This is a §371 of International Application No. PCT/JP2009/063142, with an international filing date of Jul. 15, 2009 (WO 2010/008090 A1, published Jan. 21, 2010), which is based on Japanese Patent Application Nos. 2008-184585, filed Jul. 16, 2008, 2008-184586, filed Jul. 16, 2008, 2008-231821, filed Sep. 10, 2008, 2009-161704, filed Jul. 8, 2009, and 2009-161705, filed Jul. 8, 2009, the subject matter of which is incorporated by reference.
This disclosure relates to cooling equipment and a cooling method for a hot rolled steel plate.
In a process of manufacturing a steel plate such as a steel plate or a steel sheet by hot rolling, for example, in equipment shown in
For example, as a technique which cools a hot rolled steel plate by supplying a large quantity of columnar laminar cooling water, a technique disclosed in Japanese Patent Unexamined Publication 2002-239623 or Japanese Patent Unexamined Publication 2004-66308 is named. In this technique, cooling water is jetted to upper and lower surfaces of a steel plate at a high speed from a large number of nozzles. This technique acquires an extremely high cooling rate and is expected to manufacture a product having excellent material properties.
Also as another technique which cools a hot rolled steel plate by supplying cooling water to the steel plate, a technique disclosed in Japanese Patent Unexamined Publication 2006-35233 is named. In this technique, cooling water which is jetted from nozzles is filled in a region surrounded by a steel plate, rolls and side walls so that a pool is formed whereby a steady cooling state is acquired leading to the reduction of cooling deviation in the widthwise direction.
However, the prior art has problems in cooling ability and in ensuring cooling uniformity.
In the techniques disclosed in Japanese Patent Unexamined Publication 2002-239623 and Japanese Patent Unexamined Publication 2004-66308, cooling water which is jetted from a plurality of jetting nozzles passes through one hole or slit formed in a protective sheet arranged between a cooling water header and a hot rolled steel strip, and cooling water supplied to the steel strip is discharged through the same hole or slit. That is, the hole or the slit has both functions of a spout of nozzle and a drain outlet and, hence, as shown in
Further, when a slit-shaped hole is formed, a portion of a protector plate between the slits has a narrow plate shape and, hence, the rigidity of the portion is lowered, and when a warped steel plate intrudes and collides with cooling equipment, there exists a possibility that the steel plate damages the equipment. Accordingly, although there arises no problem when a plate thickness of the steel plate which is subject to cooling processing is 2 to 3 mm, when the plate thickness becomes 15 mm or more, it is necessary to use a protector plate having a large thickness to prevent the equipment from being damaged, thus giving rise to a drawback that the formation of the slit becomes difficult.
Further, when slit-shaped holes having different sizes are formed, resistance to flow differs depending on a position of a nozzle and, hence, there also arises a drawback that the strip temperature deviation at cooling occurs in the widthwise direction of the steel plate.
The technique disclosed in Japanese Patent Unexamined Publication 2006-35233 adopts the structure where cooling water supplied to the upper surface of the steel plate forms a pool in a space surrounded by the steel plate, the roll and the side wall, and cooling water is discharged upward. Accordingly, it takes a considerable time to fill the space with cooling water and, hence, in a range of several meters from a leading edge of the steel plate, a state of cooling water becomes nonstationary, thus giving rise to a drawback that the strip temperature deviation or warping is liable to occur at the time of cooling the steel plate in the longitudinal direction.
Further, with respect to the technique disclosed in Japanese Patent Unexamined Publication 2006-35233, a case where the side wall is not provided is also disclosed. In this case, as indicated by an arrow indicated by a dotted line in
The closer to the edge portion of the steel plate in the widthwise direction, the larger the widthwise flow of the drain becomes and, hence, the closer to the edge portion of the steel plate in the widthwise direction, the larger the interference becomes. Accordingly, a part of or the whole cooling water jetted from the cooling nozzle cannot reach the upper surface of the steel plate so that the uniform cooling in the widthwise direction cannot be achieved.
Further, in all techniques disclosed in Japanese Patent Unexamined Publication 2002-239623, Japanese Patent Unexamined Publication 2004-66308 and Japanese Patent Unexamined Publication 2006-35233, cooling water is jetted from above and below the steel plate. In a case where a steel plate to be cooled is not present such as a case where the steel plate has not yet entered the inside of a cooling device or a case where there are regions outside a plate width of a steel plate to be cooled, cooling waters which are jetted from above and below the steel plate collide with each other and splash to a periphery around the steel plate. Splashed water breaks a flux of cooling water jetted from the surrounding cooling nozzles thus giving rise to a drawback that stable cooling ability cannot be assured at a leading edge, a tailing edge and both edges of the steel plate in the widthwise direction.
Further, there may be a case where splashed water stays on the steel plate before the leading edge of the steel plate reaches a zone where cooling water is supplied and cools the leading edge of the steel plate, and there may be also a case where splashed water stays on the steel plate even after the tailing edge of the steel plate passes the zone where cooling water is supplied and cools the tailing edge of the steel plate. In such a case, the uniform cooling in the longitudinal direction cannot be achieved. Further, due to splashing of cooling water to the periphery around the steel plate, there exists a possibility that the measurement using various sensors cannot be performed or the maintenance property of peripheral equipment is deteriorated.
It could therefore be helpful to provide a technique which uniformly cools a hot rolled steel plate at a high cooling rate or at high thermal transmissivity when cooling water is supplied to an upper surface of the hot rolled steel plate or to a lower surface of the hot rolled steel plate.
We thus provide:
With the use of the cooling equipment for a steel material, a steel material can acquire high thermal transmissivity so that the steel material can speedily reach a target temperature. That is, since the cooling rate can be accelerated, it is possible to develop new products such as a high tensile-strength steel plate, for example. Further, a cooling time of a steel material can be shortened so that the productivity can be enhanced by increasing a manufacturing line speed, for example.
Further, cooling of an upper surface and/or a lower surface of the steel plate can be performed without strip temperature deviation in the steel-plate widthwise direction but and/or uniformly in the steel-plate longitudinal direction from a leading edge to a tailing edge of the steel plate and, hence, a steel plate having high quality can be manufactured. Further, splashing of water to the periphery around the steel plate can be suppressed and, hence, the maintenance property of peripheral equipment can be also enhanced.
