The present invention relates to a cooling device and a cooling method.
Priority is claimed on Japanese Patent Application No. 2020-032058, filed Feb. 27, 2020, the content of which is incorporated herein by reference.
As is well known, a strength member, a reinforcing member, or a structural member made of a metal with a hollow bent shape used in automobiles, various machines, and so on is required to be lightweight and have a high strength. Conventionally, this type of hollow bent part has been manufactured by, for example, cold bending processing, welding of a press-processed product, punching of a thick plate, forging, and the like. However, there has been a limit to weight reduction and increase in strength of the hollow bent part manufactured by those manufacturing methods, and realization thereof has not been easy.
In recent years, for example, as disclosed in Non Patent Document 1, it has been actively studied to manufacture this type of hollow bent part by a so-called tube hydroforming method. However, as described on page 28 of Non Patent Document 1, the tube hydroforming method has problems such as development of a material to be used as a material thereof and improvement of formability, and thus further development is required in the future.
In view of such a current state, the present inventors have previously disclosed an invention relating to a bending processing apparatus by Patent Document 1.
As illustrated in
There are various shapes of hollow bent parts used in automobiles, various machines, and so on. Above all, there is a large number of hollow bent parts with an extremely small bent portion in which a bending radius of the bent portion is, for example, 1 to 2 times or less than a diameter (when a metal pipe has a rectangular cross section, a length of one side connecting a side edge of a bent inner circumferential surface and a side edge of a bent outer circumferential surface in a cross section perpendicular to a longitudinal direction thereof) of the metal pipe.
However, when bending processing is performed by the method of Patent Document 1 so that a bending radius is, for example, 1 to 2 times or less than a diameter (a length of one side when the metal pipe has a rectangular cross section) of the metal pipe, there is a likelihood that wrinkles or folds will occur on an inner circumferential side of the bent portion, or a plate thickness on an outer circumferential side of the bent portion will be significantly reduced and breakage will occur. Therefore, it has been difficult to manufacture a hollow bent part with a small bent portion.
Further, in cold bending processing of the hollow bent part, as described in Non Patent Document 2, since tensile stress acts on an outer circumferential side of the bent portion, a plate thickness is reduced. Since the method of Patent Document 1 is also of bending processing, it is unavoidable that a plate thickness on the outer circumferential side of the bent portion will be reduced.
Therefore, in order to solve these problems, the present inventors have disclosed an invention relating to a shearing and bending processing apparatus by Patent Document 2.
As illustrated in
According to the invention of Patent Document 2, it has become possible to manufacture parts with high strength and a small bending radius, and the weight of mechanical parts including a large number of automobiles has been significantly reduced.
In the invention of Patent Document 2, uniform cooling in a circumferential direction and an axial direction is important to obtain a satisfactory product. Focusing on this uniform cooling, a cooling device for steel illustrated in
According to the cooling device for steel described in Patent Document 3, it is possible to reduce non-uniformity of hardness of the bent steel Pm with a relatively large bending radius in the bending processing method illustrated in Patent Document 2. However, when the cooling device described in Patent Document 3 is applied to the shearing and bending processing described in Patent Document 2, further improvement for obtaining uniform cooling may be required depending on processing conditions.
That is, in a hollow bent part having a bent portion with an extremely small bending radius of 1 to 2 times or less than a diameter (a length of one side when the metal pipe has a rectangular cross section) of the metal pipe, there are cases in which a bending angle of the bent portion is close to a right angle. When a large bending angle is formed with such an extremely small bending radius, since a processing direction changes rapidly, simply changing a configuration of the secondary cooling device cannot deal with this. The reason for this is because there is a portion in which the refrigerant from the primary cooling device does not hit the bent portion immediately after the heating, or the refrigerant flows in a direction opposite to the feeding direction of the hollow material Pm. This problem is more likely to occur when the shearing and bending processing is performed than in normal bending processing.
When the shearing processing is performed, a region subjected to shear deformation is at a high temperature and flow stress is reduced. The primary cooling device is for cooling immediately after heating, and if sufficient and uniform cooling is not provided in a circumferential direction, flow stress of the deformed region becomes non-uniform in the circumferential direction. In this case, it is difficult to obtain satisfactory shear deformation. Also, hardness of the finished product also is non-uniform in the circumferential direction. Also, so-called uneven baking may occur.
The present invention has been made in view of the above circumstances and is directed to providing a cooling device and a cooling method capable of securing a collision pressure of the refrigerant to obtain a sufficient cooling capacity and enabling uniform cooling in which non-uniformity of hardness in a circumferential direction of the product is curbed even when obtaining a hollow bent part having a bent portion with an extremely small bending radius.
In order to solve the above-described problems and achieve the objective, the present invention adopts the following aspects.
(1) One aspect of the present invention is a cooling device which is used for a hollow bent part manufacturing apparatus including a feeding mechanism feeding a hollow material made of a metal in a feeding direction which is a longitudinal direction thereof while supporting the hollow material at a first position, a heating coil heating the hollow material at a second position downstream of the first position, a cooling device cooling the hollow material by injection of a refrigerant at a third position downstream of the second position, and a bending force applying part forming a bent portion in the hollow material by gripping the hollow material at a fourth position downstream of the third position and moving a gripping position in directions in two dimensions or directions in three dimensions, and the cooling device includes a first cooling mechanism and a second cooling mechanism, in which the first cooling mechanism includes a first nozzle disposed to be aligned with the heating coil on a downstream side when viewed in a first virtual plane including an extension line of an axis in the feeding direction of the hollow material at the first position and whose injection direction of the refrigerant is a first injection direction, a second nozzle disposed to be aligned with the first nozzle on a downstream side when viewed in the first virtual plane and whose injection direction of the refrigerant is a second injection direction intersecting the first injection direction, a first valve selectively switching a supply destination of the refrigerant between one and the other of the first nozzle and the second nozzle, and a first control unit controlling the first valve, and the second cooling mechanism includes a third nozzle disposed on a side opposite to the first nozzle and the second nozzle with the extension line sandwiched therebetween when viewed in the first virtual plane and whose injection direction of the refrigerant is a third injection direction forming an angle of 20 degrees or more and 70 degrees or less with respect to a bent inner circumferential surface of the bent portion.
(2) The following configuration may be adopted in the above-described (1). The second cooling mechanism includes a first part nozzle and a second part nozzle constituting the third nozzle, a second valve which selectively switches a supply destination of the refrigerant between one and the other of the first part nozzle and the second part nozzle, and a second control unit which controls the second valve, an injection direction of the refrigerant from the first part nozzle when viewed in the first virtual plane is 20 degrees or more and 70 degrees or less with respect to the extension line, and an injection direction of the refrigerant from the second part nozzle when viewed in the first virtual plane is the third injection direction.
(3) The following configuration may be adopted in the above-described (1) or (2). A third cooling mechanism including a fourth nozzle and a fifth nozzle which are disposed on a second virtual plane perpendicular to the first virtual plane with the extension line as a line of intersection is further provided, in which an injection direction of the refrigerant of the fourth nozzle when viewed in the first virtual plane is a fourth injection direction along the extension line, and an injection direction of the refrigerant of the fifth nozzle when viewed in the first virtual plane is a fifth injection direction which intersects the fourth injection direction.
(4) The following configuration may be adopted in the above-described (3). The third cooling mechanism further includes a third valve which selectively switches a supply destination of the refrigerant between one and the other of the fourth nozzle and the fifth nozzle, and a third control unit which controls the third valve.
