The present invention relates to the general field of cooling a turbomachine rotor disk that is located downstream from the cone for driving the disk in rotation. The invention relates more precisely to a device for cooling the slots in such a disk that have the blades mounted therein.
One of the fields of application of the invention is that of low-pressure turbines for aviation turbomachines of the bypass and two-spool type.
Each stage of the low-pressure turbine of a turbomachine is made up of a nozzle formed by a plurality of stationary vanes placed in a flow passage, and a rotary wheel placed behind of the nozzle and formed by a plurality of movable blades likewise placed in the flow passage and mounted via their roots in slots in a rotor disk. The rotor disks of the turbine are generally assembled to one another by means of rings that are fastened together by bolted connections passing through fastener flanges. The resulting disk assembly is itself connected to a turbine shaft via a cone in order to be driven in rotation.
In operation, the flow passage through the low-pressure turbine passes gas at a temperature that is very high. In order to avoid damaging the rotor disks and the blades mounted thereon, it is known to cool these parts by causing cool air to flow into the slots of the rotor disks. For this purpose, one of the known solutions consists in taking cooler air (for example from the high-pressure compressor of the turbomachine) and taking it via a cooling circuit to the slots of the rotor disks. For example, the air that is taken may be conveyed to the slots of the disks by passing via notches formed in the fastener flanges of the ring of the disk between the bolted connections. Reference may be made to document EP 2 009 235, which describes an example of such a cooling device.
Unfortunately, that type of cooling device is not applicable to all existing low-pressure turbines. In particular, it is not always possible to have recourse to a cooling device of the kind described above for cooling the disk that is situated directly downstream from the cone for driving the disks in rotation, because of leaks appearing at the fastener flanges.
A main object of the present invention is thus to mitigate such drawbacks by proposing a device for cooling the slots of a rotor disk situated downstream from the rotary drive cone and that is applicable to any type of turbine.
This object is achieved by a cooling device for cooling the slots of a rotor disk in a turbomachine, the device comprising:
the fastener flange of the endplate being pierced by ventilation orifices opening out into the air diffusion cavity in order to feed it with cooling air, said air diffusion cavity opening out into the slots of the downstream disk via their upstream ends in order to cool them.
Such a cooling device is remarkable in that it makes it possible to ventilate the slots of the downstream disk without giving rise to leaks at the flanges fastening said downstream disk to the upstream disk. This results in an increase in the lifetime of the downstream disk.
The endplate may further include an annular ring extending upstream around the ring of the upstream disk and co-operating therewith to form an annular space communicating with the air diffusion cavity via ventilation orifices. Under such circumstances, the space formed between the respective rings of the endplate and of the upstream disk preferably communicates with an air feed cavity via the hollow portions of the fastener flanges of the ring of the upstream disk and of the cone. The ring of the endplate may be an interference fit on the ring of the upstream disk.
Preferably the endplate further includes radial sealing wipers for co-operating with the inside annular surface of a nozzle located between the upstream and downstream disks.
The invention also provides a low-pressure turbine stage for a turbomachine and a turbomachine, each including a cooling device as defined above.
Other characteristics and advantages of the present invention appear from the following description made with reference to the accompanying drawings that show an embodiment having no limiting character. In the figures:
The invention is applicable to various types of rotary assembly in a turbomachine, and in particular to a low-pressure turbine in an aviation turbomachine of the bypass and two-spool type, such as that shown in part in
The low-pressure turbine 10 comprises in particular a plurality of successive stages centered on a longitudinal axis X-X of the turbomachine (only the first three stages are shown in
The rotor disks 20a, 20b, and 20c of the low-pressure turbine are centered on the longitudinal axis X-X. Each of them has an upstream annular ring 22 that extends upstream from an upstream main face of the disk and a downstream annular ring 24 that extends downstream from a downstream main face of the disk. The disks are assembled together by means of the rings 22, 24.
More precisely, the disk 20b of the second stage of the turbine is connected to the disk 20a of the first stage by a weld bead 25 between the free ends of their respective upstream and downstream rings 22 and 24. Alternatively, these two disks could be assembled together by fabricating the disks and their rings as a single part. In another alternative, the two disks could be assembled together by means of bolted connections between their rings.
The disk 20c of the third stage of the turbine is connected to the disk 20b of the second stage via two bolted connections 26 between their respective upstream and downstream rings. More precisely, and as shown in
The low-pressure turbine also includes a rotor shaft 36 centered on a longitudinal axis X-X and housed inside the rotor disks 20a to 20c. This rotor shaft is also connected to the assembled disks by means of an annular cone 38 so as to drive them in rotation.
