COOLING DEVICE FOR SPINDLE SEALING AND/OR BEARING MEANS

Abstract
A cooling device for cooling of a sealing means fixed in a non-rotatable member and with a circumferential contact surface on a rotating member. A closed ring-formed chamber is arranged in the rotating member radially inside of said sealing means. Said chamber contains an amount of cooling medium which at normal rotating operation is both liquid and gaseous, such that the liquid cooling medium which by centrifugal forces is pressed towards the outer wall of said chamber is evaporated from the heat generated by said sealing means, and where a cooling member is arranged on said rotating member to cool an area radially inside of said chamber, such that the gaseous cooling medium is condensed from the cooling effect of said cooling member. The invention also relates to a centrifugal separator comprising such a cooling device.
Description
FIELD

The present invention relates to a cooling device for cooling a sealing means fixed in a non-rotatable member and having contact with a circumferential surface of a rotating member.


BACKGROUND

In rotating systems where the rotating spindle are provided with bearings sealed off from the environment preventing dirt and other contamination from forcing its way into the bearing and cause damage or grease from leaking out from the bearing friction heat is bound to be generated where the sealing means is in contact with a relative rotating surface. This heat is highly unwanted as it may cause deformation and breakdown of the bearing and seal components.


In order to lower the temperature of the area where the friction heat generation takes place the heat has to be transported away from this area by cooling.


JP 58178013 A discloses a rotating system where heat pipes have been arranged axially in the surface of the rotating spindle portioned out evenly along the circumference.


This construction may cause deformation in the surface of the spindle. The fact that this device show discrete pipe formed heat pipe chambers also leads to uneven cooling effect around the circumference of the spindle radially inside of plural radial thrust bearings.


SUMMARY OF THE INVENTION

The present invention is directed in one aspect to a cooling device having a closed ring- formed chamber arranged in the rotating member radially inside of said sealing means, where said chamber is filled with an amount of cooling medium which at normal rotating operation is both liquid and gaseous, such that the liquid cooling medium which by centrifugal forces is pressed towards the outer wall of said chamber is evaporated from the heat generated by said sealing means, and where a cooling member is arranged on said rotating member to cool an area radially inside of said chamber, such that the gaseous cooling medium is condensed from the cooling effect of said cooling member.


In a further embodiment of the present invention said rotating member comprise a spindle and an inner bearing ring attached to said spindle and where said chamber is arranged at least partly in said inner bearing ring, said inner bearing ring being a part of a bearing in which said spindle is journalled.


The cooling device will then also be able to transport generated heat from the bearing and thus cool the same.


In another embodiment of the present invention said chamber also is defined by a locking ring which is arranged axially beside the inner bearing ring.


In yet another embodiment of the present invention said locking ring has a side wall with a ring-formed lip protruding axially into said groove to increase the contact area inside the ring-formed chamber.


In a further embodiment of the present invention said inner bearing ring has a ring-formed lip protruding axially into said groove to increase the contact area inside the ring-formed chamber.


In another embodiment of the present invention said cooling member is a cooling fins arranged on said locking ring functioning as fan shovels.


In yet another embodiment of the present invention said spindle is journalled in two bearings arranged in parallel on said spindle and forming a bearing unit.


In another embodiment of the present invention said spindle is a hollow spindle.


In another embodiment of the present invention said rotating member comprises a hollow spindle and an inner bearing ring and said closed ring-formed chamber is coaxially on the inner surface of the hollow spindle.


One application is a centrifugal separator comprising a cooling device according to the present invention, wherein a separator bowl is attached to said rotating member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 discloses a side sectional view of a first embodiment of the cooling device according to the present invention.



FIG. 2 discloses a side sectional view of a second embodiment of the cooling device according to the present invention.



FIG. 3 discloses a side sectional view of a third embodiment of the cooling device according to the present invention.





DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

One embodiment of a device according to the present invention is illustrated in FIG. 1. This drawing discloses a rotating spindle 1 which is rotatably mounted in an apparatus foundation (not shown) by a bearing 2. The bearing comprises an inner bearing ring 3 fixedly mounted on the envelope surface of the spindle 1, an outer bearing ring 4 fixedly mounted on the foundation and roller means 5 thereinbetween. On each side of the inner bearing ring 3 is a locking ring 6 arranged. The inner bearing ring 3 has a ring-formed axial groove 7 in each axial end whose axial depth is not deep enough to affect the area radially inside the bearing roller means 5. As the invention is meant to be arranged in a centrifugal separator the spindle 1 has a separator bowl (not shown) fixedly attached to it which thus is rotating together with the spindle 1.


Each locking ring 6 together with the inner bearing ring 3 define a sealed off ring-formed chamber 8 thus circumscribed by a circular side wall 9 of the locking ring 6 facing the inner bearing ring 3 and the groove 9 in the inner bearing ring 3. The circular side wall 9 of the locking ring 6 has a ring-formed lip 10 protruding into the groove 7 to increase the contact area, i.e. the heat exchanging surface, inside the ring-formed chamber 8. On each side of the roller means 5 is a sealing means 11 arranged sealing off said roller means 5 from dirt coming from the outside and also keeping the grease within the bearing 2. The sealing means 11 , which is a lip sealing, is fixedly arranged on a sleeve attached to the outer bearing ring 3, but may instead be attached directly to the outer bearing ring 3 and is in sealing contact with the inner bearing ring 4 and thus non- rotatable when the spindle 1 rotates. The location of the sealing means 11 is essentially radially outside the ring-formed chamber 8.