Hereinafter, one example is explained in conjunction with drawings. The explanation is made by taking a case applying cooling of a steel plate in a steel plate rolling process as an example.
The upper surface cooling equipment includes: an upper header 1 which supplies cooling water to an upper surface of a hot rolled steel plate 12; upper cooling water jetting nozzles 3 which are suspended from the upper header 1; and an upper dividing wall 5a which is arranged horizontally between the upper header 1 and the hot rolled steel plate 12 while traversing in the steel-plate widthwise direction and has a large number of through-holes (upper water-supply inlets 6a and upper drain outlets 7a). The upper cooling water jetting nozzle 3 is formed of a circular tube nozzle 3 which jets rod-like water flow, and is arranged such that an end thereof is inserted into the through-hole (upper water-supply inlets 6a) formed in the upper dividing wall 5a and is positioned above a lower edge portion of the upper dividing wall 5a. To prevent a case where the cooling water jetting nozzle 3 is clogged by sucking a foreign substance on a bottom portion of the upper header 1, it is desirable that the cooling water jetting nozzle 3 penetrates the upper header 1 such that an upper end of the cooling water jetting nozzle 3 protrudes into the upper header 1.
The rod-like water flow 8 is cooling water which is jetted from a jetting port of a nozzle having a circular cross-sectional shape (including an elliptical shape and a polygonal shape) of the cooling water jetting nozzle 3 in a pressurized state to some extent, and also is cooling water formed of a water flow having a jetting speed from the nozzle jetting port of 6 m/s or more, and preferably to 8 m/s or more, and having continuity and linearity such that a cross section of the water flow jetted from the nozzle jetting port keeps an approximately circular cross section. That is, the rod-like water flow 8 differs from a free fall flow from a circular tube laminar nozzle and water which is jetted in a liquid droplet state such as sprayed water.
The reason that the end of the circular tube nozzle 3 is inserted into the through-hole and is arranged above the lower edge portion of the upper dividing wall 5a is to prevent the circular tube nozzle 3 from being damaged by the upper dividing wall 5a even if a steel plate whose leading edge is warped upwardly enters the cooling equipment. Due to such a constitution, the circular tube nozzle 3 can carry out cooling in a favorable state for a long period and, hence, it is possible to prevent the occurrence of strip temperature deviation of the steel plate without carrying out the maintenance of the equipment or the like.
Further, the end of the circular tube nozzle 3 is inserted into the through-hole 6a and, hence, as shown in
To show one example, as shown in
Although described in detail later, a total cross-sectional area of the upper drain outlets 7a is sufficiently larger than a total cross-sectional area of inner diameters of the circular tube nozzle 3. That is, the total cross-sectional area of the upper drain outlets 7a which approximately 11 times larger than the total cross-sectional area of inner diameters of the circular tube nozzle 3 is assured. Accordingly, as shown in
On the other hand, in an example shown in
To consider a case where the upper drain outlet 7a and the upper water-supply inlet 6a are arranged in the same through-hole as shown in
In the case of a steel sheet, a plate width is approximately 2 m at maximum and, hence, the influence exerted by the above-mentioned constitution is limited. However, in the case of a steel plate having a plate width of 3 m or more, this influence cannot be ignored. Accordingly, cooling of an edge portion of a steel plate in the widthwise direction becomes weak. In this case, the temperature distribution of the steel plate in the widthwise direction takes the concave non-uniform temperature distribution as shown in
To the contrary, in the cooling equipment, as shown in
Hereinafter, the detail of the preferred cooling equipment according to the first construction is explained.
(2) Total Cross-Sectional Area of Upper Drain Outlets 7a for Upper Surface Cooling: Not Less than 1.5 Times Total Inner-Diameter Cross-Sectional Area of Circular Tube Nozzles 3
When the total cross-sectional area of the upper drain outlets 7a is not less than 1.5 times inner diameters of circular tube nozzle 3, cooling water can be speedily drained. This can be realized, for example, by forming holes each having a size larger than an outer diameter of the circular tube nozzle 3 in the upper dividing wall 5a and by setting the number of the upper drain outlet 7a equal to or larger than the number of the upper water-supply inlets 6a.
When the total cross-sectional area of the upper drain outlets 7a is less than 1.5 times the total inner-diameter cross-sectional area of circular tube nozzles 3, the resistance to flow in the upper drain outlet 7a is increased so that it is difficult to drain staying water whereby a quantity of cooling water which penetrates a staying water film and reaches a surface of the steel plate is largely decreased thus lowering cooling ability. Accordingly, such setting of the total cross-sectional area of the upper drain outlets 7a is not desirable. It is more preferable to set the total cross-sectional area of the upper drain outlets 7a not less than four times larger than the total inner-diameter cross-sectional area of the circular tube nozzles 3. On the other hand, when the number of the upper drain outlets 7a becomes excessively large or a cross-sectional size of the upper drain outlet 7a becomes excessively large, the rigidity of the upper dividing wall 5a is decreased so that when a steel plate collides with the upper dividing wall 5a, the upper dividing wall 5a is easily damaged. Accordingly, it is preferable to set a ratio between the total cross-sectional area of the upper drain outlets 7a and the total cross-sectional area of inner diameters of the circular tube nozzles 3 to 1.5 to 20.
(3) Gap Between Outer Peripheral Surface of Circular Tube Nozzle 3 for Upper Surface Cooling and Inner Surface of Upper Water-Supply Inlets 6a: Not More Than 3 mm
Further, it is desirable to set a gap between an outer peripheral surface of the circular tube nozzle 3 inserted into the upper water-supply inlets 6a formed in the upper dividing wall 5a and an inner surface of the upper water-supply inlet 6a to not more than 3 mm. When this gas is large, due to the influence exerted by an accompanying flow of cooling water jetted from the circular tube nozzle 3, cooling drain water discharged to an upper surface of the upper dividing wall 5a is sucked into the gap formed between the inner surface of the upper water-supply inlet 6a and the outer peripheral surface of the circular tube nozzle and is supplied to the steel plate again and, hence, cooling efficiency is deteriorated. To prevent such a phenomenon, it is desirable to set the outer diameter of the circular tube nozzle 3 and the size of the upper water-supply inlets 6a substantially equal to each other. However, by taking working accuracy and mounting tolerance into consideration, the gap of 3 mm at maximum which does not exert the substantial influence is allowed, and the gap is more preferably set to 2 mm or less.
