Cooling circuit for a multi-cylinder internal combustion engine

Information

  • Patent Grant
  • 6595166
  • Patent Number
    6,595,166
  • Date Filed
    Tuesday, May 28, 2002
    22 years ago
  • Date Issued
    Tuesday, July 22, 2003
    21 years ago
Abstract
A cooling circuit arrangement for a multicylinder internal combustion engine with V-shaped cylinder banks and cooling jackets which surround the cylinder banks and which are provided with cooling liquid by a pump arranged between the two cylinder banks on one of their face sides is disclosed. The pressure-sided connection of the coolant pump, arranged on the one face side of the two cylinder banks, is connected by a coolant pipe to a distributor pipe, arranged on the other face side of the cylinder banks, for the purpose of feeding cooling liquid. A return flow chamber for the coolant from the cooling jackets is arranged between the two cylinder banks adjacent to the pump housing. In this manner the space, existing between the two cylinder banks, is utilized for a part of the coolant arrangement so that the internal combustion engine exhibits a compact design.
Description




The invention relates to a cooling circuit arrangement for an internal combustion engine in accordance with the features of the preamble of claim


1


.




Such an arrangement is disclosed in the EP 0 219 351 A2, where the cooling jackets, integrated into the cylinder banks, are provided with cooling liquid by means of a coolant pump, disposed between the V-shaped cylinder banks on one face side of the internal combustion engine. On the other face side of the internal combustion engine there is a collecting pipe for the coolant, flowing back from the cylinders and a radiator circulation. Owing to the collecting pipe, provided with several connections, the actual dimensions of the internal combustion engine are exceeded so that, especially when the motor is installed lengthwise into the vehicle, there is a demand for construction space that the passenger space no longer has to offer.




Thus, the invention is based on the problem of providing a structural arrangement for a cooling circuit in an internal combustion engine with cylinders arranged in the shape of a V. In this arrangement the existing free space is utilized so that the actual dimensions of the internal combustion engine are not exceeded.




The invention solves this problem with the characterizing features of claim


1


.




Since the space existing between the two cylinder banks is used for a part of the coolant arrangement, the internal combustion engine exhibits a compact design that is especially appropriate for longitudinal installation into a motor vehicle. On the face side, assigned to the coolant distributor pipe, it is possible to attach in a simple manner a transmission to the internal combustion engine, since none of the parts of the cooling circuit arrangement impede access during installation.




Other advantages and advantageous further developments of the invention are disclosed in the dependent claims and the description.




The cylinder block and the cylinder head are cooled, as required, by means of the parallel, i.e. the simultaneous, coolant flow through the cylinder block and the cylinder head housing without any additional control systems. The motor reaches quickly its operating temperature. Thus, the cold running phase is reduced; and consequently the fuel consumption and the raw emissions can be reduced. Due to the parallel division of the coolant flow, the cross sections of the cooling channels in the cylinder block can be decreased so that the construction space and thus also the weight of the internal combustion engine can be further decreased. In contrast to serial coolant flow through the cylinder block and the cylinder head, the pressure loss in the cooling circuit decreases, thus making it possible to select less input power for the water pump.




With the aid of the two return flow chambers, which are disposed at the coolant pump and which are connected together by means of an opening, which can be controlled by a thermostat, a regulator can be realized that can be built compactly between the two cylinder banks and with which a small and large coolant circulation and a heating circulation can be operated. Since in the installed state of the internal combustion engine in the vehicle, the regulator and the coolant pump are arranged, seen in the direction of travel, on the front face side of the internal combustion engine, it is readily accessible for maintenance and repair work.




The bottom part of the two return flow chambers, which consist of one module, is cast in an advantageous manner together with the housing of the coolant pump in the upper part of the crankcase.











One embodiment of the invention is explained in detail in the following description and the drawings.





FIG. 1

is a schematic general view of an internal combustion engine.





FIG. 2

is a front view of the internal combustion engine, designed as a V engine.





