1. Field of the Invention
The present invention generally relates to a cooling device used in a printer, a facsimile machine, a copy machine or the like, and an image forming apparatus including the cooling device.
2. Discussion of the Background Art
One type of image forming apparatus is known in which an electrophotographic technology is used for forming a toner image on a recording material.
Japanese Patent No. 4114864 discloses a cooling device including a pair of transport belts to transfer a sheet, and a cooling surface of a cooling member contacts an internal surface of the transport belts. When the sheet, which is conveyed to the transport belts, passes an area facing the cooling member, the sheet is cooled as heat is removed from the sheet via the transport belt. This process also reduces adherence of a toner that is softened by a fixing device to the transport belts or a transport roller.
In addition, cooling the sheet by a cooling device, can reduce passing the softened toner (so-called “blocking phenomenon”) between stacked sheets at the eject tray.
For fully cooling thick paper, which has a heat capacity that is large and does not cool easily according to high productivity of the image forming apparatus, the cooling device requires a plurality of cooling members. Therefore, the cooling device is expensive. In particular, for users to use only thin paper or standard thickness paper, which has a thermal capacity that is small and is easy to cool, the cooling device including the plurality of cooling devices, as mentioned above, is unnecessary. In addition, the user contributes to a waste of cost. Therefore, when a user who does not print the thick paper, uses an image forming apparatus which has a minimal number of cooling members rather than that of the image forming apparatus for the thick paper, it is possible to prevent unnecessary high costs.
However, when a user, who prints only thin paper or standard thickness paper, needs to print a thick paper, the user needs to buy the image forming apparatus including the cooling device for thick paper. Therefore, the user pays the cost of the other image forming apparatus.
In accordance with an embodiment of the present invention, disclosed herein is a cooling device including a rotatable belt extended by a plurality of extending members, that conveys a sheet in contact with a surface of the belt, a plurality of cooling members to cool the sheet via the belt, where a cooling surface of each cooling member contacts an internal surface of the belt, and where the cooling member is detachable, and an adjuster to adjust a contact condition of the cooling surface and the internal surface according to the number of cooling members installed.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
In the following, examples of an embodiment of the present invention, which exemplify a cooling device in a printer as an image forming apparatus, will be described.
The printer 300 has an intermediate transfer belt 21 wrapped and stretched around multiple rollers (a first belt extending roller 22, a second belt extending roller 23, a third belt extending roller 24 and the like). The intermediate transfer belt 21 rotates in the direction designated by an arrow “a” in
The printer 300 also has image-forming process sections disposed around the intermediate transfer belt 21. Here, suffixes after numeral codes, Y, C, M, and Bk, stand for yellow, cyan, magenta, and black, respectively, to clarify for which of the colors a part is used.
Above the intermediate transfer belt 21 rotating in the direction designated by an arrow “a” in
These are arranged in order of the image station 10Y, the image station 10C, the image station 10M, and the image station 10Bk in the moving direction of the intermediate transfer belt 21. All the four image stations 10 (Y, C, M, Bk) have substantially the same configuration except for the color of toner. Each of the image stations 10 (Y, C, M, Bk) includes a drum-shaped photoconductor 1, around which a charging device 5, an optical writing device 2, a developing device 3, and a photoconductor cleaning device 4 are arranged.
At a position opposite of the photoconductor 1 across the intermediate transfer belt 21, a primary transfer roller 11 is provided for transferring an image onto the intermediate transfer belt 21.
These four image stations 10 (Y, C, M, Bk) are arranged in the moving direction of the intermediate transfer belt 21 with predetermined intervals.
The printer 300 has an optical system having an LED as a light source. Alternatively, a semiconductor laser may be used as a light source in the optical system. With either light source, each of the photoconductors 1 is exposed to light according to image information.
Below the intermediate transfer belt 21, there are a sheet holder 31 to hold the sheet P, the sheet conveying roller 42, and the pair of resist rollers 41.