Further, to enable the cooling water to penetrate the staying water film and reach the steel plate, it is also necessary to optimize the inner diameter and the length of the circular tube nozzle 3, a jetting speed of cooling water and a nozzle distance.
It is preferable to set the inner diameter of the circular tube nozzle 3 to 3 to 8 mm. When the inner diameter of the circular tube nozzle 3 is less than 3 mm, a water flux jetted from the nozzle becomes narrow so that water energy becomes weak. On the other hand, when the inner diameter of the circular tube nozzle 3 exceeds 8 mm, a flow speed becomes low so that a force which allows the cooling water to penetrate the staying water film becomes weak.
It is preferable to set a length of the circular tube nozzle 3 to 120 to 240 mm. The length of the circular tube nozzle 3 implies a length from an inlet port on an upper end of the nozzle 3 which is inserted into the inside of the upper header 1 to some extent to a lower end of the nozzle 3 which is inserted into the upper water-supply inlet 6a formed in the upper dividing wall 5a. When the length of the circular tube nozzle 3 is shorter than 120 mm, a distance between a lower surface of the upper header 1 and an upper surface of the upper dividing wall 5a becomes too short (for example, assuming that a thickness of the upper header 1 is 20 mm, a projection quantity of an upper end of the nozzle 3 in the inside of the upper header is 20 mm, and an insertion quantity of the lower end of the nozzle 3 into the upper dividing wall 5a is 10 mm, the distance between the lower surface of the upper header 1 and the upper surface of the upper dividing wall 5a becomes less than 70 mm) and, hence, a flow-passage cross-sectional area (a drain space above the dividing wall) in the steel-plate widthwise direction in the space surrounded by the lower surface of the upper header 1 and the upper surface of the upper dividing wall 5a becomes small whereby cooling drain water cannot be drained smoothly. On the other hand, when the length of the circular tube nozzle 3 is longer than 240 mm, a pressure loss of the circular tube nozzle becomes large so that a force which allows the cooling water to penetrate a staying water film becomes weak.
(6) Jetting Speed of Cooling Water Jetted from Circular Tube Nozzle 3 for Upper Surface Cooling: 6 m/s or More
The jetting speed of cooling water jetted from the circular tube nozzle 3 is 6 m/s or more and, more preferably to 8 m/s or more. When the jetting speed of cooling water is less than 6 m/s, a force which allows the cooling water to penetrate a staying water film becomes extremely weak. The jetting speed of cooling water jetted from the circular tube nozzle 3 is more preferably set to 8 m/s or more since a larger cooling ability can be ensured with such a jetting speed.
(7) Distance from Lower End of Cooling Water Jetting Nozzle (Circular Tube Nozzle) 3 for Upper Surface Cooling to Surface of Steel Plate 12: 30 To 120 mm
Further, the distance from the lower end of the cooling water jetting nozzle (circular tube nozzle) 3 for cooling upper surface to the surface of the steel plate 12 is preferably 30 to 120 mm. When the distance is less than 30 mm, the frequency that the steel plate 12 impinges on the upper dividing wall 5a is extremely increased so that the maintenance of the equipment becomes difficult. When the distance exceeds 120 mm, a force which allows cooling water to penetrate a staying water film becomes extremely weak.
In cooling the upper surface of the steel plate, to prevent cooling water from spreading in the longitudinal direction of the steel plate, it is preferable to arrange a draining roll 10 in front of and behind the upper header 1. Due to such arrangement, a cooling zone length becomes a fixed value so that a temperature control can be easily performed. The flow of cooling water in the steel plate conveyance direction is stopped by the draining rolls 10 which function as weirs and, hence, cooling drain water flows toward the outside in the steel-plate widthwise direction. However, cooling water is liable to dwell in the vicinity of draining rolls 10.
Accordingly, as shown in
In the same manner as the upper cooling water injection nozzles 3, it is also preferable that the lower cooling water jetting nozzles 4 for lower surface cooling on a most upstream-side row in the conveyance direction of the steel plate and on a most downstream-side row in the conveyance direction of the steel plate are inclined in the upstream direction in the conveyance direction of the steel plate by 15 to 60 degrees from the vertical direction and in the downstream direction in the conveyance direction of the steel plate by 15 to 60 degrees from the vertical direction respectively.
The application of the cooling technique is particularly effective when the draining roll 10 is arranged in front of and behind the upper cooling header 1. However, the cooling technique is also applicable to a case where no draining roll is provided. For example, when the upper header 1 is relatively long (when the upper header 1 is approximately 2 to 4 m), the cooling technique is applicable to cooling equipment which prevents leaking of water to a non-water-cooling zone by jetting water spray for purging in front of and behind the upper cooling header 1.
(10) Distance Between Lower Surface of Upper Header 1 for Cooling Upper Surface and Upper Surface of Upper Dividing Wall 5a: A Cross-Sectional Area of a Flow Passage in the Steel-Plate Widthwise Direction in a Space Surrounded by the Lower Surface of the Upper Header 1 and the Upper Surface of the Upper Dividing Wall 5a Being Not Less than 1.5 Times Total Inner-Diameter Cross-Sectional Area of the Circular Tube Nozzles 3
The distance between the lower surface of the upper header 1 and the upper surface of the upper dividing wall 5a is set such that a cross-sectional area of a flow passage in the steel-plate widthwise direction in a space surrounded by the lower surface of the upper header 1 and the upper surface of the upper dividing wall 5a is not less than 1.5 times a total inner-diameter cross-sectional area of the circular tube nozzle 3. For example, the distance between the lower surface of the upper header 1 and the upper surface of the upper dividing wall 5a is approximately 100 mm or more. When the cross-sectional area of the flow passage in the steel-plate width-wise direction is less than 1.5 times a total inner-diameter cross-sectional area of the circular tube nozzles 3, cooling drain water which is drained from the upper drain outlet 7a formed in the upper dividing wall 5a cannot be drained smoothly in the steel-plate widthwise direction.
(11) Water Amount Density for Cooling Upper Surface: 1.5 m3/(m2·min) or More
A range of water amount density which exhibits an optimum effect is not less than 1.5 m3/(m2·min). When the water amount density is less than 1.5 m3/(m2·min), a thickness of a staying water film on the steel plate does not become so large. Accordingly, there may be a case where even when a known technique which cools a steel plate by a free fall of the rod-like water flow 8 is adopted, the strip temperature deviation in the widthwise direction is not increased remarkably.
