The present invention relates to a cooling device of a water-cooled engine and a method of manufacturing the same, and in particular, to a cooling device of a water-cooled engine and a method of manufacturing the same, in which plural cylinders are arranged in line, and a cylinder head with cross-flow type of intake-and-exhaust arrangement includes intake port portions and exhaust port portions which connect to respective combustion chambers and an exhaust collective portion where the exhaust port portions are collected.
In general, an exhaust manifold connects to exhaust ports of a cylinder head outside the cylinder head. Meanwhile, the structure in which inside the cylinder head are formed the exhaust port portions connecting to respective combustion chambers and the exhaust collective portion where the exhaust port portions are collected has been recently proposed aiming at omitting the exhaust manifold, as disclosed in Japanese Patent Laid-Open Publication No. 2000-205043.
In the structure disclosed in the above-described patent document, the exhaust port portions and the exhaust collective portion are formed inside the cylinder head as described above. In this case, the high-temperature exhaust gas may give a large thermal load to the cylinder head. Accordingly, the water jacket may be necessary to cool the cylinder head. Herein, according to the structure disclosed in the above-described patent document, the water jacket is formed to surround the exhaust port portions and the exhaust collective portion. Specifically, the water jackets which are positioned above and below the exhaust port portions and the exhaust collective portion and the water jacket which extends vertically to connect these water jackets are formed inside the cylinder head. The water jacket extending vertically is provided between two exhaust port portions provided at each cylinder and has a shape along these exhaust port portions.
However, since the water jacket surrounds the exhaust port portions and the exhaust collective portion in the above-described structure, there is a problem in that the exhaust gas may be cooled too much improperly.
That is, it is preferable that the exhaust-gas temperature do not increase too high from a perspective of the cylinder head's reliability. From an exhaust-gas treatment standpoint, meanwhile, the high temperature of the exhaust gas is preferable, so it may be needed for the cooling water inside the water jacket not to cool the exhaust port portions and the like excessively.
The present invention has been devised in view of the above-described matter, and an object of the present invention is to provide a cooling device of a water-cooled engine or a method of manufacturing the same which can restrain the exhaust gas from being cooled too much improperly.
According to the present invention, there is provided a cooling device of a water-cooled engine, in which plural cylinders are arranged in line, and a cylinder head with cross-flow type of intake-and-exhaust arrangement includes intake port portions and exhaust port portions which connect to respective combustion chambers and an exhaust collective portion where the exhaust port portions are collected, the cooling device comprising a main cooling jacket portion of a cooling jacket formed in the cylinder head, the main cooling jacket portion including an intake-side space formed around the intake port portions and an exhaust-side lower space formed around the exhaust port portions, the intake-side space and the exhaust-side lower space being connected to each other, a sub cooling jacket portion of the cooling jacket formed in the cylinder head, the sub cooling jacket portion including an exhaust-side upper space formed at a level above the exhaust-side lower space, and a cylindrical-hole connecting passage extending vertically to connect the main cooling jacket portion and the sub cooling jacket portion, wherein the main cooling jacket portion and the sub cooling jacket portion are separate from each other vertically via a wall portion in another area than the connecting passage.
Accord to the above-described present invention, since the exhaust-side upper space of the main cooling jacket portion and the exhaust-side lower space of the sub cooling jacket portion, which are formed around the exhaust port portions, are vertically connected to each other via the cylindrical connecting passage and also separate from each other via the wall portion, the cooling water can be introduced into the exhaust-side upper space and the exhaust-side upper space can be properly away from the exhaust port portions and the like. Accordingly, the cylinder head can be cooled properly and the exhaust gas inside the exhaust port portions and the like can be restrained from being cooled too much improperly. Further, since the connecting passage connecting the main cooling jacket portion and the sub cooling jacket portion is of the cylindrical shape, casting fins which may form at the connecting passage when these jacket portions are formed by using different cores can be removed easily with a drill or the like.