At a position opposite of the third belt extending roller 24 extending the intermediate transfer belt 21, the secondary transfer roller 25 is disposed for transferring a toner image onto the sheet P from the intermediate transfer belt 21.
In addition, a belt cleaning device 27 is disposed at a position downstream in the moving direction of the intermediate transfer belt 21 relative to the extending roller 24, and at a position upstream in the moving direction of the intermediate transfer belt 21 relative to the extending roller 22.
The cleaner supporting roller 26 contacts the internal surface of the intermediate transfer belt 21, whereas the belt cleaning device 27 contacts the external surface of the intermediate transfer belt 21.
A sheet transport passage 32 is extended from the sheet holder 31 to an ejected sheet holder 34. On the way along the sheet transport passage 32, a fixing device 60 is disposed at a position downstream in the sheet transport direction relative to the secondary transfer roller 25.
The fixing device 60 includes a heat applying roller 62 and a pressure applying roller 61. At a downstream position relative to the fixing device 15 along the sheet transport passage 32, a cooling device 100 is disposed for cooling a sheet P having toner fixed thereon. Further downstream from the cooling device 100, the ejected sheet holder 34 is disposed for ejecting the sheet P having toner fixed thereon.
Below the sheet transport passage 32, a reversed-sheet-transport passage 33 is provided for forming an image on the reverse side of the sheet P for double-side printing, which flips the sides of the sheet P that has passed through the cooling device 100 once, and conveys the sheet P to the pair of resist rollers 41 again.
An image forming process at an image station 10 proceeds as follows. The process involves a general electrostatic recording method in which the photoconductor 1 is uniformly charged by the charging device 5, which is exposed to light in the dark to form an electrostatic latent image by the optical writing device 2.
The electrostatic latent image is visualized as a toner image by the developing device 3, which is transferred from the photoconductor 1 to the intermediate transfer belt 21 by the primary transfer roller 11. The photoconductor cleaning device 4 cleans the surface of the photoconductor 1 after the transfer.
The above image forming process is executed at all of the image stations 10 (Y, C, M, Bk).
The developing devices 3 (Y, C, M, Bk) of the four image stations 10 (Y, C, M, Bk) have a visualizing function for toner of the four different colors including yellow, cyan, magenta, and black to form a full-color image. Each of the image stations 10 includes the photoconductor 1 and the primary transfer roller 11 located opposite to the photoconductor 1 across the intermediate transfer belt 21. A transfer bias is applied to the primary transfer roller 11. These parts configure a primary transfer section.
With the configuration above, an image forming area of the intermediate transfer belt 21 passes through the four image stations 10 (Y, C, M, Bk).
While passing through the four image stations 10 (Y, C, M, Bk), different color toner images are superposed one by one on the intermediate transfer belt 21 with the transfer bias applied to the primary transfer roller 11. Thus, a full-color toner image can be obtained on the image forming area by the superposed transfer, once the image forming area has passed through the primary transfer sections of the image stations 10 (Y, C, M, Bk).
The full-color toner image on the intermediate transfer belt 21 is then transferred to the sheet P. After the transfer, the intermediate transfer belt 21 is cleaned by the belt cleaning device 27. The transfer of the full-color toner image from the intermediate transfer belt 21 to the sheet P is executed as follows.
A transfer bias is applied to the secondary transfer roller 25 to form a transfer electric field between the secondary transfer roller 25 and the third belt extending roller 24 across the intermediate transfer belt 21, through which the sheet P passes a nip between the secondary transfer roller 25 and the intermediate transfer belt 21.
After transferring of the full-color toner image from the intermediate transfer belt 21 to the sheet P, heat and pressure is applied to the full-color toner image borne on the sheet P at the fixing device 15 to fix the image on the sheet P to form the final full-color image on the sheet P.
After that, the sheet P is cooled by the cooling device 100 before being stacked on the ejected sheet holder 34. Therefore, after cooling, the sheet P is stacked on the ejected sheet holder 34.
