented as in
If the blower is positioned with the axis 74 other than horizontal or vertical, it is preferable to have the inlet 124 directly below the axis 74, or in its lowermost possible position. This lowermost position can also be described as having the inlet 124 below the axis 74 and in a vertical plane (e.g., the plane of the paper in
Number | Name | Date | Kind |
---|---|---|---|
3878809 | Ray | Apr 1975 | A |
4167683 | Hallerbäck et al. | Sep 1979 | A |
4186317 | Sisk | Jan 1980 | A |
4856971 | Koble, Jr. | Aug 1989 | A |
4958988 | Regev | Sep 1990 | A |
5236306 | Hozak | Aug 1993 | A |
5243244 | Kasberger et al. | Sep 1993 | A |
5929544 | Maekawa et al. | Jul 1999 | A |
6107708 | Yamaguchi et al. | Aug 2000 | A |
6563240 | Lin et al. | May 2003 | B2 |
6604906 | Ozeki et al. | Aug 2003 | B2 |
6703730 | Hayashi | Mar 2004 | B2 |
6717299 | Bacile et al. | Apr 2004 | B2 |
6755615 | Chapman | Jun 2004 | B2 |
6802699 | Mikami et al. | Oct 2004 | B2 |
6831382 | Lyle et al. | Dec 2004 | B1 |
6831435 | Suzuki | Dec 2004 | B2 |
7011506 | Kim | Mar 2006 | B2 |
20010052733 | Fujii et al. | Dec 2001 | A1 |
20020025253 | Ozeki et al. | Feb 2002 | A1 |
20030210981 | Kim | Nov 2003 | A1 |
20040219013 | Hopfensperger | Nov 2004 | A1 |
20040263009 | Noda et al. | Dec 2004 | A1 |
20050099070 | Shimasaki et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
4220669 | Jul 1993 | DE |
61077512 | Apr 1986 | JP |
02151519 | Jun 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20070177996 A1 | Aug 2007 | US |