On the other hand, even when the water amount density is more than 4.0 m3/(m2·min), the technique is effectively applicable. However, in this case, there arises a drawback in practical use that such water amount density pushes up an equipment cost and, hence, 1.5 to 4.0 m3/(m2·min) is the most practical water amount density.
In the first construction, the cooling device on a steel-plate lower surface side is not particularly limited. In the construction shown in
Next, the second construction is explained.
Another preferred arrangement of the upper water-supply inlets 6a and the upper drain outlets 7a for more speedily draining cooling water onto the upper dividing wall 5a is explained in conjunction with
As shown in
On a circumcenter (an intersection where three perpendicular bisectors of respective sides intersect with each other) of a triangle formed of three line segments which connect the upper water-supply inlets B to G arranged adjacent to each other with the upper water-supply inlet A as an apex, one upper drain outlet p1, p2, p3, p4, p5, p6 is provided.
By adopting such arrangement of the upper drain outlets, for example, the upper drain outlet p1 is a point which is equi-distant from the upper water-supply inlets A, B, C, and is also a point where cooling water jetted from the upper water-supply inlets A, B, C impinges on the hot-rolled steel plate 12 and diffuses and merges along a surface of the hot rolled steel plate 12. Since the upper drain outlet p1 is provided at such a merging point, cooling water can be smoothly drained onto the upper dividing wall whereby, as shown in
In
That is,
In
As shown in
By adopting such arrangement of the upper drain outlets, for example, the upper drain outlet r1 is a point which is equi-distant from the upper water-supply inlets A, C, D, E and is also a point where cooling water jetted from the upper water-supply inlets A, C, D, E impinges on the hot-rolled steel plate 12 and diffuses and merges along a surface of the hot rolled steel plate 12. Since the drain outlet r1 is provided at such a merging point, cooling water can be smoothly drained onto the upper dividing wall 5a whereby, as shown in
In
Although the arrangement of the upper water-supply inlets 6a in
That is,
Since the upper drain outlet s1 is provided at such a merging point, cooling water can be smoothly drained onto the upper dividing wall whereby, as shown in
In
Whether the relative positional relationship of upper water-supply inlets is regarded as a triangle as in the above-mentioned cases (a), (b) or a quadrangle as in the above-mentioned cases (c), (d) depends on the manner of arrangement of water-supply inlets. When a widest internal angle of a triangle formed by connecting the neighboring upper water-supply inlets is 80° or more, the relative positional relationship of the upper water-supply inlets may be regarded as a quadrangle. For example, an angle A of the triangle ACE in
The number of upper drain outlets for one upper cooling water jetting nozzle is 2 in the arrangement (a) shown in
Next, the third construction is explained.
To realize the uniform cooling of the steel plate over the whole length ranging from a leading edge to a tailing edge of the steel plate, or to realize the uniform cooling of the hot-rolled steel plate 12 to be cooled over the whole width even at the widthwise edge portion of the hot-rolled steel plate 12 without being influenced by scattering of jetted cooling water outside the hot-rolled steel plate 12, the preferred lower surface cooling equipment and the preferred arrangement of upper and lower cooling water jetting nozzles described hereinafter may be adopted.
The lower surface cooling equipment shown in
With respect to the arrangement of the upper and lower cooling water jetting nozzles 3, 4 of the cooling equipment shown in
On the other hand, the lower cooling water jetting nozzles 3, 4 are arranged such that cooling water 8 jetted from the lower cooling water jetting nozzle 4 penetrates drain outlets 7a formed in the upper dividing wall 5a shown in
Assume that the jetting lines of the upper and lower cooling water jetting nozzles 3, 4 are aligned with each other, in a state where the hot-rolled steel plate 12 to be cooled is not present, both rod-like water flows 8 jetted at a high speed collide with each other and scatter to the surrounding. For example, assume a case where a leading edge of the hot-rolled steel plate 12 advances to a cooling zone where cooling water is jetted from above and below, a water flux of the rod-like water flow 8 which is jetted toward the leading edge portion of the steel plate is collapsed by scattering of cooling waters which are jetted from above and below at directly downstream of the leading edge portion of the steel plate and collide with each other so that cooling ability is changed. Accordingly, it is impossible to uniformly cool the steel plate from leading edge end portion of the steel plate.
Further, a water flux of the rod-like water flow 8 which is jetted toward a steel-plate widthwise edge portion is also collapsed by scattering of jetted cooling water directly outside the steel-plate widthwise edge portion. Further, a water flux of the cooling water 8 which is jetted toward the steel-plate tailing edge portion is collapsed by scattering of jetted cooling water directly upstream of the steel-plate tailing edge portion.
To the contrary, the jetting lines of cooling waters 8 jetted from the upper and lower cooling water jetting nozzles 3, 4 do not intersect with each other and, hence, for example, there is no possibility that cooling waters 8 jetted from above and below at a high speed before the hot-rolled steel plate 12 advances to the cooling zone collide with each other and scatter to the surrounding.
Further, cooling water 8 jetted from the lower cooling water jetting nozzles 4 is designed to enter the space defined between the upper header 1 and the upper dividing wall 5a and, hence, at a point of time that the hot-rolled steel plate 12 advances to the cooling zone, the space defined between the upper header 1 and the upper dividing wall 5a is already filled with cooling water whereby after the hot-rolled steel plate 12 advances to the cooling zone, it is possible to speedily bring the hot-rolled steel plate 12 into a stationary state shown in
Accordingly, it is possible to uniformly cool the steel plate over the whole length ranging from the leading edge to the tailing edge of the steel plate. Further, also the widthwise edge portions of the hot-rolled steel plate 12 to be cooled are not influenced by scattering of the jetted cooling water outside the widthwise edge portion so that it is possible to uniformly cool the hot-rolled steel plate 12 over the whole width.
On the other hand, to allow the lower surface cooling water to reach the hot-rolled steel plate 12, it is necessary to optimize an inner diameter of the circular tube nozzle 4, a jetting speed of cooling water and a nozzle distance.