(5) The following configuration may be adopted in any one of the above-described (1) to (4). A fourth cooling mechanism which includes a sixth nozzle disposed on the second virtual plane perpendicular to the first virtual plane with the extension line as a line of intersection is further provided, in which an injection direction of the sixth nozzle when viewed in the first virtual plane is a sixth injection direction which forms an angle of approximately ½ of a shear angle θ of the bent portion with respect to the feeding direction.
(6) Another aspect of the present invention is a cooling method which is used for a manufacturing method of a hollow bent part including a process of feeding a hollow material made of a metal in a feeding direction which is a longitudinal direction thereof while supporting the hollow material at a first position, a process of heating the hollow material at a second position downstream of the first position, a process of cooling the hollow material by injection of a refrigerant at a third position downstream of the second position, and a process of forming a bent portion in the hollow material by gripping the hollow material at a fourth position downstream of the third position and moving a gripping position in directions in two dimensions or directions in three dimensions, and the cooling method includes a first cooling process and a second cooling process, in which the first cooling process includes a first process of injecting the refrigerant from the third position in a first injection direction when viewed in a first virtual plane including an extension line of an axis in the feeding direction of the hollow material at the first position, a second process of injecting the refrigerant from the third position in a second injection direction intersecting the first injection direction when viewed in the first virtual plane, and a third process in which the second process is stopped when the first process is performed and the first process is stopped when the second process is performed, and, in the second cooling process, the refrigerant is injected from the third position in a third injection direction forming an angle of 20 degrees or more and 70 degrees or less with respect to a bent inner circumferential surface of the bent portion when viewed in the first virtual plane.
(7) The following configuration may be adopted in the above-described (6). The second cooling process includes a fourth process of injecting the refrigerant in an injection direction of 20 degrees or more and 70 degrees or less with respect to the extension line when viewed in the first virtual plane, a fifth process of injecting the refrigerant in the third injection direction when viewed in the first virtual plane, and a sixth process in which the fifth process is stopped when the fourth process is performed and the fourth process is stopped when the fifth process is performed.
(8) The following configuration may be adopted in the above-described (6) or (7). A third cooling process of injecting the refrigerant toward the hollow material from a fourth injection direction and a fifth injection direction in a second virtual plane perpendicular to the first virtual plane with the extension line as a line of intersection is further provided, in which the third cooling process includes a seventh process of injecting the refrigerant in the fourth injection direction along the extension line when viewed in the first virtual plane, and an eighth process of injecting the refrigerant in the fifth injection direction intersecting the fourth injection direction when viewed in the first virtual plane.
(9) The following configuration may be adopted in the above-described (8). The third cooling process further includes a ninth process in which the eighth process is stopped when the seventh process is performed and the seventh process is stopped when the eighth process is performed.
(10) The following configuration may be adopted in any one of the above-described (6) to (9). A fourth cooling process of injecting the refrigerant toward the hollow material in the second virtual plane perpendicular to the first virtual plane with the extension line as a line of intersection is further provided, in which the fourth cooling process includes a tenth process of injecting the refrigerant in a sixth injection direction in which an angle formed by an injection direction of the refrigerant with respect to the feeding direction when viewed in the first virtual plane is approximately ½ of a shear angle θ of the bent portion.
According to the cooling device and the cooling method according to the above-described aspects, it is possible to secure a collision pressure of the refrigerant to obtain a sufficient cooling capacity and achieve uniform cooling in which non-uniformity of hardness in a circumferential direction of the product is curbed even when obtaining a hollow bent part having a bent portion with an extremely small bending radius.
Hereinafter, one embodiment of the present invention and various modified examples thereof will be described with reference to the drawings. In the following description, a case in which a hollow bent part to be manufactured utilizes a hollow square pipe made of steel and having a rectangular cross-sectional shape as a material (hereinafter referred to as hollow material Pm) to manufacture a product (hereinafter referred to as a hollow bent part Pp) such as a strengthening part, a reinforcing part, or a structural part used in automobiles or various machines is exemplified. First, a manufacturing apparatus (hereinafter referred to as a manufacturing apparatus 10) for a hollow bent part will be described, and then a manufacturing method for a hollow bent part will be described. A cooling device according to the present embodiment is provided in the manufacturing apparatus 10.
Further, components common in the present embodiment and modified examples thereof may be denoted by the same reference signs and duplicate description thereof may be omitted.
The hollow bent part Pp is obtained by subjecting the hollow material Pm to the shearing and bending processing by the manufacturing apparatus 10. The hollow material Pm is a long square pipe with a closed cross-sectional shape whose cross section perpendicular to a longitudinal direction thereof is hollow and rectangular. Further, an object to be processed in the present embodiment is not limited to a square pipe, and the present embodiment can also be applied to, for example, a circular pipe, an elliptical pipe, and other steel pipes with different cross-sectional shapes of various types. Also, as the hollow material Pm with a rectangular cross section, either cross-sectional shape of a square shape or a rectangular shape is applicable. Furthermore, a metal pipe other than a steel pipe may be used as the hollow material Pm. That is, the hollow material Pm may be a metal pipe made of a metal other than steel such as titanium or stainless steel.
As illustrated in
(1) Support Device 11
In the support device 11, the hollow material Pm is fed in a longitudinal direction thereof by a feeding device (not illustrated) as indicated by the arrow F in
An example of the feeding device is a type using an electric servo cylinder, but the feeding device is not limited to a specific type, and a known type such as a type using a ball screw or a type using a timing belt or a chain can be adopted.
The hollow material Pm is fed by the feeding device in the +X direction (feeding direction toward a left side on the paper surface along the arrow F) at a predetermined feeding speed. The hollow material Pm is supported by the support device 11 at a first position A. That is, the support device 11 supports the hollow material Pm that has been fed in the +X direction by the feeding device at the first position A.
In the present embodiment, a block is used as the support device 11. The block has a through hole 11a through which the hollow material Pm can be inserted with a gap. Although not illustrated, the block may be configured such that it is divided into a plurality of part blocks to be connected to a hydraulic cylinder or an air cylinder to sandwich and support the hollow material Pm. Also, the support device 11 is not limited to a specific type, and a known support device of this type can be adopted. For example, as another configuration, one set or two or more sets of a pair of hole-shaped rolls disposed to face each other can be provided in parallel to be used.
The support device 11 is fixedly disposed on a mounting table (not illustrated). However, the present invention is not limited to this aspect, and the support device 11 may be supported by an end effector (not illustrated) of an industrial robot.
The hollow material Pm passes through the first position A at which the support device 11 is installed and then is further fed in the +X direction.
(2) Heating Device 12
The heating device 12 is disposed at a second position B downstream of the first position A in the feeding direction of the hollow material Pm. The heating device 12 heats an entire circumference of a cross section of the hollow material Pin fed from the support device 11 at a portion in the longitudinal direction. An induction heating device is used as the heating device 12. As the induction heating device, any known device may be used as long as it has, for example, a coil for induction-heating the hollow material Pm at a high frequency.
A heating coil 12a of the heating device 12 is disposed to be separated from an outer surface of the hollow material Pm by a predetermined distance and surround an entire circumference of a cross section of the hollow material Pm at a portion in the longitudinal direction. The hollow material Pm is partially and rapidly heated by the heating device 12.
An installation means (not illustrated) of the heating device 12 can adjust an inclination angle of the heating coil 12a at the second position B. That is, the installation means of the heating device 12 can incline the heating coil 12a at a set angle with respect to the feeding direction of the hollow material Pm. In the example of
As the installation means of the heating device 12, for example, a well-known conventional end effector of an industrial robot can be exemplified, but a known one can be adopted as long as the inclination angle α can be adjusted as specified. The adjustment of the inclination angle α by the installation means of the heating device 12 may be configured such that the installation means receives a control signal from a control device 15 provided in the manufacturing apparatus 10 and automatically controls the inclination angle α. In this case, it is conceivable as an example that a relationship between a position at which the shearing and bending processing is performed in the longitudinal direction of the hollow material Pm and the inclination angle α to be set at the position is stored in advance in the control device 15, and the inclination angle α of the heating coil 12a when a feeding amount of the hollow material Pm reaches a predetermined feeding amount is controlled to form a predetermined angle.