The temperature of the fixing device 15 is dependent upon the sheet transport speed, the type of toner, and the type of the sheet P. For example, a controller controls the temperature to be around 180-200 degrees Celsius. Then the fixing device 15 melts the toner on the paper instantly. Immediately after the sheet P passes through the fixing device 15, the surface temperature of the sheet P reaches around 100-130 degrees Celsius. The surface temperature depends on the thermal capacity (specific heat, density) of the paper.
The melting temperature of the toner is lower than 100 degrees Celsius. Therefore, immediately after the sheet P passes through the fixing device 15, the toner on the surface of the sheet P is still soft. Therefore, the toner on the surface of the sheet P is adhered until the sheet P cools.
Therefore, when the printer 300 forms an image on a plurality of sheets P continually, and ejects onto the sheet holder 34 the plurality of the sheets P having toner fixed thereon, the softened toner on one sheet P might pass to an adjacent sheet P (so-called “blocking phenomenon”).
Therefore, as the cooling device 100 cools the sheet P passing through the fixing device 15, the toner on the sheet P is securely hardened to avoid the blocking phenomenon at the point in time that the sheet P is stacked on the sheet holder 34.
The upper transport portion 110 includes an upper transport belt 113, which is wrapped around and stretched by the extending rollers (114,115,116,117), to convey the sheet P in contact with the surface of the upper transport belt 113. The extending roller 115 is a drive roller that is rotated by a driving force transmitted from a drive motor 118. The extending rollers (114,116,117) are driven rollers rotated with the rotation of the upper transport belt 113. Then, with rotation in a clockwise direction by the extending roller 115, the upper transport belt 113 rotates in a clockwise direction.
On the inside of the loop of the upper transport belt 113, the cooling member 111 is disposed in contact with the back surface of the upper transport belt 113 and cools the sheet P held on the surface of the upper transport belt 113.
The lower transport portion 150 includes the lower transport belt 153, which is wrapped around and stretched rotatably on the extending rollers (151,152,154,155). The lower transport belt 153 contacts the upper transport belt 113 directly or through the sheet P. The lower transport belt 153 rotates in the counterclockwise direction by the rotation of the upper transport belt 113.
The upper transport belt 113 and the lower transport belt 153 convey the sheet P, on which heat and pressure are applied at the fixing device 15 to fix the image. When the sheet P, conveyed by the upper transport belt 113 and the lower transport belt 153, reaches the position of the opposite region to the cooling member 111, the heat of the sheet P is transferred to the cooling member 111 via the upper transport belt 113. Therefore, the cooling member 111 and the transport belt 113 are capable of conveying and cooling the sheet P including fixed toner to the ejected sheet holder 34.
As shown in
The cooling device 100 of the embodiment of the present invention provides higher cooling efficiency than other cooling devices that use an air-cooling system.
And more specifically, the cooling member 111 includes a liquid cooling plate made of aluminum and having a liquid flow path 185 therein. See
A liquid coolant is in a low-temperature state by passing from the liquid storing tank 184 to the radiator 182 using the liquid conveying pump 183. The liquid coolant in the low-temperature state returns to the liquid storing tank 184 via the liquid flow path 185 formed inside of the cooling member 111, as the cooling member 111 transfers the heat of the sheet P. A current of air inside the printer 300 or air of a natural convection passes between the plurality of cooling fins, which includes the liquid flow path, and the radiator 182 radiates the heat of the liquid coolant. According to an embodiment of the present invention, the cooling fan blows the radiator 182 to enhance a heat radiation effect and the cooling effect by the cooling member 111.
As shown in
In the case where the liquid flow path 185 inside of the cooling member 111 is made of a dissimilar metal, such as aluminum and copper, galvanic corrosion may occur and make a hole in a side of the less-noble-metal (aluminum). Therefore, to the utmost, it is recommended that the liquid flow path 185 inside of the cooling member 111 is made of the same metal.
According to configuration example 1, the cooling member 111 is removable from the cooling device main body.
In addition, if the print volume or the type of paper has changed, a user can simply add another cooling member 111.
In order to generate a uniform contact pressure between the cooling surface of the cooling member 111 and the upper transport belt 113, it is preferable to have a curved shape for the cooling surface of the cooling member 111.