That is, it is preferable to set the inner diameter of circular tube nozzle 4 to 3 to 8 mm in the same manner as cooling of the upper surface of the steel plate. When the inner diameter is less than 3 mm, a water flux jetted from the nozzle becomes narrow so that the water flux is liable to collapse. On the other hand, when the inner diameter of the circular tube nozzle 4 exceeds 8 mm, a flow speed becomes low so that cooling ability is lowered.
The jetting speed of cooling water jetted from the circular tube nozzle 4 is 6 m/s or more, and more preferably to 8 m/s or more. When the jetting speed of cooling water is less than 6 m/s, energy of cooling water when the cooling water impinges on the lower surface of the steel plate is weak so that water hardly spreads along the lower surface of the steel plate whereby cooling ability of the cooling water is lowered. When the jetting speed of cooling water is 8 m/s or more, the cooling water can ensure the larger cooling ability. Accordingly, such jetting speed is preferable.
(17) Distance from Upper End of Lower Cooling Water Jetting Nozzle 4 for Cooling Lower Surface of steel plate 12 to lower surface of steel plate 12: 30 to 180 mm
Further, it is preferable that the distance from the upper end of the lower cooling water jetting nozzle 4 for cooling the lower surface of the steel plate 12 to the lower surface of the steel plate 12 is 30 to 180 mm. When the distance is less than 30 mm, frequency that the hot-rolled steel plate 12 collides with the circular tube nozzle 4 is extremely increased so that the maintenance of the equipment becomes difficult. When the distance exceeds 180 mm, probability that cooling water which falls after impingement with the hot-rolled steel plate 12 collapses a water flux of cooling water newly jetted becomes high.
(18) Water Amount Density for Cooling Lower Surface of Steel Plate: 2.0 to 6.0 m3/(m2·min)
In this construction where the lower surface cooling water which impinges on the steel plate directly falls, it is desirable to set water amount density for lower surface cooling to a value approximately 1.3 to 2.0 times larger than water amount density for upper surface cooling. A range of the water amount density for lower surface cooling is 2.0 to 6.0 m3/(m2·min). Although the water amount density for lower surface cooling is higher than the water amount density for upper surface cooling, such water amount density can be realized by increasing an inner diameter of the nozzle, by increasing the number of nozzles or by increasing injection pressure.
When the water amount density is lower than 2.0 m3/(m2·min), lower surface cooling becomes weaker than upper surface cooling and, hence, upward warping occurs during cooling. Although the application of our technique is effective even in a case where the water amount density is higher than 6.0 m3/(m2·min), the application of our technique gives rise to a drawback on practical use such as the increase of an equipment cost and, hence, the most practical water amount density is 2.0 to 6.0 m3/(m2·min).
Next, the fourth construction is explained.
The lower dividing wall 5b may be provided also for lower-surface-side cooling of the hot-rolled steel plate. Lower surface cooling equipment shown in
The reason the end of circular tube nozzle 4 is inserted into the through hole and is arranged below the upper end portion of the lower dividing wall 5b is that even when the hot-rolled steel plate 12 whose leading edge is warped downward enters the cooling equipment, it is possible to prevent the circular tube nozzle 4 from being damaged by the lower dividing wall 5b.
To show one example in
When the lower dividing wall 5b is not provided, portions of the steel plate where rod-like water flow impinges on the lower surface of the steel plate are cooled. To the contrary, when the lower dividing wall 5b is provided, a space defined between an upper surface of the lower dividing wall 5b and a lower surface of the steel plate is filled with cooling water and cooling by stirring is performed so that water cooling is performed in the whole region of the lower surface of the steel plate. That is, point cooling is changed to face cooling.
Further, since the space is extremely narrow, time necessary for filling the space with cooling water after the leading edge of the steel plate enters the cooling equipment is extremely short whereby the strip temperature deviation in the steel-plate longitudinal direction hardly occurs.
It is preferable to set a distance between the lower dividing wall 5b and the hot-rolled steel plate 12 to 30 to 120 mm for acquiring a stirring cooling effect. When the distance is less than 30 mm, frequency that the hot-rolled steel plate 12 collides with the dividing wall 5b is extremely increased so that the maintenance of the equipment becomes difficult. When the distance exceeds 120 mm, a force which allows cooling water to penetrate a film of filled water and to reach the lower surface of the steel plate becomes extremely weak, and it also takes considerable time to fill the space with cooling water so that strip temperature deviation in the steel plate longitudinal direction is liable to occur.
With respect to the arrangement of the upper and lower cooling water jetting nozzles 3, 4 of the cooling equipment shown in
On the other hand, cooling water jetted from the lower cooling water jetting nozzles 4 is designed to penetrate the drain outlets 7a shown in
In this manner, the jetting lines of cooling waters 8 jetted from the upper and lower headers 1, 2 do not intersect with each other and, hence, in the same manner as the third construction, there is no possibility that cooling waters which are jetted from above and below the hot-rolled steel plate 12 at a high speed before the hot-rolled steel plate 12 enters a cooling zone collide with each other thus scattering to the surrounding and, hence, the cooling equipment can ensure uniform and high cooling ability in the cooling zone over the whole length of the steel plate from a leading edge to a tailing edge of the steel plate.
In this construction (fourth construction), with respect to the cooling equipment on an upper surface side, an inner diameter of the circular tube nozzle 3, a jetting speed of cooling water, a nozzle distance, water amount density and the like may be set in the same manner as the third construction.
On the other hand, with respect to this construction provided with the lower dividing wall 5b, cooling water is filled in the space defined between the upper surface of the lower dividing wall 5b and the lower surface of the steel plate so that the substantially same cooling is obtained on the lower surface side as the cooling on the upper surface side and, hence, a water amount density for cooling the lower surface of the steel plate may be set substantially equal to the water amount density for cooling the upper surface of the steel plate. It is preferable to set the water amount density to 1.5 to 4.0 m3/(m2·min). Further, the jetting speed of cooling water from the lower cooling water jetting nozzle (circular tube nozzle) 4 is, for allowing the cooling water to penetrate a film of filled water, set to 6 m/s or more, and more preferably to 8 m/s or more. The inner diameter of the circular tube nozzle 4 may be set to 3 to 8 mm in the same manner as the upper surface cooling.
Next, the fifth construction is explained.