Although not illustrated, one or more preheating devices (for example, small high-frequency heating devices) capable of preheating the hollow material Pm are disposed at an upstream position of the heating device 12 in the feeding direction of the hollow material Pm, and the hollow material Pm can also be heated by using the preheating means in combination with the heating device 12. In this case, the hollow material Pm can be heated a plurality of times.
(3) Cooling Device 50
The cooling device 50 is disposed at a third position C downstream of the second position B in the feeding direction of the hollow material Pm. The cooling device 50 rapidly cools a portion of the hollow material Pm heated at the second position B. When the hollow material Pm is cooled by the cooling device 50, a region sh between a first portion heated by the heating device 12 and a second portion cooled by the cooling device 50 is in a state in which a temperature is high and flow stress thereof is significantly reduced. The cooling device 50 is disposed adjacent to and immediately after the heating coil 12a on a downstream side. If necessary, this cooling device 50 may be used as a primary cooling device, and another cooling device may be provided in combination as a secondary cooling device on a downstream side of the cooling device 50. As illustrated in
The cooling device 50 can also perform effective cooling even when a hollow bent part having a bent portion with a large bending angle with an extremely small bending radius is obtained by subjecting bending processing or shearing and bending processing to the hollow material Pm. Specifically, according to the present embodiment, effective cooling can be performed without involving backflow of a refrigerant even under processing conditions with a small bending radius and a large bending angle so that cooling water injected from a cooling water discharge hole positioned on a furthest downstream side in the feeding direction of the hollow material Pm does not collide with an outer circumference of the hollow material Pm after deformation in a case of a conventional cooling mechanism.
As illustrated in
When the hollow material Pm is viewed in a cross section perpendicular to the longitudinal direction thereof, the upper surface a is cooled by the upper refrigerant injection device, the lower surface b is cooled by the lower refrigerant injection device, the right side surface is cooled by the first refrigerant injection device 51 and the second refrigerant injection device 52, and the left side surface c is cooled by the third refrigerant injection device 53. Therefore, the four outer circumferential surfaces of the hollow material Pm are individually injected with the refrigerant and are uniformly cooled.
First, the first refrigerant injection device 51, the second refrigerant injection device 52, and the third refrigerant injection device 53 for cooling the left side surface c and the right side surface b of the hollow material Pm will be described.
The first refrigerant injection device 51 includes a nozzle 51a disposed adjacent to the heating coil 12a on a downstream side when viewed in the feeding direction of the hollow material Pm. The nozzle 51a is connected to the valve V1 via a pipe. When viewed in a plan view, an injection direction of the refrigerant injected from the nozzle 51a is a first direction (first injection direction) W1. The first direction W1 indicates a center line of the refrigerant injected from the nozzle 51a and is a direction forming an angle ϕ1 which is an acute angle with the X direction, in which the hollow material Pm is fed as it is without subjecting the shearing and bending processing to the hollow material Pm along the arrow F, as a reference (0 degrees) as illustrated in a virtual line of
The second refrigerant injection device 52 includes a nozzle 52a disposed to be aligned with and adjacent to the nozzle 51a of the first refrigerant injection device 51 when viewed in the feeding direction of the hollow material Pm. That is, the heating coils 12a, the nozzles 51a, and the nozzles 52a are disposed in that order when viewed in the feeding direction.
The nozzle 52a is connected to the valve V1 via another pipe. When viewed in a plan view, an injection direction of the refrigerant injected from the nozzle 52a is a second direction (second injection direction) W2. The second direction W2 intersects the first direction W1 at an intersection x. In the plan view illustrated in
The second direction W2 indicates a center line of the refrigerant injected from the nozzle 52a and is directed toward the right side surface d of the bent portion Pb formed by the shearing and bending processing as illustrated by the solid line in
Further, an angle ϕ2 of the second direction W2 formed with a tangent line to at an intersection with the right side surface d is 20 degrees or more and 70 degrees or less. When the angle ϕ2 is set to 20 degrees or more, the collision pressure of the refrigerant can be secured, and a boiling bubble membrane formed due to a refrigerant on the outer surface of the hollow material Pm formed by membrane boiling can be broken. Thereby, a sufficient cooling capacity can be obtained by preventing the formation of the boiling bubble membrane on the outer surface of the hollow material Pm. The collision pressure of the refrigerant can be increased as the angle ϕ2 becomes larger, but if the angle ϕ2 is larger than 70 degrees, there is a likelihood that backflow of the refrigerant in the feeding direction will occur. Therefore, the backflow of the refrigerant is prevented by limiting the angle ϕ2 to 70 degrees or less.
The nozzle 52a has a nozzle surface 52a1 in which a plurality of nozzle outlets are formed. As illustrated by the two-dot dashed line in
The valve V1 is connected to a pipe from the first refrigerant injection device 51 and a pipe from the second refrigerant injection device 52. The valve V1 is further connected to a main pipe from a refrigerant supply pump that supplies the refrigerant.
The valve V1 receives an instruction from the control device (first control unit) 15 and selectively switches a supply destination of the refrigerant fed from the refrigerant supply pump between one and the other of the nozzle 51a and the nozzle 52a. Thereby, when the refrigerant is injected from the nozzle 51a, the refrigerant injection from the nozzle 52a is stopped, and conversely, when the refrigerant is injected from the nozzle 52a, the refrigerant injection from the nozzle 51a is stopped.
More specifically, when the hollow material Pm is fed in the feeding direction as it is without performing the shearing and bending processing as illustrated in the virtual straight line of
As illustrated in
The nozzle 53a is connected to the refrigerant supply pump via a pipe (not illustrated). The nozzle 53a has a nozzle surface 53a1 having a curvature in accordance with a curved surface shape of a bent inner circumferential surface (left side surface c) of the bent portion Pb. The nozzle surface 53a1 faces the inner circumferential surface (left side surface c) of the bent portion Pb and is disposed to have a distance with respect to the left side surface c of the hollow material Pm after the shearing and bending processing not to cause interference. A plurality of nozzle holes are formed on the nozzle surface 53a1 in the feeding direction of the hollow material Pm. The refrigerant is injected from the nozzle holes toward a third direction W3 to mainly cool the left side surface c. The third direction W3 indicates a center line of the refrigerant injected from each of the nozzle holes, and an angle ϕ3 thereof formed with the left side surface c is 20 degrees or more and 70 degrees or less. Thereby, the collision pressure required for breaking the boiling bubble membrane of the refrigerant can be secured to obtain a sufficient cooling capacity, and the refrigerant that has hit the left side surface c can be prevented from flowing back in the feeding direction.
According to the first refrigerant injection device 51, the second refrigerant injection device 52, and the third refrigerant injection device 53 described above, both the left side surface c and the right side surface d of the bent portion Pb can be cooled uniformly. The reason will be described in detail with reference to
Also,
A case in which the heating coil 12a is inclined to the inclination angle α as illustrated in
In
For satisfactory cooling, it is necessary to secure the collision pressure of the refrigerant with respect to the hollow material Pm to break the boiling bubble membrane. That is, the closer to 90 degrees the incident angle ϕ is, the better. On the other hand, when the incident angle ϕ becomes too large, the refrigerant may flow back along a surface of the hollow material Pm. When the refrigerant flows back, in addition to not being able to obtain sufficient cooling capacity, since a boundary line between a heating region and a cooling region is not constant in a circumferential direction, not only a hardness distribution of the hollow bent part Pp becomes non-uniform, but also the bending processing by a shearing force becomes non-uniform. In order to perform satisfactory shearing and bending processing, it is necessary to prevent backflow of the refrigerant so that the boundary line between the heating region and the cooling region is constant in the circumferential direction.