According to an embodiment of the present invention, the connecting passage connects a portion located between the cylinders of the main cooling jacket portion and a portion located between the cylinders of the sub cooling jacket portion. Thereby, since the vertically-extending connecting passage is further away from the exhaust port portions, compared to a case in which this connecting passage is arranged between the exhaust port portions of each cylinder, for example, the excessive (too-much) cooling of the exhaust gas inside the exhaust port portions by the cooling water flowing through the connecting passage can be restrained properly.
According to another embodiment of the present invention, the main cooling jacket portion comprises a cooling-water introduction portion which is provided at an exhaust-side portion thereof and introduces cooling water from a cylinder block located below the cylinder head into the exhaust-side lower space of the main cooling jacket portion and a main cooling-water discharge portion which is provided at an intake-side portion thereof to connect to the intake-side space and discharges the cooling water flowing inside the main cooling jacket portion to an outside of the cylinder head, the connecting passage and the cooling-water introduction portion are located away from each other in a plan view, and the sub cooling jacket portion comprises a sub cooling-water discharge portion which is provided at an exhaust-side portion thereof to connect to the exhaust-side upper space and discharges the cooling water flowing inside the sub cooling jacket portion to the outside of the cylinder head. According to this structure, the cooling water introduced into the main cooling jacket portion from the cylinder block flows from exhaust-side portion of the main cooling jacket portion toward the main cooling-water discharge portion provided on the intake side. Meanwhile, the cooling water introduced into the sub cooling jacket portion through the connecting passage flows toward the sub cooling-water discharge portion. Herein, since the connecting passage is located at a different position from the cooling-water introduction portion in the plan view, the cooling water which has flowed into the sub cooling jacket portion through the connecting passage is restrained from returning to the main cooing jacket portion. Thereby, the flowing of the cooling water inside the sub cooling jacket portion can be ensured. Also, the cooling water having flowed into the sub cooling jacket portion can be introduced into a heater for vehicle compartment (a heater core for air conditioning) and the like via the sub cooling-water discharge portion, so that the cooling water can be used efficiency.
According to another aspect of the present invention, there is provided a method of manufacturing a cooling device of a water-cooled engine, in which plural cylinders are arranged in line, and a cylinder head with cross-flow type of intake-and-exhaust arrangement includes intake port portions and exhaust port portions which connect to respective combustion chambers and an exhaust collective portion where the exhaust port portions are collected, the method comprising a core setting step of setting a main-cooling-jacket core and a sub-cooling-jacket core, wherein the main-cooling-jacket core comprises an intake-side-space forming portion to form an intake-side space around the intake port portions of the cylinder head and an exhaust-side-lower-space forming portion to form an exhaust-side lower space around the exhaust port portions, the intake-side-space forming portion and the exhaust-side-lower-space forming portion being provided continuously, and the sub-cooling-jacket core comprises an exhaust-side-upper-space forming portion to form an exhaust-side upper space at a level above the exhaust-side lower space of the cylinder head and a connecting-passage forming portion to form a connecting passage connecting the exhaust-side upper space and the exhaust-side lower space, the connecting-passage forming portion extending vertically, and the main-cooling-jacket core is set inside a master mold of the cylinder head, and the sub-cooling-jacket core is set inside the master mold of the cylinder head such that the exhaust-side-upper-space forming portion thereof is upward away from the exhaust-side-lower-space forming portion of the main-cooling-jacket core and a lower face of the connecting-passage forming portion join to an upper face of the exhaust-side-lower-space forming portion of the main-cooling-jacket core, and a casting step of casting the cylinder head through pouring molten metal into a space between the master mold and the main-cooling-jacket and sub-cooling-jacket cores and removing the cores after the molten metal is cooled, whereby a main cooling jacket portion including the intake-side space and the exhaust-side lower space and a sub cooling jacket portion including the exhaust-side upper space and the connecting passage are formed to be connected to each other via the connecting passage inside the cylinder head, and the exhaust-side lower space of the main cooling jacket portion and the exhaust-side upper space of the sub cooling jacket portion are formed to be separate from each other vertically via a wall portion.