Said ring-formed chamber 8 is partly filled with a liquid fluid used as cooling medium, preferably water, which at normal operating conditions, i.e. when the spindle 1 is rotating at operating speed, is partly in liquid phase, partly gaseous. The fluid thus, partly in gaseous and partly in liquid form completely fills up the chamber 8 and is in direct contact with the walls defining the chamber 8, e.g. the side wall 9.


The operating mode of the present invention in accordance with the embodiment illustrated in FIG. 1 is described below. When the spindle 1 and the separator bowl starts to rotate, the liquid in the ring-formed chambers 8 on each side of the bearing 2 is pressed, by the centrifugal forces from the rotation of the spindle 1 and thus the ring- formed chambers 8, towards a radially outer wall 12 of the groove. This said outer wall 12 is in immediate vicinity of the lip sealing which soon adapts a high operating temperature. This temperature starts to heat the cooling medium in the chamber 8 which soon starts to evaporate. This is especially true since the separator bowl when in operation may rotate at 5,000 to 15,000 rpm and over.


The evaporated cooling medium is gathering in the chamber 8 radially inside of the cooling medium layer close to an inner wall 13 of the groove 7 due to lower density. There the temperature is lower and even low enough to condense the vapour to liquid again. The condensing is made more effective by the protruding ring-formed lip 10 of the locking ring 6 enlarging the condensing area of the chamber 8. The condensed cooling medium is then by the centrifugal effect transported back towards the outer wall 12 for a new evaporation-condensation cycle.


Due to the closeness of the outer wall 12 to the roller means 5 the friction heat created in the bearing 2 will to a large extend also be transported through the inner bearing ring 3 towards the inner wall 12 where the cooling by the evaporation process takes place. Thus the roller means 5 will also be cooled by the heat exchanging process of the present invention.


In order to increase the cooling effect at the inner wall 13 the exterior of the locking ring 6 is provided with cooling fins 14 in an area functioning as fan shovels when the spindle rotates, outside of the sealed off area between the two sealing means 11, and facing away from the sealing means 11 and the roller means 5 thus communicating with and cooled by the air outside of the sealed off area.


A second preferred embodiment of an apparatus according to the present invention is illustrated in FIG. 2. This drawing discloses a rotating spindle 1 which is rotatably mounted in an apparatus foundation 20 by a first bearing 2a and second bearing 2b arranged beside each other axially. The two bearings 2a, 2b each have an inner bearing ring 3 fixedly mounted on the envelope surface of the spindle 1, and an outer bearing ring 4 fixedly mounted on the foundation 20 and roller means 5 thereinbetween. At each of the two outer ends of the inner bearing rings 3 is a locking ring 6 arranged. The inner bearing ring 3 has a ring-formed axial groove 7 in each axial end whose axial depth is not deep enough to reach the area radially inside of the bearing roller means 5. On the spindle 1, is a separator bowl (not shown) fixedly attached and thus rotatable together with the spindle 1.


Each locking ring 6 together with its corresponding inner bearing ring 3 define a sealed off ring-formed chamber 8 thus circumscribed by a circular side wall 9 of the locking ring 6 facing the inner bearing ring 3 and the groove 7 in the inner bearing ring 3. The circular side wall 9 of the locking ring 6 has a circular lip 10 protruding into the groove 7 to increase the contact area, i.e. the heat exchanging surface, inside the ring- formed chamber 8. On each end of the bearing arrangement comprising the first and second bearing 2a, 2b is a sealing means 11 arranged sealing off said roller means 5 by being arranged between said inner and outer bearing ring 3, 4. The sealing means 11 which is a lip sealing is fastened in the outer bearing ring 4 and is thus non-rotatable and in contact with said inner bearing ring 3. The location of the lip sealing is just radially outside the ring-formed chamber 8. Between the two inner bearing rings 3 is a first ring-formed elastic element 21 arranged to be able to absorb axial forces from the bearings 2a, 2b. Between the two outer bearing rings 4 is a second ring-formed elastic element 22 arranged also to be able to absorb axial forces from the bearings 2a, 2b.


The inner and outer bearing rings 3, 4 together with the two sealing means 11 enclosing the bearing arrangement comprising first and second bearings 2a, 2b provide a double bearing unit which is encapsulated from the outside from dirt and other contamination. Said ring formed chamber 8 is partly filled with a liquid fluid, preferably water, which at normal operating conditions, i.e. when the spindle 1 is rotating at operating speed, still is partly in liquid phase. The fluid thus, partly in gaseous and partly in liquid form completely fills up the chamber 8 and is in direct contact with the walls defining the chamber 8, e.g. the side wall 9.


The operating mode of the embodiment according to FIG. 2 is identical to FIG. 1.