The present inventors repeated numbers of experiments while changing a feed rate of the hollow material Pm and a configuration of the cooling device. As a result, it has been found that a satisfactory incident angle ϕ that does not generate backflow of the refrigerant while securing the collision pressure in the shearing and bending processing is within the range of the following expression 1.
20 degrees≤ϕ≤70 degrees (Expression 1)
Next, as illustrated in
ϕ′=ϕ0−θ (expression 2)
ϕ″=ϕ0+θ (expression 3)
Particularly, this problem becomes prominent when the hollow bent part Pp with a sharp bent portion Pb in which a bending radius is extremely small, for example, 1 to 2 times or less than a diameter thereof (when the hollow material Pm has a rectangular cross section, a length of one side connecting a side edge of the bent inner circumferential surface and a side edge of the bent outer circumferential surface in a cross section perpendicular to a longitudinal direction thereof) is manufactured. That is, from expressions 1 and 2, for example, when ϕ0=30 degrees, if the shear angle θ exceeds 10 degrees, there is a likelihood that the incident angle ϕ′ will be less than 20 degrees and the cooling capacity will decrease. When the shear angle θ further increases and exceeds 30 degrees, geometrically, there is a likelihood that the refrigerant will not directly hit the outer circumferential side of the bent portion Pb of the hollow material Pm and cooling will not be possible.
Therefore, as illustrated in
On the other hand, since the incident angle ϕ″ on the inner circumferential side of the bent portion Pb of the hollow material Pm increases as is apparent from expression 3, backflow is likely to occur. From expressions 1 and 3, when the shear angle θ exceeds 40 degrees, the incident angle ϕ″ exceeds 70 degrees, and there is a high likelihood that backflow will occur. Therefore, when the incident angle is set so that express 1 is satisfied on the inner circumferential side of the bent portion Pb of the hollow material Pm that is sharply bent, it is possible to achieve satisfactory cooling. For that purpose, a compact cooling device is required.
Next, a case in which the hollow bent part Pp with a rectangular cross section perpendicular to the longitudinal direction and bending at 90 degrees is manufactured using the shearing and bending processing described in Patent Document 2 will be described with reference to
As illustrated in
On the other hand, as illustrated in
In contrast to the conventional configurations described above, the cooling device of the present embodiment adopts the configuration illustrated in
First, as illustrated in
The refrigerant injected from the nozzles 51a and 53a of the cooling device collides with the hollow material Pm at the incident angle ϕ0 with respect to the traveling direction of the hollow material Pm. At this time, the incident angles ϕ of the refrigerant injected from the nozzles 51a and 53a all satisfy 20 degrees or more and 70 degrees or less. Therefore, it is possible to secure the collision pressure to obtain a sufficient cooling capacity and achieve uniform cooling without involving backflow of the refrigerant.
Also, as illustrated in
As a result, the portion dl that has not been able to be cooled by the conventional refrigerant injection nozzle 501 illustrated in
Further, as illustrated in
Also, in the present embodiment, a case in which the third refrigerant injection device 53 illustrated in
The part nozzle 153a1 (first part nozzle) is relatively closer to the extension line EX than the part nozzle 153a1, and an injection direction of the refrigerant injected from the nozzle holes forms an angle of 20 degrees or more and 70 degrees or less with respect to the extension line EX.
The part nozzle 153a2 (second part nozzles) is disposed to be aligned with the part nozzles 153a1, and an injection direction of the refrigerant injected from the nozzle holes forms the angle ϕ3 of 20 degrees or more and 70 degrees or less with respect to the left side surface c of the hollow material Pm after the bending processing.
The part nozzles 153a1 and 153a2 are each connected to a valve V3 via individual pipes. Similar to the valve V1, a main pipe for supplying the refrigerant is connected to the valve V3. A supply destination of the refrigerant supplied from the main pipe is switched between the part nozzles 153a1 and 153a2 by a switching operation of the valve V3.
Specifically, when the hollow material Pm is fed in a straight line in the downstream direction along the extension line EX without shearing and bending processing, the supply destination of the refrigerant is set to the part nozzle 153a1 by switching of the valve V3. In this case, the refrigerant is not injected from the part nozzle 153a2, and the refrigerant is injected from only the part nozzle 153a1 onto the left side surface c of the hollow material Pm.
On the other hand, when the shearing and bending processing is performed on the hollow material Pm, the supply destination of the refrigerant is set to the part nozzle 153a2 by switching of the valve V3. In this case, the refrigerant is not injected from the part nozzle 153a1, and the refrigerant is injected from only the part nozzle 153a2 onto the left side surface c of the hollow material Pm. Thereby, the portion c1 illustrated in
When the injection angle of the refrigerant with respect to the hollow material Pm exceeds 30 degrees and is close to a right angle, a cooling efficiency thereof increases, but a likelihood of backflow also increases. When the hollow material Pm is bent at 90 degrees by shearing and bending processing as illustrated in
Further, a switching timing of the valve V3 may be synchronized with a switching timing of the valve V1, or the switching timings may be different depending on bending conditions of the hollow material Pm. The valves V1 and V3 are both switched by the control device 15.
Next, the upper refrigerant injection device and the lower refrigerant injection device will be described.
In the present embodiment, the cooling device 50 includes a vertical cooling device 70 illustrated in
The vertical cooling device 70 includes upper refrigerant injection devices 71 and 72, lower refrigerant injection devices 73 and 74, and a valve V2 (second valve).
The upper refrigerant injection device (fifth refrigerant injection device) 71 includes a nozzle 71a disposed adjacent to the heating coil 12a on a downstream side when viewed in the feeding direction (direction along the arrow F) of the hollow material Pm. The nozzle 71a is connected to the valve V2 via a pipe. In a side view illustrated in
The sixth direction W6 indicates a center line of the refrigerant injected from the nozzle 71a, and is a direction forming an angle ϕ6 which is an acute angle with a straight line when the center line is projected onto the upper surface a in a plan view as a reference (0 degrees). Here, when the angle ϕ6 is set to 20 degrees or more and 70 degrees or less, the refrigerant can be prevented from flowing back in the feeding direction. When viewed in a −Y direction illustrated in
The upper refrigerant injection device (sixth refrigerant injection device) 72 includes a nozzle 72a disposed to be aligned with and adjacent to the nozzle 71a when viewed in the feeding direction of the hollow material Pm. That is, the heating coil 12a, the nozzle 71a, and the nozzle 72a are aligned in that order when viewed in the feeding direction.
The nozzle 72a is connected to the valve V2 via another pipe. An injection direction of the refrigerant injected from the nozzle 72a is a seventh direction (fourth injection direction) W7. The seventh direction W7 indicates a center line of the refrigerant injected from the nozzle 72a and is directed toward the bent surface a1 as illustrated by the solid line in
The lower refrigerant injection devices 73 and 74 are disposed below the hollow material Pm as illustrated in
The lower refrigerant injection device (fifth refrigerant injection device) 73 includes a nozzle 73a disposed adjacent to the heating coil 12a on a downstream side when viewed in the feeding direction (direction along the arrow F) of the hollow material Pm. The nozzle 73a is connected to the valve V2 via a pipe. When viewed in the −Y direction as illustrated in
On the other hand, the eighth direction W8 is inclined with respect to the feeding direction when viewed in a direction facing the bent surface b1.