The cone 38 for driving the disks in rotation is centered on the longitudinal axis X-X and includes a fastener flange 40 extending radially outwards (i.e. away from the axis X-X), and it has its periphery festooned with solid portions 42 alternating with hollow portions 44, the solid portions having the bolted connections 26 passing therethrough. Furthermore, as shown more particularly in
In known manner, cool air is taken from the flow passage of the gas stream passing through the turbomachine at a point that is upstream from the low-pressure turbine, e.g. from a stage of the high-pressure compressor (not shown) thereof. This air travels to an annular cavity 46 formed inside the disks of the rotor and defined axially in the downstream direction by the cone 38 for driving the disks in rotation.
This air is for ventilating the slots of the disks in the various stages of the turbine in order to cool them.
An annular endplate 48 for holding the blades centered on the longitudinal axis X-X is placed around the upstream ring 22 of the disk 20c of the third stage of the turbine, co-operating therewith to form an annular space 50 that constitutes an air-diffusion cavity. This air diffusion cavity opens out downstream into the slots 18 of the disk 20c at their upstream ends in order to ventilate them.
The endplate 48 for holding the blades includes a fastener flange 52 that extends radially inwards (with its periphery not being festooned). It also includes an annular ring 54 that extends upstream around the downstream ring 24 of the disk 20b of the second stage of the turbine (on which it is an interference fit) co-operating therewith to form an annular space 56 communicating with the air diffusion cavity 50 via ventilation orifices 58 pierced through its fastener flange 52.
Thus, the cool air present in the annular cavity 46 formed inside the disks feeds the space 56 formed between the ring of the endplate and the downstream ring of the disk 20b, by flowing radially via the respective hollow portions in the fastener flanges of the downstream ring 24 of the disk 20b and of the cone 38 for driving the disks in rotation. This air then flows into the air diffusion cavity 50 by passing through the ventilation orifices 58, and then diffuses into each of the slots 18 of the disk 20c in order to ventilate them.
Furthermore, as mentioned above, the bolted connections 26 serve firstly to assemble together the disks 20b and 20c of the second and third stages of the turbine, and secondly to connect the disks to the cone 38. The various above-mentioned elements of the turbine are arranged in such a manner that these bolted connections 26 pass from upstream to downstream successively through: the solid portions 30 of the fastener flange 28 of the downstream ring 24 of the disk 20b; the solid portions 42 of the fastener flange 40 of the cone 38 for driving the disks in rotation; the fastener flange 52 of the endplate 48; and the fastener flange 34 of the upstream ring 22 of the disk 20c.
Advantageously, the endplate 48 for holding the blades also includes radial sealing wipers 60 that co-operate in operation with the inside annular surface 62 of the nozzle of the third stage of the turbine (and thus located between the disks 20b and 20c).
Number | Date | Country | Kind |
---|---|---|---|
10 54676 | Jun 2010 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
3635586 | Kent et al. | Jan 1972 | A |
4247248 | Chaplin et al. | Jan 1981 | A |
4425079 | Speak et al. | Jan 1984 | A |
4841726 | Burkhardt | Jun 1989 | A |
5143512 | Corsmeier et al. | Sep 1992 | A |
5288210 | Albrecht et al. | Feb 1994 | A |
5333993 | Stueber et al. | Aug 1994 | A |
5472313 | Quinones et al. | Dec 1995 | A |
5700130 | Barbot et al. | Dec 1997 | A |
5816776 | Chambon et al. | Oct 1998 | A |
5848874 | Heumann et al. | Dec 1998 | A |
6331097 | Jendrix | Dec 2001 | B1 |
6361277 | Bulman et al. | Mar 2002 | B1 |
6422812 | Pepi et al. | Jul 2002 | B1 |
6575703 | Simeone et al. | Jun 2003 | B2 |
6960060 | Lee | Nov 2005 | B2 |
7390170 | Charrier et al. | Jun 2008 | B2 |
7390710 | Derderian et al. | Jun 2008 | B2 |
7556474 | Marchi | Jul 2009 | B2 |
7926289 | Lee et al. | Apr 2011 | B2 |
8087879 | Dejaune et al. | Jan 2012 | B2 |
8092152 | Dejaune et al. | Jan 2012 | B2 |
8517666 | Alvanos et al. | Aug 2013 | B2 |
20020028136 | Briesenick et al. | Mar 2002 | A1 |
20040179936 | Fitzgerald et al. | Sep 2004 | A1 |
20040191067 | Phipps et al. | Sep 2004 | A1 |
20090004023 | Dejaune et al. | Jan 2009 | A1 |
20090110561 | Ramerth et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 2005052321 | Jun 2005 | WO |
Entry |
---|
French Preliminary Search Report issued Jan. 24, 2011, in French 1054676, filed Jun. 14, 2010 (with English Translation of Category of Cited Documents). |
Number | Date | Country | |
---|---|---|---|
20110305560 A1 | Dec 2011 | US |