FIG. 3

is a sectional view along the line III—III in FIG.


2


.





FIG. 4

is a sectional view along the line IV—IV in

FIG. 2

; and





FIGS. 5 and 6

are two top views of a detail of the internal combustion engine.











DESCRIPTION OF THE EMBODIMENT




The V8 engine, depicted in

FIG. 1

, consists of a crankcase bottom part


10


and a crankcase upper part


12


, in which two rows of cylinders


1


to


4


and


5


to


8


are arranged with respect to each other in the shape of a V. For each row of cylinders a cylinder head housing


14


adjoins the upper part


12


of the crankcase. Both rows of cylinders are identical in their construction. In

FIG. 1

only the cylinder head housing


14


is illustrated for the row of cylinders


1


to


4


(on the left in the drawing), whereas for the right row of cylinders (cylinders


5


to


8


) the cylinder head housing is not shown for the sake of a better overview of the coolant flow. Both rows of cylinders have cylinder cooling jackets


16


and


18


, surrounding the cylinder bearing surfaces, whereby the cylinder cooling jackets


16


,


18


are assigned only to the upper area of the cylinder bearing surfaces. The length


1


of the cylinder cooling jackets


16


,


18


amounts to approximately ½ the total length of the individual cylinders or cylinder bearing surfaces. The slotted openings


24


, arranged on the face side of the cylinder cooling jackets


16


,


18


, are sealed with the aid of a cylinder head seal (not illustrated). The cylinder head housing


14


also has cooling jackets, which are called hereinafter the cylinder head cooling spaces


20


,


22


. For the sake of a better overview of the cylinder head cooling spaces


20


,


22


, the cross section


22


of the cooling space is shown for the right row of cylinders (cylinders


5


to


8


).




Between the two rows of cylinders is arranged the spiral-shaped housing


26


of a water pump, whereby the cover portion (not illustrated) of the water pump accommodates the crankshaft-driven turbine wheel to generate the coolant flow. Behind the housing


26


of the water pump is a module


27


, exhibiting, among other things, a return flow chamber


28


, which forms, as will be described below in detail, the return flow of the coolant from the cylinder cooling jackets


16


,


18


and the cylinder head cooling spaces


20


,


22


.




The pressure sided outlet


30


of the water pump housing


26


is connected to a coolant distributor pipe


34


by way of a coolant pipe


32


, extending between the two rows of cylinders to the other face side of the internal combustion engine. The coolant distributor pipe


34


has for each row of cylinders two connections


36


,


38


, which are designed as connecting tubes and which are shown only for the right row of cylinders (cylinders


5


to


8


) in FIG.


1


. The first connecting tubes


36


are connected to the cooling jackets


16


,


18


, which are disposed in the cylinder block and through which the flow runs longitudinally, whereas the second connecting tubes


38


are connected to the external longitudinal coolant channels


40


,


41


, cast into the upper part


12


of the crankcase. The external longitudinal coolant channels


40


,


41


exhibit inlet openings


47


, which are assigned to the individual cylinder head units and through which the coolant is passed into the cylinder head cooling spaces


20


,


22


. From there, the coolant flows across the cylinder head housing


14


and then it also passes into internal longitudinal coolant channels


42


,


43


, which are cast into the upper part


12


of the crankcase and provided with outlet openings


49


. The outlet sided end of the internal longitudinal coolant channels


42


,


43


and the outlet sided end of the two cylinder cooling jackets


16


,


18


lead by way of joint outlets, designed as overflow boreholes


44


,


45


, into the return flow chamber


28


. The overall dimensions, in particular the longitudinal stretch of the internal combustion engine, is not altered by the arrangement of the coolant distributor pipe


34


, the connecting tubes


36


,


38


and the return flow chamber


28


. At the same time it is possible to attach in a simple manner a transmission on the face side of the internal combustion engine facing the coolant distributor pipe


34


.