The lower refrigerant injection device (sixth refrigerant injection device) 74 includes a nozzle 74a disposed to be aligned with and adjacent to the nozzle 73a when viewed in the feeding direction of the hollow material Pm. That is, the heating coil 12a, the nozzle 73a, and the nozzle 74a are disposed in that order when viewed in the feeding direction.
The nozzle 74a is connected to the valve V2 via another pipe. An injection direction of the refrigerant injected from the nozzle 74a is a ninth direction (fourth injection direction) W9. The ninth direction W9 indicates a center line of the refrigerant injected from the nozzle 74a and is directed toward the bent surface b1 as illustrated by the solid line in
The valve V2 is connected to the pipes from the upper refrigerant injection devices 71 and 72 and the pipes from the lower refrigerant injection devices 73 and 74.
The valve V2 receives an instruction from a control device (second control unit) 15 and selectively switches a supply destination of the refrigerant fed from the refrigerant supply pump between one and the other of the nozzles 71a and 72a. At the same time, the valve V2 selectively switches a supply destination of the refrigerant fed from the refrigerant supply pump between one and the other of the nozzles 73a and 74a.
As a result, when the refrigerant is injected from the nozzles 71a and 73a, the refrigerant injection from the nozzles 72a and 74a is stopped, and conversely, when the refrigerant is injected from the nozzles 72a and 74a, the refrigerant injection from the nozzles 71a and 73a is stopped.
More specifically, when the hollow material Pm is fed in the feeding direction as it is without performing the shearing and bending processing as illustrated by the virtual line in
On the other hand, when the shearing and bending processing has been performed on the hollow material Pm as illustrated by the solid line in
According to the above-described configuration, in the plan view (or the bottom view from a back surface thereof) illustrated in
Thereby, the refrigerant can be injected to the back of bent ends of the bent surfaces a1 and b1. The reason will be described in detail with reference to
On the other hand,
According to the cooling device 50 including the vertical cooling device 70 described above, in addition to the left side surface c and the right side surface d, the upper surface a and the lower surface b are also cooled at the third position C. Although it depends on types of steel of the hollow material Pm, a strength of the bent portion Pb can be increased by performing quenching on it with a cooling rate at the time of the cooling set to 100° C./sec or more.
When the hollow material Pm is fed straight without applying the shearing and bending processing, the refrigerant is injected onto the upper surface a from the nozzle 71a in the sixth direction W6. Similarly, the refrigerant is injected onto the lower surface b from the nozzle 73a in the eighth direction W8. At this time, the refrigerant injection from the nozzles 72a and 74a is stopped.
Next, when the shearing and bending processing is applied to the hollow material Pm, the control device 15 switches the valve V2. As a result, the refrigerant is injected onto the upper surface a from the nozzle 72a in the seventh direction W7. Similarly, the refrigerant is injected onto the lower surface b from the nozzle 74a in the ninth direction W9. At this time, the refrigerant injection from the nozzles 71a and 73a is stopped. Therefore, the refrigerant injection from the nozzles 72a and 74a can be performed without being hindered by the refrigerant from the nozzles 71a and 73a. Therefore, even when the shearing and bending processing in which the shear angle θ is close to a right angle is performed, the refrigerant can be injected to reach a back side of the bent end. Therefore, it is possible to achieve uniform and sufficient primary cooling.
In the present embodiment, the cooling device 50 includes the vertical cooling device 70 that cools a heated part including the bent surfaces a1 and b1 connecting the left side surface (bent inner circumferential surface) c and the right side surface (bent outer circumferential surface) d of the bent portion Pb with the refrigerant immediately after forming a predetermined shape including the bent portion Pb by moving a gripping position g in directions in two dimensions or directions in three dimensions while heating a portion of the hollow material Pm in the feeding direction while feeding the hollow material Pm in the feeding direction in a state in which one end portion of the long hollow material (steel) Pm is gripped at the gripping position g (see
The vertical cooling device 70 includes the upper refrigerant injection device 71 and the lower refrigerant injection device 73 (the fifth refrigerant injection devices) in which injection directions (the sixth direction W6 and the eighth direction W8) of the refrigerant with respect to the bent surfaces a1 and b1 are inclined when viewed in the −Y direction illustrated in
According to the above-described configuration, when the valve V2 is controlled by the control device 15, the supply destination of the refrigerant can be switched between the upper refrigerant injection device 71 and the lower refrigerant injection device 73, and the upper refrigerant injection device 72 and the lower refrigerant injection device 74. Thereby, the refrigerant can be injected to reach a back side of the bent end on each of the bent surfaces a1 and b1. Therefore, it is possible to achieve uniform and sufficient primary cooling.
From another point of view, the primary cooling method of the present embodiment includes a process (third process) of injecting the refrigerant in the sixth direction W6 and the eighth direction W8 (third injection directions) inclined with respect to the bent surfaces a1 and b1 when viewed in the −Y direction illustrated in
According to the primary cooling method, the supply destination of the refrigerant can be switched between the third process and the fourth process. Thereby, the refrigerant can be injected to reach a back side of the bent end on each of the bent surfaces a1 and b1. Therefore, it is possible to achieve uniform and sufficient primary cooling.
Instead of the configuration of the present embodiment illustrated in
In this modified example, a vertical cooling device 170 illustrated in
The upper refrigerant injection device 171 includes a nozzle 171a disposed adjacent to the heating coil 12a on a downstream side when viewed in the feeding direction (direction along the arrow F) of the hollow material Pm. The nozzle 171a is disposed immediately above the hollow material Pm. The nozzle 171a is directly connected to the main pipe without passing through the valve V2. The nozzle 171a is one in which the nozzle 71a and the nozzle 72a are integrally formed.
The nozzle 171a has the same nozzle holes as the nozzle holes of the nozzle 71a. Therefore, when viewed in the −Y direction illustrated in
The nozzle 171a also has the same nozzle holes as the nozzle holes of the nozzle 72a in addition to the nozzle holes described above. An injection direction of the refrigerant injected from these nozzle holes is the seventh direction (fourth injection direction) W7. Since details of the seventh direction W7 are as described above, duplicate description will be omitted here.
However, in the present modified example, relative positions of the nozzle holes are adjusted so that the refrigerant injected in the sixth direction W6 and the refrigerant injected in the seventh direction W7 do not interfere with each other. Specifically, the refrigerant in the seventh direction W7 is injected through the refrigerant injected in the sixth direction W6.
As illustrated in
The nozzles 73a and 74a having the above-described configuration, position and direction are similarly disposed on a side opposite to the nozzle 171a disposed immediately above the hollow material Pm, that is, immediately below the hollow material Pm.
The nozzles 73a and 74a are each connected to the valve V2 via individual pipes. The valve V2 is connected to the main pipe. Therefore, a supply destination of the refrigerant supplied from the main pipe is switched to one or the other of the nozzles 73a and 74a by a switching operation of the valve V2.
Here, when the refrigerant is injected from one of the nozzles 73a and 74a by the switching operation of the valve V2, the injection of the refrigerant from the other thereof is stopped. Conversely, when the refrigerant is injected from the other of the nozzles 73a and 74a by the switching operation of the valve V2, the injection of the refrigerant from the one thereof is stopped.
