1. Technical Field
The disclosure relates to cooling fans, and particularly relates to an impeller of a centrifugal fan cooling heated electronic components.
2. Description of Related Art
With continuing developments in technology, electronic components such as CPUs generate considerable heat that must be dissipated immediately. A centrifugal fan is conventionally secured beside the heated CPU, producing cooling airflow to dissipate the heat from the CPU. An impeller of the centrifugal fan for such an application consists of a hub and plural flat blades. The flat blades extend radially from the hub, driving air to generate airflow when the impeller rotates. However, in a notebook computer, limited available space restricts the allowable size of the impeller blades, limiting heat dissipation capability accordingly.
What is needed, therefore, is an impeller for a centrifugal fan addressing the limitations described.
Many aspects of the present apparatus can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present apparatus. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The hub 20 includes a circular bottom plate 22 and a peripheral wall 24 extending upwardly from a border thereof. A hollow, cylindrical protrusion 26 extends upwardly from a central portion of the bottom plate 22, seating a rotary shaft (not shown) of the centrifugal fan mounted thereon.
Also referring to
The blades 30 of the impeller 10 are all the same shape. Each blade 30 has a root portion 320 and a tip portion 340. The root portion 320 connects with the hub 20 and the tip portion 340 forms the free end of the blade 30. The root portion 320 and the tip portion 340 are the same height. The root portion 320 has a longer extended length than the tip portion 340. Each blade 30 is spoon-shaped, with root portion 320 forming a flat supporting portion thereof. In counterclockwise rotation of the impeller 10, the tip portion 340 of a rear blade 30b protrudes towards a front blade 30a.
The tip portion 340 of each blade 30 has a concave surface 346 and a convex surface 348 on opposing rear and front sides thereof. Also referring to
The concave surface 346 and the convex surface 348 have a same radian. Alternatively, the concave surface 346 and the convex surface 348 can have differing radians, whereby tip portion 340 of the blade 30 has a varying thickness.
Referring to
In operation, the impeller 10 rotates counterclockwise so that the concave surfaces 346 of the blades 30 impel air directly to generate airflow. Because the blades 30 having the concave surfaces 346 impel more air by volume than conventional flat blades, airflow generated is greatly increased, as is heat dissipation accordingly.
Referring to
It is believed that the disclosure and its advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200810066579.6 | Apr 2008 | CN | national |