As shown in detail in

FIGS. 2

to


6


, the module


27


exhibits, besides the return flow chamber


28


, a second return flow chamber


56


, which is connected to the first return flow chamber


56


and to the intake pipe


31


of the pump housing


26


by way of an opening


54


, controlled by a first valve disk


51


of a thermostat


52


. The module


27


, comprising the two return flow chambers


28


and


56


and the thermostat


52


, is constructed as two parts, whereby the bottom part of the module


27


is cast together with the pump housing


26


in the crankcase upper part


12


between the two cylinder banks. The housing cover


66


of the module


27


accommodating the thermostat


52


is screwed to the bottom part of the module


27


. The second valve disk


53


of the thermostat


52


controls a return flow opening


58


, leading to the second return flow chamber


56


, whereby the fitting


59


, connected to the first return flow chamber


28


, forms the fore-flow; and the fitting


61


, connected to the second return flow chamber


56


, forms the return flow of a radiator circulation, which is not depicted in detail. As shown in

FIG. 5

, the second return flow chamber


56


is also connected to the return flow line


60


of a heating circuit (not depicted in detail) and a line


62


, which leads to an expansion tank. Starting from the first return flow chamber


28


, a line


64


forms the heating fore-flow.




The coolant circulation, which is actuated in the warming up phase of the motor and which is referred to below as the small coolant circulation, functions as follows.




In this operating phase the opening


54


between the first return flow chamber


28


and the second return flow chamber


56


is released by means of the first valve disk


51


of the thermostat


52


(see

FIG. 4

) so that the coolant passes from the first return flow chamber


28


into the second return flow chamber


56


. From there it is conveyed through the intake pipe


31


of the water pump housing


26


into the coolant pipe


32


and through the coolant distributor pipe


34


to the cylinder cooling jackets


16


,


18


, arranged in the cylinder block, and through the external longitudinal coolant channels


40


,


41


to the cylinder head cooling spaces


20


,


22


, arranged in the cylinder head housings


14


. On the inlet side there is a throttle


50


in the cylinder cooling jackets


16


,


18


. With the aid of the throttle the flow resistance is coordinated in such a manner that 70 to 80%, preferably 75% of the coolant flow, put into circulation for cooling the motor, passes through the external longitudinal coolant channels


40


,


41


into the cylinder head housing


14


. The cited percentage of coolant flow that is distributed guarantees that the cylinder head housing


14


, which is subjected to a high temperature load, and the cylinder block are adequately cooled. After the coolant has flowed through the cylinder cooling jackets


16


,


18


and the cylinder head cooling spaces


20


,


22


of both rows of cylinders, the coolant is guided back again into the first return flow chamber


28


by way of the joint overflow boreholes


44


,


45


.




In addition to the small coolant circulation described above, upon reaching the operating temperature, the internal combustion engine is switched over to a large coolant circulation, in which the radiator circulation is included, as well-known. In this case the opening


54


is closed by means of the first valve disk


51


of the thermostat


52


, whereas the opening


58


, controlled by the second valve disk


53


, is released for the radiator circulation. Thus, the radiator circulation is actuated in that, after the coolant has passed through the coolant circuit, the coolant flows by way of the fore-flow fitting


59


, the radiator (not illustrated), and the return flow fitting


61


into the second return flow chamber


56


.