More specifically, when the hollow material Pm is fed in the feeding direction as it is without performing the shearing and bending processing as illustrated in the virtual lines of
Therefore, the refrigerant can be sprayed toward the lower surface b of the hollow material Pm from below without causing interference of the refrigerant between the nozzles 73a and 74a. Since the nozzles 73a and 74a spray the refrigerant upward toward the lower surface b of the hollow material Pm against gravity, a water pressure thereof tends to be slightly insufficient compared to the nozzle 171a that sprays the refrigerant downward. However, in the present configuration, since the supply destination of the refrigerant can be concentrated on either the nozzle 73a or 74a, decrease in water pressure does not occur. Therefore, it is possible to cool the lower surface b of the hollow material Pm with the cooling capacity not inferior to that of the upper surface a.
As still another modified example, the configuration illustrated in
In this modified example, a vertical cooling device 60 illustrated in
The vertical cooling device 60 includes a fourth refrigerant injection device 61 (upper refrigerant injection device) and a fifth refrigerant injection device 62 (lower refrigerant injection device).
The fourth refrigerant injection device 61 includes a nozzle 61a disposed adjacent to the heating coil 12a on a downstream side when viewed in the feeding direction of the hollow material Pin. The nozzle 61a is connected to the refrigerant supply pump via a pipe (not illustrated). As illustrated in
When viewed in a direction facing the bent surfaces a1 as illustrated in
Such an angle β may be formed by a support mechanism (not illustrated) that holds the nozzle 61a so that the angle can be adjusted. In this case, the control device 15 changes the shear angle θ and at the same time sends an instruction to the support mechanism so that the angle β of the nozzle 61a is within the above-described range. The support mechanism that has received the instruction changes a direction of the nozzle 61a so that the angle β is within the above-described range.
Alternatively, the nozzle 61a may be integrally fixed to the heating coil 12a. In this case, the angle β is automatically changed in accordance with a change in the inclination angle α of the heating coil 12a.
The fifth refrigerant injection device 62 has the same configuration as the fourth refrigerant injection device 61. As illustrated in
The fifth refrigerant injection device 62 includes a nozzle 62a disposed adjacent to the heating coil 12a on the downstream side when viewed in the feeding direction of the hollow material Pm. The nozzle 62a is connected to the refrigerant supply pump via a pipe (not illustrated). When viewed in the feeding direction, the injection direction of the refrigerant injected from the nozzle 62a is the fifth direction W5. The fifth direction W5 indicates a center line of the refrigerant injected from the nozzle 62a and is a direction forming an angle ϕ5 which is an acute angle with a straight line when the center line is projected onto the lower surface b in a bottom view as a reference (0 degrees). Here, when the angle ϕ5 is set to 20 degrees or more and 70 degrees or less, the collision pressure required for breaking the boiling bubble membrane can be secured to obtain a sufficient cooling capacity, and the refrigerant can be prevented from flowing back in the feeding direction. As described above, in a side view of the fifth refrigerant injection device 62 in the −Y direction, the injection direction of the refrigerant with respect to the bent surface b1 when the shearing and bending processing has been performed is inclined.
The fifth direction W5 when the nozzle 62a is viewed from below coincides with the fourth direction W4. When viewed in a direction facing the bent surfaces b1, the angle β of the fifth direction W5 of the refrigerant injected from the nozzle 62a formed with the feeding direction (direction along the arrow F) as a reference (0 degree) is approximately ½ of the shear angle θ. The angle β does not need to be exactly ½ of the shear angle θ, and may be deviated as long as it is within a range of +20 degrees to −20 degrees. That is, a lower limit of the angle β is (½)×θ(degrees)−20 (degrees), and an upper limit thereof is (½)×θ (degrees)+20 (degrees).
Further, since a method of adjusting the angle β is the same as that of the fourth refrigerant injection device 61, description thereof is omitted here.
According to the fourth refrigerant injection device 61 and the fifth refrigerant injection device 62 described above, as illustrated in
Next, a cooling method when the device configuration according to the present modified example is used will be described below.
The refrigerant is injected toward the hollow material Pm from the nozzles 61a and 62a of the vertical cooling device 60 disposed at the third position C downstream of the second position B in the feeding direction of the hollow material Pm. Thereby, the heated part is cooled at the third position C. Although it depends on types of steel of the hollow material Pm, a strength of the bent portion Pb can be increased by performing quenching on it with a cooling rate at the time of the cooling set to 100° C./sec or more.
Here, as illustrated in
In addition, the refrigerant injection is also performed onto the left side surface c and the right side surface d, but the specific method thereof has already been described in the above-described embodiment, and thus description thereof will be omitted here.
Next, as illustrated in
In addition, the refrigerant injection is also performed onto the left side surface c and the right side surface d, but the specific method thereof has already been described in the above-described first embodiment, and thus description thereof is omitted here.
The outline of the present modified example will be described below.
In the present modified example, the cooling device 50 includes the vertical cooling device 60 that cools a heated part including the bent surface a1 connecting the left side surface c (bent inner circumferential surface) and the right side surface d (bent outer circumferential surface) of the bent portion Pb with the refrigerant immediately after forming a predetermined shape including the bent portion Pb with the shear angle θ by moving the gripping position g in directions in two dimensions or directions in three dimensions while heating a portion of the hollow material Pm in the feeding direction while feeding the hollow material Pm in the feeding direction in a state in which one end portion of the long hollow material Pm (steel) is gripped at the gripping position g.
The vertical cooling device 60 includes the fourth refrigerant injection device 61 in which the fourth direction W4 of the refrigerant with respect to the bent surface a1 is inclined when viewed in the −Y direction in
Further, the vertical cooling device 60 includes the fifth refrigerant injection device 62 in which the fifth direction W5 of the refrigerant with respect to the bent surface b1 is inclined when viewed in the −Y direction in
From another point of view, the present embodiment adopts the primary cooling method including a process of injecting the refrigerant in the fourth direction W4 that is inclined with respect to the bent surface a1 when viewed in the −Y direction of
In addition, the primary cooling method also includes a process of injecting the refrigerant in the fifth direction W5 that is inclined with respect to the bent surface b1 when viewed in the −Y direction of
According to the above-described vertical cooling device 60 and the primary cooling method, since an injection direction of the refrigerant with respect to the feeding direction is approximately ½ of the shear angle θ, the refrigerant can be injected to reach a back side of the bent end on each of the bent surfaces a1 and b1. Therefore, it is possible to achieve uniform and sufficient primary cooling.
Here, the description returns to the present embodiment illustrated in
An installation means of the cooling device 50 may be any means as long as the cooling device 50 can be disposed at the third position C and is not limited to a specific installation means. However, in order to manufacture the hollow bent part Pp with high dimensional accuracy by the manufacturing apparatus 10 of the present embodiment, it is desirable to set the region sh between the first portion heated by the heating device 12 and the second portion cooled by the cooling device 50 as small as possible by setting a distance between the second position B and the third position C as small as possible. For this purpose, it is desirable to dispose the cooling device 50 close to the heating coil 12a. Therefore, as illustrated in
However, the present invention is not limited only to this configuration, and the installation means of the cooling device 50 may be provided separately from the installation means of the heating device 12. As the installation means of the cooling device 50 in this case, a known one such as, for example, a well-known and commonly used end effector of an industrial robot can be adopted.
(4) Shearing Force Applying Device 14
The shearing force applying device (bending force applying part) 14 is disposed at a fourth position D downstream of the third position C in the feeding direction of the hollow material Pm. The shearing force applying device 14 has an arm (not illustrated) that grips the hollow material Pm at the gripping position g, and the gripping position g is moved in directions in two dimensions or directions in three dimensions by an operation of the arm. For example, the gripping position g moves in directions in two dimensions without involving movement in the feeding direction by moving along a plane perpendicular to the feeding direction. Also, the gripping position g moves in directions in three dimensions accompanied by movement in the feeding direction by moving in an arbitrary direction in a three-dimensional space. Thereby, the shearing force applying device 14 performs the shearing and bending processing on the hollow material Pm by applying a shearing force to the region sh between the first portion heated by the heating device 12 and the second portion cooled by the cooling device 50 in the hollow material Pm.