According to the above-described method of the present invention, since the core to form the main cooling jacket portion is different from the core to form the sub cooling jacket portion, the respective jacket portions which have complex shapes can be formed easily. Further, since these cores join to each other at the lower face of the connecting-passage forming portion, the main cooling jacket portion and the sub cooling jacket portion are connected to each other and the properly-thick wall portion can be provided between the exhaust-side lower space of the main cooling jacket portion and the exhaust-side upper space of the sub cooling jacket portion. Accordingly, the cooling water is introduced into the exhaust-side upper space, and the cylinder head can be cooled properly and the exhaust gas inside the exhaust port portions and the like can be restrained from being cooled too much improperly. Further, since the jacket portions are formed by using the different cores, the volume of the connecting-passage forming portion, i.e., the volume of the connecting passage, can be more easily adjusted, ensuring the rigidity of the cores, compared to a case in which the jacket portions are formed with a single core.
According to an embodiment of the method of the present invention, in the core setting step, the connecting-passage forming portion of the sub-cooling-jacket core is joined to a portion located between the cylinders of the exhaust-side-lower-space forming portion of the main-cooling-jacket core, and, in the casting step, the connecting passage is formed at a position to connect a portion located between the cylinders of the main cooling jacket portion and a portion located between the cylinders of the sub cooling jacket portion. Thereby, since the vertically-extending connecting passage is formed at a position further away from the exhaust port portions, compared to a case in which the connecting passage is formed between the exhaust port portions of each cylinder, for example, the excessive (too-much) cooling of the exhaust gas inside the exhaust port portions by the cooling water flowing through the connecting passage can be restrained properly.
According to another embodiment of the method of the present invention, the connecting-passage forming portion is of a vertically-extending columnar shape, the connecting passage is formed as a cylindrical hole extending vertically in the casting step, and there is further provided a casting-fin removing step of removing casting fins forming at the connecting passage with a drill inserted into the cylindrical-hole connecting passage. Thereby, the casting fins forming at the lower face of the connecting passage where the main-cooling-jacket core and the sub-cooling-jacket core join to each other can be removed easily, so that the removing of the casting fins can be conducted efficiently and precisely. Accordingly, the work efficiency can be improved and any damage of the cylinder head which may be caused by some remaining casting fins can be restrained.
According to another embodiment of the method of the present invention, the main-cooling-jacket core comprises a cooling-water-introduction-portion forming portion to form a cooling-water introduction portion which introduces cooling water from a cylinder block located below the cylinder head into the exhaust-side lower space of the main cooling jacket portion and a main-cooling-water-discharge-portion forming portion to form a main cooling-water discharge portion which is provided at an intake-side portion of the main cooling jacket portion to connect to the intake-side space of the main cooling jacket portion and discharges the cooling water flowing inside the main cooling jacket portion to an outside of the cylinder head, the sub-cooling-jacket core comprises a sub-cooling-water-discharge-portion forming portion to form a sub cooling-water discharge portion which is provided at an exhaust-side portion of the sub cooling jacket portion to connect to the exhaust-side upper space of the sub cooling jacket portion and discharges the cooling water flowing inside the sub cooling jacket portion to the outside of the cylinder head, the connecting-passage forming portion of the sub-cooling-jacket core is provided at a different position from the cooling-water-introduction-portion forming portion in a plan view in the core setting step, and the cooling-water introduction portion is formed at an exhaust-side portion of the main cooling jacket portion, the main-cooling-water discharge portion is formed at an intake-side portion of the main cooling jacket portion, and the sub cooling-water discharge portion is formed at an exhaust-side portion of the sub cooling jacket portion in the casting step. According to the method of the present embodiment, the cooling-water introduction portion to introduce the cooling water into the main cooling jacket portion from the cylinder block is formed on the exhaust side of the main cooling jacket portion, and the main cooling-water discharge portion to discharge the cooling water inside the main cooling jacket portion to the outside of the cylinder block is formed on the intake side of the main cooling jacket portion. Accordingly, the cooling water introduced into the main cooling jacket portion flows from the exhaust-side portion of the main cooling jacket portion toward the intake side. Meanwhile, the sub cooling-water discharge portion to discharge the cooling water to the outside of the cylinder head is formed at the exhaust-side portion of the sub cooling jacket portion. Accordingly, the cooling water introduced into the sub cooling jacket portion flows toward the sub cooling-water discharge portion. Further, since the connecting passage is formed at the different position from the cooling-water introduction portion in the plan view, the cooling water which has flowed into the sub cooling jacket portion through the connecting passage is restrained from returning to the main cooing jacket portion. Thereby, the flowing of the cooling water inside the sub cooling jacket portion can be ensured. Also, the cooling water having flowed into the sub cooling jacket portion can be introduced into the heater for vehicle compartment (the heater core for air conditioning) and the like via the sub cooling-water discharge portion, so that the cooling water can be used efficiency.