When a dividing wall is not arranged in cooling the lower surface of the steel plate, it is preferable to arrange protector plates 22 for protecting lower cooling water jetting nozzles 4. As shown in
By positioning upper ends of the protector plate 22 10 mm or more higher than end portions of the lower cooling water jetting nozzles 4 and 20 mm or more lower than an upper end of a table roll, even when a hot-rolled steel plate 12 enters a cooling zone, the hot-rolled steel plate 12 hardly collides with the lower cooling water jetting nozzles 4 and the protector plates 22.
Even when a hot-rolled steel plate 12 which is warped downward enters the cooling zone by any chance, the hot-rolled steel plate 12 merely hits the protector plate 22 so that it is possible to prevent the lower cooling water jetting nozzles 4 from being damaged. By arranging the protector plates at a widthwise pitch of 100 to 300 mm, there is no possibility that the hot-rolled steel plate 12 hits the lower cooling water jetting nozzles 4.
Further, also in this case, in the same manner as the cooling equipment shown in
In the fifth construction, inner diameters of the circular tube nozzle 3, 4, a jetting speed of cooling water, a nozzle distance, water amount density and the like in the cooling equipment on an upper surface side and the cooling equipment on a lower surface side of the steel plate may be set in the same manner as the third construction.
As an example of the first construction, the explanation is made with respect to a case where cooling of a steel plate with a tensile strength of 590 Mpa class in a steel plate rolling process is performed in conjunction with drawings.
In the steel plate rolling equipment schematically shown in
The upper surface cooling equipment described in the above-mentioned construction is used. This cooling equipment is equipment where cooling water supplied to the upper surface of the steel plate is made to flow above the dividing wall 5a as shown in
Holes each having a diameter of 12 mm are formed in the dividing wall 5a in a check pattern and, as shown in
Each nozzle 3 has an inner diameter of 5 mm, an outer diameter of 9 mm and a length of 170 mm, and upper ends of the nozzles 3 are projected into the header 1. Further, a jetting speed of rod-like water flow 8 is set to 8.9 m/s. A pitch of the nozzles 3 in the steel plate widthwise direction is set to 50 mm, and the nozzles are arranged in 10 rows in the longitudinal direction in a zone having an inter-table-roller distance of 1 m. Water amount density of the upper cooling water jetting nozzles 3 is 2.1 m3/(m2·min). A lower end of the nozzle 3 for upper surface cooling is arranged to assume an intermediate position between the upper and lower surfaces of the dividing wall 5a having a plate thickness of 25 mm, and a distance to the surface of the steel plate from the lower end of the nozzle 3 is set to 80 mm.
The lower surface cooling equipment, except for that the lower surface cooling equipment does not have the dividing wall 5a, uses the substantially same cooling equipment as the upper surface cooling equipment as shown in
In the upper surface cooling equipment of the example 1, a total cross-sectional area of the drain outlets is sufficiently larger, that is, approximately six times larger than a total cross-sectional area of inner diameters of the nozzles and, hence, the jetted cooling water which impinges on the steel plate flows upward and is speedily drained. Further, a flow-passage cross-sectional area of a space defined between the lower surface of the header 1 and the upper surface of the dividing wall 5a at both outer sides in the steel-plate widthwise direction is sufficiently wide, that is, approximately 5 times wider than the total cross-sectional area of inner diameters of the nozzles 3 and, hence, draining of cooling water from the plate edge portions is also extremely smooth. Since drain cooling water is speedily drained after cooling the steel plate, cooling water supplied in a successive manner can easily penetrate a staying water film whereby the cooling equipment can acquire cooling ability higher than cooling ability of conventional cooling equipment.
Cooling time necessary for decreasing a cooling stop temperature at the center of the steel plate in the plate widthwise direction to 560° C. can be reduced to 2.5 seconds. Accordingly, the cooling rate is increased and, hence, an alloy content of steel necessary for obtaining high strength (for example, Mn or the like) can be reduced thus realizing the reduction of a manufacturing cost.
The temperature distribution in the steel plate widthwise direction is 550 to 560° C., thus exhibiting the approximately uniform distribution as shown in
The lower end of the nozzle 3 is set at the intermediate position between the upper and lower ends of the dividing wall 5a and, hence, even when the steel plate whose upward warping caused by the pre-leveler 44 cannot be straightened or the steel plate on which upward warping occurs during cooling collides with the dividing wall 5a, the dividing wall 5a plays a role of a protector plate so that there is no breaking of the nozzle 3.
To the contrary, as a Comparison Example 1, cooling equipment described in Japanese Patent Unexamined Publication 2004-66308 is used. In that cooling equipment, slit-shaped holes are formed in a dividing wall. Conditions other than a shape of holes formed in the dividing wall are set equal to the conditions used in the above-mentioned Example 1. In the cooling equipment of the Comparison Example 1, as shown in
The plate widthwise distribution of the cooling stop temperature forms a concave shape as shown in
Further, although holes are formed in the dividing wall in a slit shape, the rigidity of such portions are weak so that when the upwardly warped steel plate collides with the dividing wall, the dividing wall and the nozzle are deformed and broken.
As another Example 2 of the first construction, the explanation is made with respect to a case where the following cooling conditions are changed in a steel plate rolling process substantially equal to the steel plate rolling process of the first Example 1.
In the cooling equipment used in Example 2, with respect to the upper surface cooling equipment substantially equal to the upper surface cooling equipment of Example 1 shown in
The nozzles 3 each of which has an inner diameter of 8 mm, an outer diameter of 11 mm and a length of 170 mm, and upper ends of the nozzles 3 are projected into the header 1. Further, a jetting speed of rod-like water flow 8 is set to 6.3 m/s. Water amount density of the upper cooling jetting nozzles 3 is 3.8 m3/(m2·min). A lower end of the nozzle for upper surface cooling is arranged to assume an intermediate position between the upper and lower surfaces of the dividing wall having a plate thickness of 30 mm, and a distance to the surface of the steel plate from the lower end of the nozzle is set to 50 mm. Conditions other than the above-mentioned conditions are set substantially equal to the corresponding conditions in Example 1.
