Embodiments of the present disclosure generally relate to improving the thermal comfort of a helmet, and more specifically to a cooling device for attachment to a helmet, the device providing several features, in addition to cooling, to improve thermal comfort of the helmet.
Helmets are worn to protect heads of humans. Helmets are often worn by riders of vehicles and people working in industries such as construction, manufacturing, etc. In general, when worn, helmets protect persons wearing a helmet from injuries to the head.
The adoption of helmets is significantly inhibited by the discomfort experienced in using them. Factors such as excessive sweat, heat and hair loss tend to override the safety benefit achieved by wearing a helmet. Reducing the discomfort caused by sweat and heat by providing cooling to the head of the user of a helmet can considerably enhance adoption.
Aspects of the present disclosure are directed to a cooling device for attachment to a helmet, the device designed to provide one or more features that improves thermal comfort of the wearer of the helmet.
Example embodiments of the present disclosure will be described with reference to the accompanying drawings briefly described below.
In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The drawing in which an element first appears is indicated by the leftmost digit(s) in the corresponding reference number.
1. Overview
A cooling device for attachment to a helmet includes a fan and an electronics assembly. The fan is operable to draw external air into the cooling device. The electronics assembly is operable to control the rotation speed of the fan based on a speed of movement of a user wearing the helmet with the cooling device attached to the helmet. The cooling device additionally includes an air filter, and a deflector to direct cooled air to a desired one of different regions inside the helmet.
Several aspects of the present disclosure are described below with reference to examples for illustration. However, one skilled in the relevant art will recognize that the disclosure can be practiced without one or more of the specific details or with other methods, components, materials and so forth. In other instances, well-known structures, materials, or operations are not shown in detail to avoid obscuring the features of the disclosure. Furthermore, the features/aspects described can be practiced in various combinations, though only some of the combinations are described herein for conciseness.
2. Cooling Device
In the related U.S. application Ser. No. 15/899,378 noted above, the inventor has already presented solutions in which an air-cooler technique reliant on forced ventilation (a fan is integrated in the device) is used to lower the temperature of the air entering the helmet. This ensures thermal comfort for the rider even when the ambient temperature is higher than the body temperature.
In the present disclosure, four new capabilities are added to the solutions disclosed in the related U.S. application Ser. No. 15/899,378. These capabilities are summarized below:
A) Motorcycle riders (users of helmet) may need forced-ventilation (by means of a fan, for example) the most when stationary (at a traffic light or when riding through crawling traffic), and the least when they are cruising through the roads. The riding speed of the motorcyclist can be measured (or obtained) by using a Bluetooth connection to the rider's phone and using positioning/location data of the user that is available via the phone (for example, Global Positioning System (GPS) data, WiFi access points based location data, etc.) The change in location/position information, i.e., the speed of the rider, is then used to control the speed of the fan by changing the voltage/drive provided to the fan.
B) Pollution levels have significantly increased in recent times, and comfort is enhanced when the cooling capability is augmented with clean air flowing into the helmet. This is implemented as a simple add-on cabin filter that can be easily replaced when needed.
C) De-fogging capability for bespectacled riders. Riders who wear glasses do not have any solution today to de-fog their glasses. Blowing cool, clean air into the helmet will address this problem.
D) A rider may have a preference for where (the direction) he would like the cool, clean air to flow. Some people like it on their forehead while some others prefer a curtain of air in front of the face. A cooling device according to the present disclosure integrates an air deflector that can be positioned by the rider to best-cater to his specific preference.
Embodiments of the present disclosure are described next.
Clasp (308) attaches to main body (201), and creates locking mechanisms for both cartridge (203) and the cooling device (101). Pleated filter (309) is placed inside vent (310), and operates to filter the air flowing through it and into vent (310). As noted above, pleated filter (309) is designed to be a simple add-on particulate filter, and can be easily replaced by the user.
Electronics assembly (303) includes a processor, a memory (containing both volatile and non-volatile memories), a fan driver circuit, and a transceiver (wired or wireless) to communicate with external devices. In an embodiment, the transceiver is a wireless transceiver (including antenna) and is implemented as a Bluetooth device/controller. However, in other embodiments, other types of wireless (or wired) transceiver may be used, such as for example, WiFi.
The manner in which cooling device 101 improves thermal comfort of a helmet and other features is described next.
3. Fan Speed Control
Location and speed data (401) from the phone (that is with the user of the helmet with cooling device 101) is received wirelessly by Bluetooth controller (402). The location and speed data (401) may be generated by, for example, by a GPS (Global Positioning System) receiver in the user's phone or be computed inside the phone based on Wifi-based location/speed determination techniques, well known in the relevant arts. Bluetooth controller (402) forwards the speed data to processor 407.
Processor (407) receives the received speed data, and retrieves the corresponding fan-control voltage/drive stored in a look-up table in memory (403), which represents a combination of volatile and non-volatile memory. The non-volatile memory in memory (403) stores the instructions for execution by processor 407 for implementing various control operations in cooling device 101, including the fan-speed control illustrated in
In an embodiment, the look-up table contains a mapping between only the speed information and fan control voltages. Thus, in the embodiment, only the speed is used to determine a corresponding fan control signal (e.g., fan voltage). However, in another embodiment, the look-up table contains mapping that additionally uses other parameters such as ambient temperature, time of day, etc., to determine the corresponding fan control voltage. Parameters such as ambient temperature and time of day (shown in block 406) may be provided by sensors and real-time clock respectively contained in electronics (303). Alternatively, such parameters can be provided from an external device (e.g., phone which the user may have) to electronics (303) via Bluetooth controller (402).
Continuing with reference to
An example mapping that may be stored in the look-up table is provided below:
4. Airflow Direction Control
5. Anti-Fogging
Fogging in face shields (visors and glasses worn by a user) are caused due to the temperature difference between the inside and the outside of the helmet. In the absence of any cooling mechanism, the temperature inside the helmet is largely determined by the body temperature and/or temperature of the exhaled air. In rainy or cold weather, the temperature difference between the outside and the inside of the helmet can be substantial causing the helmet to fog. Pin-lock visors may offer a solution by which riders can de-fog their visors. No such solution appears to exist for defogging the user's glasses. To effectively de-fog both the visor and the glasses, sufficient air flow (efficacy is better if the air is cool) must be directed between the rider's face and the helmet's shell/visor. Embodiments of the present disclosure are capable of blowing cool air into the region between the rider's face and the helmet's shell/visor, thereby defogging both the visor and the user's glasses.
6. Conclusion
References throughout this specification to “one embodiment”, “an embodiment”, or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, appearances of the phrases “in one embodiment”, “in an embodiment” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described embodiments, but should be defined only in accordance with the following claims and their equivalents.
The instant patent application is related to U.S. Patent Application entitled, “Helmet with Mechanism for Cooling”, application Ser. No. 15/899,378, Filed: 20 Feb. 2018, Attorney Docket number: PKSN-001-US-CIP, naming Sundararajan Krishnan as the inventor, and is incorporated in its entirety herewith, to the extent not inconsistent with the content of the instant application.