The shearing force applying device 14 includes a pair of gripping means 14a and 14b connected to a distal end of the arm. The gripping means 14a and 14b come into contact with an outer surface or an inner surface of the hollow material Pm to move a position of the hollow material Pm while determining a support position thereof. Then, the shear angle θ illustrated in
Further, the means for gripping the hollow material Pm is not limited only to the pair of gripping means 14a and 14b described above, and other configurations may be adopted instead. For example, an inner surface chuck in which a plurality of claws connected to the distal end of the arm are provided and the hollow material Pm is held from the inside by opening the claws after inserting them into an opening distal end of the hollow material Pm may be adopted. Alternatively, an outer surface chuck in which an annular body similarly connected to the distal end of the arm is provided and the hollow material Pm is passed through the annular body so that an outer circumferential surface thereof is constrained by the annular body over the entire circumference may be adopted.
A cross section of the hollow material Pin at a part in the longitudinal direction is heated by the heating device 12, and flow stress thereof is significantly reduced. Therefore, when the gripping position g due to the pair of gripping means 14a and 14b is moved in directions in three dimensions at the fourth position D downstream of the third position C in the feeding direction of the hollow material Pm, as illustrated in
When the shearing force Ws acts on the hollow material Pin, the bent portion is formed. In the present embodiment, a shearing force is applied instead of applying a bending moment to the heated part of the hollow material Pm as in the invention disclosed in Patent Document 1. Therefore, it is possible to manufacture the hollow bent part Pp having a bent portion with an extremely small bending radius of 1 to 2 times or less than a width W (product width) which is a distance between an outer curve on an inner circumferential side and an outer curve on an outer circumferential side of the bent portion.
In the manufacturing method using the manufacturing apparatus 10 of the present embodiment, a processible range of the bending radius can be expanded by appropriately setting a combination of the shear angle θ and the inclination angle α. Therefore, a large bending radius in which the bending radius exceeds twice the width W can also be processed. On the other hand, even when a small bending radius is required for product design reasons, it is also possible to obtain an extremely small bending radius of 1 to 2 times or less than a diameter (when the metal pipe has a rectangular cross section, a length of one side connecting a side edge of the bent inner circumferential surface and a side edge of the bent outer circumferential surface in a cross section perpendicular to a longitudinal direction thereof) of the metal pipe which has been difficult with conventional technologies.
The shearing force applying device 14 may be installed via a mechanism capable of disposing the pair of gripping means 14a and 14b to be movable in directions in two dimensions or directions in three dimensions similarly to the arm described above. Such a mechanism does not require a particular limitation. For example, the gripping means 14a and 14b may be held by a well-known end effector of an industrial robot. For example, a mobile device that combines a linear guide and a servomotor (not illustrated) may be utilized.
Next, a method of manufacturing the hollow bent part Pp from the hollow material Pm using the manufacturing apparatus 10 of the present embodiment described above will be described below.
That is, in
Next, the fed hollow material Pm is partially and rapidly heated by the heating device 12.
When steel is used as the material, it is desirable that a heating temperature of the hollow material Pm be Ac3 point or higher of the steel constituting the hollow material Pm. When the heating temperature is set to Ac3 point or higher, the bent portion Pb of the hollow material Pm can be quenched by appropriately setting a cooling rate at the time of cooling that is performed following the heating. Moreover, the flow stress of the region sh between the first portion and the second portion of the hollow material Pm can be sufficiently reduced to such an extent that processing to have a desired small bending radius can be performed.
The refrigerant is injected toward the hollow material Pm from the nozzles 51a, 52a, and 53a of the cooling device 50 disposed at the third position C downstream from the second position B in the feeding direction of the hollow material Pm. Thereby, the heated part is cooled at the third position C. Although it depends on types of steel of the hollow material Pm, a strength of the bent portion Pb can be increased by performing quenching on it with a cooling rate at the time of the cooling set to 100° C./sec or more.
Further, as described above, when the hollow material Pm is fed straight without applying the shearing and bending processing, the refrigerant from the nozzle 51a is sprayed toward the right side surface d of the hollow material Pm after the refrigerant of the nozzle 52a is stopped. On the other hand, when the shearing and bending processing is applied to the hollow material Pm to form the bent portion Pb, the refrigerant from the nozzle 52a is sprayed toward the right side surface d which is the outer circumferential surface of the bent portion Pb after the refrigerant of the nozzle 51a is stopped.
Due to this cooling, the first portion heated by the heating device 12 and the second portion cooled by the cooling device 50 are formed in the hollow material Pm. The region sh between the first portion and the second portion of the hollow material Pm is at a high temperature state and the flow stress is significantly reduced.
When a distal end portion of a planned shearing and bending processing portion of the hollow material Pm reaches the pair of gripping means 14a and 14b of the shearing force applying device 14, the pair of gripping means 14a and 14b are moved in a direction (a downward direction on the paper surface as viewed in
In this way, the shearing force Ws is applied to the region sh between the first portion and the second portion of the hollow material Pm, the shearing and bending processing is performed on the hollow material Pm, and the hollow bent part Pp can be obtained.
The outline of the present embodiment will be described below.
The present embodiment adopts the cooling device 50 that cools the heated part including the bent outer circumferential surface of the bent portion Pb with the refrigerant immediately after forming a predetermined shape including the bent portion Pb by moving one end portion of the long steel (hollow material Pm) in directions in two dimensions or directions in three dimensions while heating a portion of the hollow material Pm in the feeding direction while feeding the hollow material Pm in the feeding direction in a state in which the one end portion is gripped. Then, the cooling device 50 includes the first refrigerant injection device 51 in which an injection direction of the refrigerant as viewed from a direction perpendicular to the feeding direction is the first direction W1, the second refrigerant injection device 52 disposed to be aligned with the first refrigerant injection device 51 in the feeding direction and whose injection direction of the refrigerant as viewed from the perpendicular direction is the second direction W2 that intersects the first direction W1, the valve (first valve) that selectively switches a supply destination of the refrigerant between one and the other of the first refrigerant injection device 51 and the second refrigerant injection device 52, and the control device 15 that controls the valve.
According to the above-described configuration, the supply destination of the refrigerant can be switched between the first refrigerant injection device 51 and the second refrigerant injection device 52 by controlling the valve by the control device 15. Thereby, the outer circumferential surface of the bent portion Pb can be cooled from an appropriate direction, and uniform and sufficient primary cooling is possible.
Further, the present embodiment includes the third refrigerant injection device 53 in which an angle formed by the injection direction of the refrigerant with respect to the bent inner circumferential surface of the hollow material Pm when viewed in the feeding direction is 20 degrees or more and 70 degrees or less.
According to this configuration, since the injection direction of the refrigerant forms an angle of 20 degrees or more and 70 degrees or less with respect to the bent inner circumferential surface, the collision pressure is secured to obtain a sufficient cooling capacity, and the refrigerant can be effectively prevented from flowing back in the feeding direction. Therefore, it is possible to achieve uniform primary cooling.
From another viewpoint, the present embodiment adopts the primary cooling method in which the heated part including the bent outer circumferential surface of the bent portion Pb is cooled with the refrigerant immediately after forming a predetermined shape including the bent portion Pb by moving one end portion of the long steel (hollow material Pm) in directions in two dimensions or three dimensions direction while heating a portion of the hollow material Pm in the feeding direction while feeding the hollow material Pm in the feeding direction in a state in which the one end portion is gripped.