The lower surface cooling equipment, except for that the lower surface cooling equipment does not have the lower dividing wall 5b shown in
In the upper surface cooling equipment of Example 2, a total cross-sectional area of the drain outlets 7a is sufficiently large, that is, approximately 2 times larger than a total cross-sectional area of inner diameters of the nozzles 3 and, hence, the jetted cooling water which impinges on the steel plate flows upward and is speedily drained. Further, a flow-passage cross-sectional area of a space defined between the lower surface of the header 1 and the upper surface of the dividing wall 5a at both outer sides in the steel-plate widthwise direction is sufficiently wide, that is, approximately 2 times wider than the total cross-sectional area of inner diameters of the nozzles and, hence, draining of cooling water from the plate edge portions is also extremely smooth.
Cooling time necessary for decreasing a cooling stop temperature at the center of the steel plate in the plate widthwise direction to 560° C. can be reduced to 2.0 seconds. The temperature distribution in the steel plate widthwise direction assumes the substantially uniform distribution shown in
As an example of the second construction, the explanation is made with respect to a case where cooling of a steel plate having a tensile stress of 590 MPa class is performed in a steel plate rolling process in conjunction with drawings.
With respect to steel plate rolling conditions, except for the cooling equipment described hereinafter, the all conditions used in this example are equal to the corresponding conditions used in Example 1.
In the cooling equipment used in an accelerated cooling test, the cooling equipment shown in
In this example, with respect to the arrangement of the upper water-supply inlets 6a and the upper drain outlets 7a formed in the dividing wall 5a formed on the upper surface side of the steel plate, two kinds of tests are carried out. That is, Example 3 is a case where, as shown in
Example 4 is a case where, as shown in
A size of the circular tube nozzle 3 in use is set such that the inner diameter is 5 mm, the outer diameter is 9 mm, and the pitch of the nozzles 3 in the steel plate widthwise direction is set to 50 mm. The nozzles 3 are arranged in 10 rows in the longitudinal direction in a zone with a distance of lm between table rolls.
With respect to a jetting speed and a water amount density of cooling water, the jetting speed of the upper surface cooling water is 9.0 m/s in Example 3 and 12.0 m/s in Example 4, and the jetting speed of the lower surface cooling water is 13.5 m/s in Example 3 and 18.0 m/s in Example 4. The water amount density of upper surface cooling water is 2.1 m3/(m2·min) in Example 3 and 2.8 m3/(m2·min) in Example 4, and the water amount density of lower surface cooling water is 2.8 m3 /(m2·min) in Example 3 and 4.2 m3/(m2·min) in Example 4.
In both Examples 3 and 4, as shown in
Accordingly, Examples 3 and 4 can ensure high cooling ability uniformly on both upper and lower surfaces of the steel plate. In this case, Examples 3 and 4 can acquire the uniform temperature distribution as shown in
The temperature distribution plate in the steel widthwise direction is 550 to 560° C. and takes the substantially uniform distribution as shown in
To the contrary, as a Comparison Example 2, cooling equipment described in Japanese Patent Unexamined Publication 2004-66308 is used. In this cooling equipment, slit-shaped holes are formed in a dividing wall and the holes are used as water supply inlets as well as drain outlets. Conditions other than a shape of holes formed in the dividing wall are set equal to the conditions used in Examples 3 and 4. In the cooling equipment of Comparison Example 2,as shown in
The plate widthwise distribution of the cooling stop temperature forms a concave shape as shown in
Further, as a Comparison Example 3, cooling is performed in a state where the cooling water quantity and the size of the nozzle are equal to the cooling water quantity and the size of the nozzle of Example 3 and the layout of the nozzles 3 and the upper drain outlets 7a are set as shown in
However, cooling water which is jetted from two nozzles arranged adjacent to each other in the longitudinal direction has no place to escape and, hence, the drain property is bad compared to Example 3 whereby Comparison Example 3 is inferior to Example 3 in cooling ability. Cooling time necessary for decreasing a cooling stop temperature at the center of the steel plate in the plate widthwise direction to 560° C. is 2.8 seconds. The reduction of alloy content of steel necessary for obtaining high strength (for example, Mn or the like) turns out to be only approximately one half of the reduction of alloy content acquired by Example 3.
As an example of the fourth and fifth constructions, the explanation is made with respect to a case where cooling of a steel plate having a tensile stress of 590 MPa class is performed in a steel plate rolling process in conjunction with drawings.
With respect to steel plate rolling conditions, except for the cooling equipment described hereinafter, the all conditions used in this example are equal to the corresponding conditions used in Example 1.
The cooling equipment used in the accelerated cooling test is explained in conjunction with a case where the cooling equipment includes a dividing wall 5a and a dividing wall 5b on upper and lower surfaces of a steel plate 12 respectively as shown in
The size of the nozzle is set such that the inner diameter is 5 mm, the outer diameter is 9 mm, and the pitch of the nozzles in the steel plate widthwise direction is set to 50 mm. The nozzles are arranged in 10 rows in the longitudinal direction in a zone with a distance of lm between table rolls. The jetting speed of the upper surface cooling water is 8.9 m/s, the water amount density of upper surface cooling water is 2.1 m3/(m2·min), and the jetting speed of the lower surface cooling water is 8.9 m/s in Example 5 and 12.7 m/s in Example 6. The water amount density of lower surface cooling water is 2.1 m3/(m2·min) in Example 5 and 3.0 m3/(m2·min) in Example 6.
A lower end of the nozzle for upper surface cooling is arranged to assume an intermediate position between the upper and lower ends of the dividing wall having a plate thickness of 25 mm, and a distance to the upper surface of the steel plate from the lower end of the nozzle is set to 80 mm. In Example 5, an upper end of the nozzle for lower surface cooling is arranged to assume an intermediate position between the upper and lower ends of the dividing wall having a plate thickness of 25 mm, and a distance to the upper surface of the steel plate from the upper end of the nozzle is set to 80 mm. In Example 6, a distance to the lower surface of the steel plate from the upper end of the lower surface cooling nozzle is set to 120 mm.
Holes each having a diameter of 12 mm are formed in the upper dividing wall 5a and the lower dividing wall 5b in Example 5 and the upper dividing wall 5a in Example 6 in a check pattern and, as shown in
In Examples 5 and 6, as shown in
Accordingly, Examples 5 and 6 can ensure high cooling ability on both upper and lower surfaces of the steel plate. In this case, the temperature distribution of the steel plate in the widthwise direction is 550 to 560° C. so that Examples 5 and 6 can acquire the uniform temperature distribution in the widthwise direction as shown in
Even when the jetting is performed before the steel plate enters the cooling zone, cooling water jetted from the upper and lower headers do not collide with each other or do not scatter and, hence, the strip temperature deviation at a position 2 m away from the leading edge of the steel plate and the strip temperature deviation at a position 2 m away from the tailing edge of the steel plate fall within 10° C. Since the strip temperature deviation is small and, hence, the acceptance rate of a material test is high, that is, 99.5% and a yield is also sufficiently high.