Other features, aspects, and advantages of the present invention will become apparent from the following description which refers to the accompanying drawings.
Hereinafter, a preferred embodiment of a cooling device of an engine according to the present invention will be descried referring to the accompanying drawings.
In the figures, an arrow F shows an engine-front side, an arrow R shows an engine-rear side, an arrow IN shows an intake side, and an arrow EX shows an exhaust side.
Each intake-valve opening 4 connects to each independent intake port 6. The two exhaust-valve openings 5, 5 connect to a common exhaust port 7 which is of a Y shape in a plan view.
An exhaust collective portion 8 is formed at an exhaust-side portion of the cylinder head 3 which corresponds to a portion between the third cylinder #3 and the fourth cylinder #4. The exhaust collective portion 8 connects to each of the Y-shaped exhaust ports 7. Herein, an exhaust pipe (not illustrated) is coupled to a downstream portion of the exhaust collective portion 8 outside the cylinder head 3.
As shown in
A branch passage 9 which branches off the exhaust port 7 of the fourth cylinder #4 is formed at the cylinder head 3. The branch passage 9 extends rearward from the exhaust port 7 and opens at an exhaust-side portion of a rear end face of the cylinder head 3. That is, an opening portion 10 (an opening portion on the exhaust side) is formed at the exhaust-side portion of the rear end face of the cylinder head 3.
An EGR connecting passage 13 which branches off the above-described branch passage 9 is formed at the cylinder head 3. The EGR connecting passage 13 extends in an engine width direction from the vicinity of the opening portion 10 on the exhaust side toward the intake side, and opens an intake-side portion of the rear end face of the cylinder head 3. That is, an opening portion 11 (an opening portion on the intake side) is formed at an intake-side portion of the rear end face of the cylinder head 3.
As described above, the cylinder head 3 has the two opening portions 10, 11 as the opening portions of the connecting passages 9, 13 which are located away from each other in the engine width direction. A water-cooled EGR cooler is connected to the opening portion 10. To the opening portion 11 is connected a bypass pipe which bypasses the EGR cooler.
The exhaust-valve openings 5, the exhaust ports 7, the exhaust collective portion 8, the opening portion 10, the opening portion 11, the connecting passage 12, and the EGR connecting passage 13 constitute an exhaust passage inside the cylinder head 3.
A cooling jacket which comprises a lower jacket 100 (a main cooling jacket portion, see
Next, the structure of cores used in forming the lower jacket 100 and the upper jacket 400 at the cylinder head 3 through a casting process will be described referring to
In the present embodiment, a lower core N100 (a main-cooling-jacket core, see
The lower core N100 forms the lower jacket 100. The lower jacket 100 where the cooling water flows expands from the intake side to the exhaust side over an almost entire area along the cylinder-line direction inside the cylinder block 2.
The upper core N400 forms the upper jacket 400 including an upper space on the exhaust side. The upper jacket 400 where the cooling water flows expands over an almost entire area along the cylinder-line direction inside the cylinder block 2 on the upper side of the exhaust-side portion of the lower jacket 100.
The block-jacket core N300 forms a water jacket at cylinder-bore peripheral portions of the cylinder block 2. The exhaust-passage core N200 forms the exhaust passage at the cylinder head 3.