Then, the primary cooling method includes a first process of injecting the refrigerant in the first direction W1 at the first position on a downstream side of the heating coil 12a when viewed in the feeding direction, and a second process of injecting the refrigerant in the second direction W2 intersecting the first direction W1 at the second position that is aligned with the first position on a further downstream side when viewed in the feeding direction. When the shearing and bending processing is not performed, the first process is performed and the second process is stopped. On the other hand, when the shearing and bending processing is performed, the second process is performed and the first process is stopped.
According to the above-described method, the supply destination of the refrigerant can be switched between the first process and the second process in accordance with presence or absence of the shearing and bending processing. Thereby, since the outer circumferential surface (right side surface d) of the bent portion Pb can be cooled from an appropriate direction, it is possible to achieve uniform and sufficient primary cooling.
Further, the present embodiment includes a process of injecting the refrigerant in an injection direction of 20 degrees or more and 70 degrees or less with respect to the bent inner circumferential surface (left side surface c) of the hollow material Pm when viewed in the feeding direction.
According to the above-described method, the refrigerant can be effectively prevented from flowing back in the feeding direction. Therefore, it is possible to achieve uniform and sufficient primary cooling.
Further, in the above-described description, a case in which shear deformation is applied to the hollow material Pm made of a metal with a rectangular cross section has been exemplified, but the present invention is not limited only to this aspect. That is, even when the cross-sectional shape of the hollow material made of a metal is a round pipe, a polygonal pipe, or a pipe with an arbitrary curved surface shape other than the rectangle, according to the embodiments, the satisfactory hollow bent part Pp can be similarly obtained.
The hollow bent part Pp manufactured by the manufacturing method including the cooling methods of the present embodiment and various modified examples is manufactured by performing heat treatment (for example, quenching) at the same time as the processing by the shearing force. Therefore, the hollow bent part Pp with a high-strength portion of, for example, 1470 MPa or more can be manufactured by simpler processes and with high processing accuracy compared to a hollow bent part that has been subjected to cold shearing and bending processing and then a heat treatment (for example, quenching).
The hollow bent part Pp manufactured by the manufacturing method including the cooling methods of the present embodiment and various modified examples can be applied to, for example, applications (i) to (vii) exemplified below.
(i) Structural members of automobile bodies such as, for example, front side members, cross members, side members, suspension members, roof members, A-pillar reinforcements, B-pillar reinforcements, or bumper reinforcements
(ii) Strength members or reinforcing members of automobiles such as, for example, seat frames or seat cross members
(iii) Parts of exhaust systems such as exhaust pipes of automobiles
(iv) Frames or cranks of bicycles or motorcycles
(v) Reinforcing members or bogie parts (bogie frames, various beams, and so on) of vehicles such as electric trains
(vi) Frame parts or reinforcing members of ship hulls and so on
(vii) Strength members, reinforcing members, or structural members for home appliances
The outline of the above-described embodiment including various modified examples will be summarized again below.
(1) As illustrated in
As illustrated in
The first cooling mechanism includes the nozzle (first nozzle) 51a disposed to be aligned with the heating coil 12a on the downstream side when viewed in a first virtual plane (
The second cooling mechanism includes the nozzle (third nozzle) 53a disposed on a side opposite to the nozzle 51a and the nozzle 52a with the extension line EX sandwiched therebetween when viewed in the first virtual plane and whose injection direction of the refrigerant is the third injection direction W3 forming an angle of 20 degrees or more and 70 degrees or less with respect to the left side surface c that is the bent inner circumferential surface of the bent portion Pb.
(2) As illustrated in
That is, the second cooling mechanism includes the part nozzle (first part nozzle) 153a1 and the part nozzle (second part nozzle) 153a2 constituting the third nozzle, the valve (second valve) V3 that selectively switches a supply destination of the refrigerant between one and the other of the part nozzle 153a1 and the part nozzle 153a2, and the control device (second control unit) 15 that controls the valve V3.
An injection direction of the refrigerant from the part nozzle 153a1 when viewed in the first virtual plane is 20 degrees or more and 70 degrees or less with respect to the extension line EX, and an injection direction of the refrigerant from the part nozzle 153a2 when viewed in the first virtual plane is the third injection direction W3.
(3) As illustrated in
Injection directions of the refrigerant of the nozzles 71a and 73a when viewed in the first virtual plane are the fourth injection directions W6 and W8 along the extension line EX. Injection directions of the refrigerant of the nozzles 72a and 74a when viewed in the first virtual plane are the fifth injection directions W7 and W9 that intersect the fourth injection directions W6 and W8.
(4) Similarly, as illustrated in
That is, the third cooling mechanism may further include the valve (third valve) V2 that selectively switches a supply destination of the refrigerant between one and the other of the nozzles 71a and 73a and the nozzles 72a and 74a, and the control device (third control unit) 15 that controls the valve V2.
(5) As illustrated in
The cooling device (fourth cooling mechanism) 60 including the nozzles (sixth nozzles) 61a and 62a disposed on the second virtual plane perpendicular to the first virtual plane with the extension line EX as a line of intersection is further provided. Then, injection directions of the nozzles 61a and 62a when viewed in the first virtual plane are the fourth direction W4 and the fifth direction W5 (sixth injection directions) which form an angle of approximately ½ of the shear angle θ of the bent portion Pb with respect to the feeding direction.
(6) As illustrated in
Further, the cooling method includes a first cooling process and a second cooling process.
As illustrated in
Then, in the second cooling process, the refrigerant is injected from the third position C in the third injection direction W3 which forms an angle of 20 degrees or more and 70 degrees or less with respect to the left side surface c which is the bent inner circumferential surface of the bent portion Pb when viewed in the first virtual plane.
(7) As illustrated in
That is, the second cooling process includes a fourth process of injecting the refrigerant in an injection direction of 20 degrees or more and 70 degrees or less with respect to the extension line EX when viewed in the first virtual plane, a fifth process of injecting the refrigerant in the third injection direction W3 when viewed in the first virtual plane, and a sixth process in which the fifth process is stopped when the fourth process is performed and the fourth process is stopped when the fifth process is performed.
(8) As illustrated in
That is, the cooling method further includes a third cooling process of injecting the refrigerant toward the hollow material Pm from the fourth injection directions W6 and W8 and the fifth injection directions W7 and W9 in the second virtual plane perpendicular to the first virtual plane with the extension line EX as a line of intersection.
The third cooling process includes a seventh process of injecting the refrigerant in the fourth injection directions W6 and W8 along the extension line EX when viewed in the first virtual plane illustrated in
(9) As illustrated in
The third cooling process further includes a ninth process in which the eighth process is stopped when the seventh process is performed and the seventh process is stopped when the eighth process is performed.
(10) As illustrated in
That is, the cooling method further includes a fourth cooling process of injecting the refrigerant toward the hollow material Pm in the second virtual plane perpendicular to the first virtual plane with the extension line EX as a line of intersection.
The fourth cooling process includes a tenth process of injecting the refrigerant in the sixth injection direction W4 in which an angle formed by an injection direction of the refrigerant with respect to the feeding direction is approximately ½ of the shear angle θ of the bent portion Pb when viewed in the first virtual plane.
According to the cooling device and the cooling method of the present invention, it is possible to secure a collision pressure of the refrigerant to obtain a sufficient cooling capacity and achieve uniform cooling in which non-uniformity of hardness in a circumferential direction of the product is curbed even when obtaining a hollow bent part having a bent portion with an extremely small bending radius.
Number | Date | Country | Kind |
---|---|---|---|
2020-032058 | Feb 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/006525 | 2/22/2021 | WO |