Cooling time necessary for decreasing a cooling stop temperature at the center of the steel plate in the plate widthwise direction to 560° C. can be reduced to 2.5 seconds. Since the cooling rate becomes high, an alloy content of steel necessary for obtaining high strength (for example, Mn or the like) can be reduced thus realizing the reduction of a manufacturing cost.
The jetting lines of cooling water jetted from the upper and lower headers do not intersect with each other and, hence, there is no possibility that cooling waters jetted at a high speed before the hot-rolled steel plate 12 enters to the cooling zone scatter to the surrounding thus ensuring the favorable maintenance of equipment.
The lower end of the upper surface cooling nozzle 3 is arranged to assume an intermediate position between the upper and lower ends of the upper dividing wall 5a, the upper end of the lower surface cooling nozzle 4 is arranged to assume an intermediate position between the upper and lower ends of the lower dividing wall 5b in Example 5, and the lower protector plate 22 is provided in Example 6 and, hence, even when the hot-rolled steel plate 12 having the warped leading edge enters the cooling zone, there is no possibility that the nozzle is broken.
To the contrary, as a Comparison Example 4, cooling equipment described in Japanese Patent Unexamined Publication 2004-66308 is used. In that cooling equipment, slit-shaped holes are formed in a dividing wall. Conditions other than a shape of holes formed in the dividing wall and the arrangement that injection lines of upper and lower cooling water jetting nozzles are arranged to intersect with each other are set equal to the conditions used in the above-mentioned Example 5. In the cooling equipment of Comparison Example 4, as shown in
The plate widthwise distribution of the cooling stop temperature forms a concave shape as shown in
When jetting of cooling water is performed before the steel plate enters the cooling zone, the cooling waters jetted from the upper and lower headers collide with each other so that the scattering of cooling water is vigorous. The scattered cooling water collapses the water flux of the cooling water around the scattered water. As a result, the cooling equipment cannot acquire the stable cooling ability so that the strip temperature deviation at a position 2 m away from the leading edge of the steel plate and the strip temperature deviation at a position 2 m away from the tailing edge of the steel plate become 40° C.
A part of the product is taken out and is subject to a material test. A result of the test shows that the acceptance rate is low, that is, 70% and a yield is also bad.
As another Example 5 (Example 7) of the third construction, the explanation is made with respect to a case where cooling equipment which has a dividing wall (upper dividing wall 5a) only on the upper surface of the steel plate as shown in
The size of the nozzle is set such that the inner diameter is 8 mm, the outer diameter is 11 mm, and the pitch of the nozzles in the steel plate widthwise direction is set to 50 mm. The nozzles are arranged in 10 rows in the longitudinal direction in a zone with a distance of lm between table rolls. The jetting speed of the upper surface cooling water is 6.3 m/s, the water amount density of upper surface cooling water is 3.8 m3/(m2·min), and the jetting speed of the lower surface cooling water is 9.5 m/s, and the water amount density of lower surface cooling water is 5.7 m3/(m2·min).
A lower end of the nozzle 3 for upper surface cooling is arranged to assume an intermediate position between the upper and lower ends of the upper dividing wall 5a having a plate thickness of 30 mm, and a distance to the upper surface of the steel plate from the lower end of the nozzle 3 is set to 50 mm. A distance from the upper end of the lower surface cooling nozzle 4 to the lower surface of the steel plate is set to 80 mm.
Holes each having a diameter of 11 mm and holes each having a diameter of 14 mm are formed in the dividing wall 5a in a check pattern and, as shown in
In Example 7, as shown in
Cooling time necessary for decreasing a cooling stop temperature at the center of the steel plate in the plate widthwise direction to 560° C. is 2.1 seconds, and the temperature distribution in the steel plate widthwise direction is 550 to 560° C. so that the temperature distribution assumes the substantially uniform distribution as shown in
Even when the jetting is performed before the steel plate enters the cooling zone, cooling waters jetted from the upper and lower headers 3, 4 do not collide with each other or do not scatter and, hence, the strip temperature deviation at a position 2 m away from the leading edge of the steel plate and the strip temperature deviation at a position 2 m away from the tailing edge of the steel plate fall within 10° C. Accordingly, advantageous effects similar to the advantageous effects of Examples 5 and 6 including the maintenance property of equipment are confirmed.
With the use of the cooling equipment of the steel material, the high thermal conductivity is achieved so that it is possible to bring the steel material to the target temperature earlier. That is, the cooling rate can be increased so that a new product such as a high strength steel plate can be developed, for example. Further, a cooling time of the steel plate can be shortened so that productivity can be enhanced by increasing a manufacture line speed, for example.
Further, the cooling of the upper surface of steel plate and/or the lower surface of the steel plate can be performed such that there is no strip temperature deviation in the steel plate widthwise direction and the steel plate can be uniformly cooled also in the steel plate longitudinal direction from the leading edge of the steel plate to the tailing edge of the steel plate whereby it is possible to manufacture the high-quality steel plate. Further, scattering of cooling water to the surrounding can be suppressed, the maintenance property of the peripheral equipment is also enhanced.
1: upper header, 2: lower header, 3: upper cooling water jetting nozzle (circular tube nozzle), 4: lower cooling water jetting nozzle (circular tube nozzle), 5a: upper dividing wall, 5b: lower dividing wall, 6a: upper water-supply inlet, 6b: lower water-supply inlet, 7a: upper drain outlet, 7b: lower drain outlet, 8: jetting cooling water (or rod-like water flow), 9: drain water, 10: draining roll, 11: table roller; 12: steel plate, 21: water landing point; 22: protector plate
Number | Date | Country | Kind |
---|---|---|---|
2008-184585 | Jul 2008 | JP | national |
2008-184586 | Jul 2008 | JP | national |
2008-231821 | Sep 2008 | JP | national |
2009-161704 | Jul 2009 | JP | national |
2009-161705 | Jul 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/063142 | 7/15/2009 | WO | 00 | 3/14/2011 |