As shown in
The main-cooling-water-discharge-portion forming portion N16 forms inside the cylinder head 3 a main-cooling-water discharge portion 16 (see
The cooling-water-introduction-portion forming portions N22 form inside the cylinder head 3 respective cooling-water introduction holes 22 (cooling-water introduction portions, see
The upper core N400 to form the upper jacket 400, as shown in
The upper-core body N401 forms an exhaust-side upper space 27 (see
The cooling-water-discharge-portion-for-air-conditioning forming portion N23 and the supercharger-cooling-water-discharge-portion forming portion N24 project from an exhaust-side end portion of the upper-core body N401 toward the exhaust side. The cooling-water-discharge-portion-for-air-conditioning forming portion N23 forms, at an exhaust-side end portion of the upper jacket 400, a cooling-water discharge portion for air conditioning which connects to the exhaust-side upper space 27 to guide the cooling water inside the exhaust-side upper space 27 to a heater core for air conditioning. The supercharger-cooling-water-discharge-portion forming portion N24 forms, at the exhaust-side end portion of the upper jacket 400, a discharge portion which connects to the exhaust-side upper space 27 to guide the cooling water inside the exhaust-side upper space 27 to a supercharger.
The supply-portion forming portion N25 is provided at a portion which is located on a rear side and an intake side of the upper core N400 and corresponds to the above-described connecting passage for EGR 13. This supply-portion forming portion N25 forms a supply portion to supply the cooling water to an EGR valve.
As shown in
The connecting-passage forming portions N26 are provided at respective portions between the cylinders #1-#4. Specifically, the connecting-passage forming portions N26 are formed between the cylinder #1 and the cylinder #2, between the cylinder #2 and the cylinder #3, and between the cylinder #3 and the cylinder #4. The connecting-passage forming portions N26 form respective connecting passages 26 (connecting passages, see
The connecting-passage forming portions N26 are of a vertically-extending columnar shape. Accordingly, the connecting passages 26 formed by the connecting-passage forming portions N26 are formed as a cylindrical hole extending vertically.
The hole's diameter size of the connecting passage 26 of the connecting-passage forming potion N26 is properly set so that the amount of cooling water flowing into the upper jacket 400 from the lower jacket 100 through the connecting passage 26 can cool the cylinder head appropriately, without excessively (too-much) cooling the exhaust gas flowing down through the exhaust passage. Specifically, this hole's diameter size is set at 1/10 of the cylinder bore's diameter or larger and ⅕ of the cylinder bore's diameter or smaller, and this hole's area is sufficiently smaller than a sectional area (a sectional area in a direction perpendicular to a hole's axis) of the upper core N400 and the lower core N100.
In
As shown in
Herein, the block-jacket core N300 is different from the other cores in forming the forming portions N17-N20 and the cylinder-block-side cooling-water-introduction-portion forming portion N21 by a metal mold.
The processes of casting the cylinder head 3 by using the cores N100, N200 and N400 described above will be described.
Each of the cores N100, N200 and N400 is formed with a gas-hardening type of shell core.
Core Setting Process
First, the lower core N100, an intake-passage core (not illustrated) to form the intake passage, the exhaust-passage core N200 and the upper core N400 are set at the metal mold (i.e., master mold) of the cylinder head 3. Herein, the upper-core body N401 is set above the exhaust-side-lower-space forming portion N15 of the lower core N100 to be located above and away from the lower core N100 with the distance of L, and a lower face of the connecting-passage forming portion N26 of the upper core N400 is made contact respective portions of an upper face of the lower core N100 which correspond to respect positions between the cylinders. Thereby, the upper face of the portions corresponding to the respective positions between the cylinders and the lower face of the connecting-passage forming portion N26 form a contact face. The sectional area of the connecting-passage forming portion N26 is set to be properly small as described above, so an area of the above-described contact face is rather small compared to the area of the upper core N400 and the lower core N300.
(Casting Process)
(2-1) Molten Metal Process
Next, by using the low pressure die casting method, molten metal is pushed upward in a vertical direction by a low-pressure gas so that the molten metal is poured into a cavity formed between the metal mold and the cores N100, N200, N400.
(2-2) Core Removing Process
After the molten metal is solidified, the cores N100, N200, N400 are removed.
Through removal of the cores, the cylinder head 3 equipped with the water jacket, the outlet port of the cooling water, the exhaust passage and the intake ports which are formed respectively to correspond to the cores N100, N200, N400 is casted.