Claims
  • 1. A cooling circuit arrangement for a multicylinder internal combustion engine with V-shaped cylinder banks and cooling jackets, which surround the cylinder banks and which are provided with coolant by a pump, arranged between the two cylinder banks on one of their face sides, wherein a pressure-sided connection of the pump, arranged on the one face side of the two cylinder banks, is connected by a coolant pipe to a distributor pipe, arranged on the other face side of the cylinder banks, for supplying coolant and wherein a return flow chamber for the coolant from the cooling jackets is arranged between the two cylinder banks adjacent to a pump housing.
  • 2. The cooling circuit arrangement, as claimed in claim 1, wherein the distributor pipe includes four connections, and wherein two connections each are connected to the cooling jackets of a cylinder bank.
  • 3. The cooling circuit arrangement, as claimed in claim 2, wherein for each cylinder bank a first connection is connected to one cylinder cooling jacket and for each cylinder bank a second connection is connected to a cylinder head cooling space.
  • 4. The cooling circuit arrangement, as claimed in claim 3, wherein the coolant flows across the cylinder head cooling space by way of an external longitudinal coolant channel, which is connected to the second connection and which includes inlet openings which are assigned to individual cylinder head units and which lead into the cylinder head cooling space.
  • 5. The cooling circuit arrangement, as claimed in claim 4, wherein an internal longitudinal coolant channel is connected on an output side to the cylinder head cooling space by way of outlet openings arranged in the internal longitudinal coolant channel.
  • 6. The cooling circuit arrangement, as claimed in claim 1, wherein a second return flow chamber borders the return flow chamber, wherein both are connected by an opening which can be controlled by a thermostat, and wherein the second return flow chamber includes an opening for connection of a radiator circulation which can also be controlled by the thermostat.
  • 7. The cooling circuit arrangement, as claimed in claim 6, wherein the first return flow chamber is connected to a fore-flow connection and wherein the second return flow chamber is connected to a return flow connection for a heating circulation.
  • 8. The cooling circuit arrangement, as claimed in claim 6, wherein the second return flow chamber exhibits a return flow connection for a water circulation, provided with an expansion tank.
  • 9. The cooling circuit arrangement, as claimed in claim 6, wherein the two return flow chambers consist of a two part module, wherein a housing cover of the module accommodates the thermostat.
  • 10. The cooling circuit arrangement, as claimed in claim 9, wherein a bottom part of the module is cast together with the pump housing in an upper part of a crankcase.
  • 11. A method for cooling a multicylinder internal combustion engine with V-shaped cylinder banks and cooling jackets which surround the cylinder banks, comprising the steps of:pumping cooling liquid by a pump through a coolant pipe to a distributor pipe, wherein the pump is disposed between the two cylinder banks and at one face side of the two cylinder banks and wherein the coolant pipe is disposed between the two cylinder banks and further wherein the distributor pipe is disposed on an opposing face side of the two cylinder banks; distributing the cooling liquid to a cooling jacket of each of the cylinder banks by the distributor pipe; and returning the cooling liquid from the respective cooling jackets to a return flow chamber, wherein the return flow chamber is disposed between the two cylinder banks and adjacent to a pump housing of the pump.
  • 12. The method of claim 11, wherein for each cylinder bank, the distributor pipe distributes the cooling liquid to a cylinder cooling jacket and a cylinder head cooling space, wherein the cooling liquid flowing through the cylinder cooling jacket runs parallel to the cooling liquid flowing through the cylinder head cooling space.
  • 13. The method of claim 12, wherein the cooling liquid is distributed to the cylinder cooling jacket by the distributor pipe through a first connection and wherein the cooling liquid is distributed to the cylinder head cooling space by the distributor pipe through a second connection.
  • 14. The method of claim 13, wherein the cooling liquid flows across the cylinder head cooling space by way of an external longitudinal coolant channel.
  • 15. The method of claim 11, wherein a second return flow chamber borders the return flow chamber and wherein both chambers are connected by an opening controlled by a thermostat and wherein the second return flow chamber includes an opening for connection of a radiator circulation which can also be controlled by the thermostat.
Priority Claims (1)
Number Date Country Kind
100 21 526 May 2000 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/EP01/03572 WO 00
Publishing Document Publishing Date Country Kind
WO01/83959 11/8/2001 WO A
US Referenced Citations (3)
Number Name Date Kind
4312304 Tyner Jan 1982 A
4493294 Umemura Jan 1985 A
4953525 Sakurai et al. Sep 1990 A