In
The cooling device 100 that includes two cooling members 111 is discussed as follows.
To adjust slack in the upper transport belt 113, the cooling device 100 includes one or more auxiliary members 7 instead of a cooling member 111, as shown in
As shown in
The outer border of the cooling member 111 and the auxiliary member 7 correspond in shape. As shown in
For fixing the cooling member 111 and the auxiliary member 7 to the appropriate position toward the side plate 9a, the positioning means of the side plate 9a may not form same shape as the outer border of the opening 92. For example, the side plate 9a may include a convex portion on which hangs the cooling member 111 and the auxiliary member 7.
According to configuration example 2, a plurality of the auxiliary rollers 8 for adjusting tension of the upper transport belt 11 are installed at a position of the cooling surface where adjacent the cooling members 111 on the inside of the cooling device 100, as shown in
When the auxiliary roller 8 is installed on the upper transport belt 113 as shown in
As another means for adjusting the slack of the upper transport belt 113, the position of at least one of the extending rollers that extend the upper transport belt 113 and the lower transport belt 153 is changeable, in accordance with the number of the cooling members 111.
For example, as shown in
According to configuration example 4, the liquid coolant flows inside of liquid-cooling member 134 to connect liquid-cooling member 134 to the liquid-flow-path converter 135 with a valve inside.
For example, as shown in
Alternatively, as shown in
According to these operations, the flow path of the liquid coolant is changeable in accordance with the number of the liquid-cooling members 134. With respect to attachment and detachment of the cooling members 134 against the liquid-flow-path converter 135, fluid coupling that opens and closes valves of the liquid-flow-path converter 135 linked with attaching and detaching liquid-cooling members 134, is preferable so as to prevent leakage caused by operation error.
According to the liquid-flow-path converter 135 as shown in
By the way, as shown in
In the cooling device 100 according to configuration example 5 is different only with respect to the cooling member of the cooling device 100 of configuration examples 1 through 4. Therefore, the same members as in configuration examples 1 through 4 are attached with the same reference numbers. In addition, explanations for the same effects as in configuration examples 1 through 4 may be omitted.
As shown in
For example, if only the heat sink 136a is included and the heat sink 136b is removed, the fan 137b does not need to be driven. Therefore, in order to stop one of the fans (137a, 137b) that is arranged without a corresponding one of the heat sinks (136a, 136b), a controller turns the appropriate one of the fans (137a, 137b) on or off depending on whether the corresponding one of the heat sinks 136a and 136b is included.
For example, as shown in
In addition to this, if the heat sinks 136a, 136b and the fans 137a, 137b comprise detachable parts, for example, the cost may be reduced by removing the fan 137b when the heat sink 136b is not included.
In the cooling device 100 according to configuration example 6, only the cooling member of the cooling device 100 differs from the configuration examples 1 through 4. Therefore, the same members as in configuration examples 1 through 4 are attached with the same reference numbers. In addition, explanations for the same effects as in configuration examples 1 through 4 may be omitted.
The cooling device 100 according to configuration example 6 includes at least a heat pipe plate 170 as the cooling member arranged to slide on the inside surface of the upper transport belt 113 of the upper transport portion 110, as shown in
More specifically, as shown in
In a case where the heat sinks (136a, 136b) are installed as shown in
The plurality of cooling members 111 installed in the cooling device 100 may use plurality of kinds of cooling members mentioned above. For example, as shown in
All of the above examples show the cooling members installed inside the upper transport belt 113, however, the cooling members may be installed inside of the lower transport belt 153. In addition, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2012-178305 | Aug 2012 | JP | national |
This application is a Continuation Application of U.S. application Ser. No. 13/958,014, filed Aug. 2, 2013, which is based on and claims priority from Japanese Patent Application No. 2012-178305, filed on Aug. 10, 2012 in the Japan Patent Office. The contents of each of the above are hereby incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13958014 | Aug 2013 | US |
Child | 14689909 | US |