Specifically, as shown in
Further, as shown in
Also, as shown in
The above-described upper core N400, as shown in
Specifically, the upper-core body N401 of the upper core N400 forms the exhaust-side upper space 27 which is arranged above the exhaust passage including the exhaust ports 7 of the respective cylinders and expands above the exhaust-side lower space 15. The connecting-passage forming portion N26 of the upper core N400 forms the connecting passages 26 connecting the exhaust-side lower space 15 and the exhaust-side upper space 27. The connecting passages 26 are formed the portions between the cylinders #1-#4 (i.e., between the cylinder #1 and the cylinder #2, between the cylinder #2 and the cylinder #3, and between the cylinder #3 and the cylinder #4) as shown in
The lower core N100 and the upper-core body N401 of the upper core N400 are located away from each other vertically with the distance of L as described above. Accordingly, between the lower jacket 100 and the upper jacket 400 is formed the wall portion 28 which corresponds to a gap of the distance of L as shown in
The lower jacket 100 and the upper jacket 400 are connected to each other via the connecting passage 26.
(3) Casting-Fin Removing Step
The upper face of the portions corresponding to the respective positions between the cylinders and the lower face of the connecting-passage forming portion N26 of the lower core N100 form the contact face as described above. Herein, casting fins may form at this contact face, i.e., the opening end of the lower end of the connecting passages 26 formed by the connecting-passage forming portion N26. Thus, the casting fins are removed in this casting-fin removing step.
As described above, the connecting passage 26 is the circular hole (cylindrical hole). Accordingly, in this step a drill is inserted into the connecting passage 26 and then rotated, so that the casting fins forming at the connecting passage 26 is removed off the connecting passage 26. Herein, since the connecting passage 26 is the circular hole, the casting fins can be easily removed with the drill.
Then, after drilling, a plug 29 is inserted into an upper end portion of the connecting passage 26 to close the upper-end opening of the connecting passage 26 with the plug 29 as shown in
Thus, manufacturing of the cylinder head 3 is finished.
The cylinder block 2 is casted separately from the cylinder head 3. In the casting step of the cylinder block 2, the block-jacket core N300 forms a water jacket of the cylinder block 2 with the open deck structure. Further, the forming portions N17-N20 form water jackets 17-20 around the cylinder bores. Also, the cylinder-block-side cooling-water-introduction-portion forming portion N21 forms a cylinder-block-side cooling-water introduction portion 21 (see
In a state in which the head gasket 30 is provided between the cylinder block 2 and the cylinder head 3, the openings for cooling-water introduction 36 are located at respective exhaust-side upper portions of the water jackets 17-20 formed by the forming portions N17, N18, N19, N20 of the above-described core N300 at the cylinder block 2, and connect to the above-described cooling-water introduction holes 22. The openings for cooling-water introduction 36 allow the cooling water to flow from the cylinder block 2 to the cylinder head 3. That is, the cooling water is introduced into the lower jacket 100 formed at the cylinder head 3 from the water jackets 17-20 of the cylinder block 2 through the openings for cooling-water introduction 36 and the cooling-water introduction holes 22. The opening area of each opening for cooling-water introduction 36 is set properly so that the amount of cooling water flowing toward the cylinder head 3 can be appropriate.
Herein, as shown in
Hereafter, the cooling function of the cooling device manufactured as described above will be described.