A third preferred embodiment of an apparatus according to the present invention is illustrated in FIG. 3. This drawing discloses a rotating hollow spindle 30 which is rotatably mounted in an apparatus foundation (not shown) by a bearing 2. The bearing 2 comprises an inner bearing ring 3 fixedly mounted on the envelope surface of the hollow spindle 30, and an outer bearing ring 4 fixedly mounted on the foundation and roller means 5 thereinbetween. The hollow spindle 1 has a sealed off ring-formed chamber 8 arranged coaxially on its inner surface 31. The location is radially inside the inner bearing ring 3. On the spindle 30, is a separator bowl (not shown) fixedly attached and thus rotatable together with the spindle 30.


On each side of the roller means 5 is a sealing means 11 arranged sealing off said roller means 5 from dirt coming from the outside and also keeping the grease within the bearing 2. The sealing means 11 , which is a lip sealing, is fixedly arranged on a sleeve attached to the outer bearing ring 3, but may instead be attached directly to the outer bearing ring 3 and is in sealing contact with the inner bearing ring 4 and thus non- rotatable when the spindle rotates. The location of the sealing means 11 is essentially radially outside the ring-formed chamber 8.


Said ring-formed chamber 8 is partly filled with a liquid fluid, preferably water, which at normal operating conditions, i.e. when the hollow spindle 30 is rotating at operating speed, is partly in liquid phase, partly gaseous. The fluid thus, partly in gaseous and partly in liquid form completely fills up the chamber 8 and is in direct contact with the walls defining the chamber 8, e.g. the side wall 9.


Said ring-formed chamber 8 is defined by end rings 32 arranged axially on each side of the chamber 8. Each end ring 32 has a circular lip 33 protruding axially into the chamber 8 to increase the contact area inside the same, i.e. the heat exchanging surface. On each end of the bearing 2 is a sealing means 11 arranged sealing off said roller means 5 by being arranged between said inner and outer bearing ring 3, 4. The sealing means 11 which is a lip sealing is fastened in the outer bearing ring 4 and is thus non-rotatable and in contact with said inner bearing ring 3. The location of the lip sealing is radially outside the ring-formed chamber 8.


The exterior of the end rings 32 is provided with cooling fins 34 in an area functioning as fan shovels when the spindle rotates, communicating with and being cooled by the air outside of the chamber 8.


The operating mode of the embodiment according to FIG. 3 is identical to FIG. 1.


As has been indicated the invention operates with good effect in separator applications but may well be used in other types of rotating systems where excessive heat release from friction in sealing means between the spindle or axle and the non-rotatable part or from bearing means. Such systems may include pumps, fans, electric motors etc. It is evident that many alternatives, modifications and variations of the present invention will be apparent to a person skilled in the art in light of this disclosure and all such alternatives, modifications and variations are intended to be included within the scope of the appended claims.

Claims
  • 1-10. (canceled)
  • 11. A cooling device for cooling a sealing means fixed in a non-rotatable member and having contact with a circumferential surface of a rotating member, comprising: a closed ring-formed chamber defined by walls arranged in the rotating member radially inside of said sealing means, where said chamber is filled with an amount of cooling medium which at normal rotating operation is both liquid and gaseous, such that the liquid cooling medium which by centrifugal forces is pressed towards the outer wall of said chamber is evaporated from the heat generated by said sealing means and where the walls defining said chamber are in direct contact with said medium, and where a cooling member is arranged on said rotating member to cool an area radially inside of said chamber, such that the gaseous cooling medium is condensed from the cooling effect of said cooling member.
  • 12. A cooling device according to claim 11, wherein said rotating member comprises a spindle and an inner bearing ring attached to said spindle and where said chamber is arranged at least partly in said inner bearing ring, said inner bearing ring being a part of a bearing in which said spindle is journalled.
  • 13. A cooling device according to claim 12, wherein said chamber also is defined by a locking ring which is arranged axially beside the inner bearing ring.
  • 14. A cooling device according to claim 13, wherein said locking ring has a side wall with a ring-formed lip protruding axially into said groove to increase the contact area inside the ring-formed chamber.
  • 15. A cooling device according to claim 13, wherein said inner bearing ring has a ring-formed lip protruding axially into said groove to increase the contact area inside the ring-formed chamber.
  • 16. A cooling device according to claim 13, wherein said cooling member comprises cooling fins arranged on said locking ring functioning as fan shovels.
  • 17. A cooling device according to claim 12, wherein said spindle is journalled in two bearings arranged in parallel on said spindle and forming a bearing unit.
  • 18. A cooling device according to claim 12, wherein said spindle is a hollow spindle.
  • 19. A cooling device according to claim 11, wherein said rotating member comprises a hollow spindle and an inner bearing ring and wherein said closed ring-formed chamber is coaxially on the inner surface of the hollow spindle.
  • 20. A centrifugal separator comprising a cooling device according to claim 11, wherein a separator bowl is attached to said rotating member.
Priority Claims (1)
Number Date Country Kind
0950449-9 Jun 2009 SE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/SE10/00165 6/11/2010 WO 00 2/27/2012