The cooling water flows into the water jackets 17-20 formed around the cylinder bores of the cylinder block 2 from the cylinder-block-side cooing-water introduction portion 21 as shown by an arrow a in
The cooling-water introduction holes 22 connect to the openings for cooling-water introduction 36 formed at the exhaust-side portions of the water jackets 17-20. Accordingly, the cooling water inside the water jackets 17-20 flows into the exhaust-side portions of the lower jacket 100, i.e., the exhaust-side lower space 15, and then flows toward the intake-side portions of the lower jacket 100. This cooling water cools portions around the exhaust-valve openings 5, 5 and the intake-valve openings 4, 4, the exhaust and intake valves, and the combustion chamber formed at each cylinder, when flowing through the lower jacket 100. The cooling water having cooled the exhaust valves and the others, as shown by an arrow e in
The cooling water having flowed into the upper jacket 400 flows toward the exhaust side and then flows out from the sub-cooling-water discharge portions 23, 24, as shown by arrows c, d in
Herein, the lower jacket 100 and the upper jacket 400 are connected to each other only via the connecting passages 26, and their main portions are separate vertically from each other via the wall portion 28. Thereby, the amount of cooling water flowing into the upper jacket 400 from the lower jacket 100 and the amount of cooling water flowing from the lower jacket 100, along the exhaust ports 7, toward the upper jacket 400 can be made properly small. Also, the upper jacket 400 can be properly away from the exhaust passage, so that the cylinder head 3 can be properly cooled by the both jackets 100, 400 and the excessive cooling of the exhaust passage (see the respective elements 7, 8, 12 in
In particular, the cooling-water introduction portions 22 are formed between the cylinders and further away from the exhaust ports 7, compared to a case in which these portions 22 are arranged between the exhaust ports. Accordingly, it can be restrained that the cooling water passing through the cooling-water introduction portions 22 cools excessively (too-much) the exhaust gas inside the exhaust ports 7.
As described above, according to the device of the present embodiment, the exhaust ports 7 and the exhaust collective portion 8 are disposed inside the cylinder head 3, the cylinder head 3 can be cooled properly, and the excessive (too-much) cooling of the exhaust gas inside the exhaust ports 7 and the like can be restrained.
Further, according to the manufacturing method of the present embodiment, since the core N100 to form the lower jacket 100 is different from the core N400 to form the upper jacket 400, and these cores N100, N400 join to each other at the lower face of the connecting-passage forming portions N26, these jackets 100, 400 are connected to each other, the properly-thick wall portion can be provided between the exhaust-side lower space 15 of the lower jacket 100 and the exhaust-side upper space 27 of the upper jacket 400, and the jackets 100, 400 having complex shapes can be formed properly.
Further, since the jackets 100, 400 are formed by using the different cores, the volume of the connecting-passage forming portion N26, i.e., the volume of the connecting passages 26, can be more easily adjusted, ensuring the rigidity of the cores, compared to a case in which these jackets are formed with a single core.
Also, the casting fins forming at the contact face of the cores N100, N400 of the jackets can be removed through an easy process of inserting the drill into the connecting passages 26 and rotating the drill in the casting-fin removing step, so that the removing of the casting fins can be conducted efficiently and precisely.
The present invention should not be limited to the above-described embodiment, and any other modifications and improvements may be applied within the scope of a sprit of the present invention.
For example, while the inline four-cylinder diesel engine is exemplified in the above-described embodiment, the cooling device of an engine according to the present invention is applicable to any other inline multi-cylinder engines.
Number | Date | Country | Kind |
---|---|---|---|
2010-147070 | Jun 2010 | JP | national |
2011-092359 | Apr 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4579091 | Kashiwagi et al. | Apr 1986 | A |
4993227 | Nagura et al. | Feb 1991 | A |
5080049 | Solomon et al. | Jan 1992 | A |
6279516 | Haugen et al. | Aug 2001 | B1 |
6470867 | Akiwa et al. | Oct 2002 | B2 |
6672296 | Ito et al. | Jan 2004 | B2 |
7121248 | Fukuda et al. | Oct 2006 | B2 |
7798108 | Konishi et al. | Sep 2010 | B2 |
8397682 | Hamada | Mar 2013 | B2 |
20020026909 | Akiwa et al. | Mar 2002 | A1 |
20050145205 | Haubner | Jul 2005 | A1 |
20060196453 | Yamada et al. | Sep 2006 | A1 |
20090165298 | Nagafuchi | Jul 2009 | A1 |
20100089343 | Hamada | Apr 2010 | A1 |
20110083624 | Megel et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2000-205043 | Jul 2000 | JP |
2002-070551 | Mar 2002 | JP |
2007-278065 | Oct 2007 | JP |
2008-190497 | Aug 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20110315098 A1 | Dec 2011 | US |