The invention relates to a cooling jacket and/or heat exchanger which is to be placed in contact with objects of solid form (solid products) to be cooled, such as, for example, electrical machines, reactors or containers. The cooling jacket/heat exchanger presents an inner and outer wall, delimiting between themselves a flow cavity. The latter is provided with inlet and outlet means for a coolant and with conducting means for the formation and/or delimitation of at least one flow path for the coolant, where the flow path extends between the inner and outer wall from the inlet means to the outlet means. The inner wall presents a smooth or largely smoothened external side, which is in close fitting contact with the solid product or the object to be cooled. With regard to electrical machines with external rotor and internal stator in particular, the reversed arrangement system also falls within the scope of the invention; i.e., the outer wall of the cooling jacket possesses a smooth upper surface or outer surface allowing a close fitting contact with the object of solid form to be cooled (solid products).
Casings for aggregates of solid form, through which cooling coils or cooling ducts pass, can be manufactured only at great expense from stainless chromium nickel steel. The manufacture of the casing is expensive, and the solid body aggregates, for example, electromotors, must be shrink fitted in such a casing. The introduction of cooling hoses or pipes is time consuming. In addition, the hoses or pipes must be provided with appropriate connections for the fluid feed, where, as a general rule, hoses or screw connections with seals are used. Both solutions may lose their sealing property due to aging. In many cases, the repair of such a cooling system, when damaged or leaking, can be carried out only with difficulty or is no longer possible.
Electromotors in which the stator plate is held by a double walled cooling jacket with flow ducts for coolant in the interior are known, for example, from the manufacturer “PHASE MOTION CONTROL,” 16141 Genoa, Italy, under the type designation “Squid Torque Motor.” An internal casing jacket is shrink fitted directly on the stator plate packet, and provided with separating webs that protrude radially outward, and run in a helical line. Correspondingly, the cooling ducts that run in between also run in a helical line. Such an external casing jacket covers the cooling channels towards the outside.
U.S. Pat. No. 3,075,103 describes a cooling ring through which fluid flows, and which is used for encapsulated electromotors. The stator is enclosed by a pressurized container. An integrated heat exchanger located therein is formed with parallel grooves which are incorporated in the interior surface of the pressurized container. The open side of the grooves is covered by a steel cylinder which is concentric with respect to the motor shaft. Cooling copper windings which are turned radially inward are in contact with the external side of the steel cylinder, and in thermal contact with the stator windings. For this purpose, the surface—which is turned radially inward—of the cylinder inner shell is in the shape of a regular circular cylinder. In the same way, the pressurized container presents an outer casing with smooth surface.
U.S. Pat. No. 3,009,072 describes fluid cooled motors, which are surrounded by a cooling jacket. The purpose is to produce, between the electroplate of the motor and/or its casing and the cooling jacket as intense a heat contact as possible, while using a compact construction. For this purpose, in the stator or in the motor shaft or in the rotor and/or in an external casing jacket surrounding the former, groove channels are formed. Between the stator/rotor electrical sheet, on the one hand, and the external casing jacket, on the other hand, as a lining, a sandwich arrangement with two concentric layers or coats is inserted. The sandwich arrangement is thus located between the exterior casing jacket, on the one hand, and the electrical sheet of the motor, on the other hand. In an additional manufacturing step, a pressure medium is injected between the two layers of the sandwich arrangement, resulting in the two sandwich layers being pressed against the given surfaces of the motor electrical sheet and of the external casing jacket surrounding the motor electrical sheet. In the process, groove channels which are worked into the electrical sheet and/or the inner wall of the exterior casing jacket, press against the given layer or coat of the sandwich arrangement, forming a copy. As a result, passages for cooling fluid form between the two layers of the now broadened sandwich arrangement. However, the disadvantage is that after the leak of the pressurized medium out of the sandwich structure, the latter can easily undergo deformation again about an elastic deformation part and in the process it can be raised from the electrical sheet and/or the casing, resulting in a critical increase in the heat transition resistance, and in a lowering of the effectiveness of the heat removal. In addition, the manufacturing cost is increased, due to the formation of groove channels in the electrica sheet or in the casing inner wall.
WO 00/54 991 describes an arrangement with a cover through which a current flows, and with an electrical wheel motor within a wheel hub, which carries a tire. Cooling air is led through the middle of the electrical wheel guided, and deflected by the cover. A cover ring is connected to the wheel motor edge by means of a clamping element.
For additional technical background literature, reference is made to DE 1 231 797, DE 1 136 412, DE 961 186 and DE 28 36 903.
In contrast, the invention is based on the problem of simplifying the method of manufacturing a double walled cooling jacket of the type mentioned in the preamble. For the solution, reference is made to the cooling jacket or heat exchanger indicated in Claim 1. A method of manufacture of such a cooling jacket or heat exchanger is given in Claim 22. Claim 39 indicates a cooling arrangement with an electrical machine and with a cooling jacket or heat exchanger according to the invention. Advantageous optional embodiments of the invention can be obtained in the dependent claims.
According to the invention, between the inner and outer wall and within their edges, only selected permanent joints or joint lines or sections are formed, with space left between the latter to produce coolant flow passages in the flow cavity. This results in a nonsmooth external side of the outer wall facing the outside environment. Elevations which are formed by the flow passages alternate with recesses which coincide with the joints or joint sections. Thus, the outer casing of the outer wall runs, for example, in an uneven or wavy manner with respect to a base plane or a base circle or cylinder of the cooling jacket over the alternating elevations and recesses. As a result, the external surface of the cooling jacket or heat exchanger, which is in contact with the external environment, is considerably enlarged, which improves the effectiveness of the heat transfer. However, the most important relevant factor is the cooling of the smooth mantel surface from inside.
In the cooling arrangement according to the invention with an electric machine and a cooling jacket/heat exchanger, one achieves the advantage of being able to cool stators without casing or fully plated stators, without having to set up a bearing casing or cooling hoses or pipes in the stator for that purpose. Because, in the invention, the cooling jacket does not represent a mechanically bearing component of the motor construction, there is complete functional separation between the mechanical bearing structure and the cooling. As a result, the wall thickness of the cooling jacket or of its inner and outer wall, on the one hand, can be chosen to be very thin, which makes even the use of high value materials, for example, stainless chromium nickel steel, economical. When using this material especially one can use advantageous thicknesses of 0.3-2.0 mm, for example, 0.8 mm for the inner and outer walls. On the other hand, if no fluid cooling is needed, the entire cooling system can be omitted by simply omitting or removing the cooling jacket.
The problem, which was explained above in relation to the discussed state of the art, namely, the lifting of the double walled cooling jacket from the groove channels that have been produced in the delimitation surfaces, when a release of the deformation pressure occurs consecutive to the application by pressing, is prevented in a targeted manner by the invention by the fact that the formation or inflation of the duct structure occurs on a separate device. The resulting pillow-like structure is clamped only after the release of the deformation pressure onto the object to be cooled, or pressed permanently against the latter in another way. As a result, a direct contact between the wall of the duct system of the cooling jacket and the object to be cooled is ensured.
In the context of the invention, the joints and/or joint sections are produced by fastening respectively welding or soldering. Additional sealing measures are provided for screwing and/or riveting. Fastening or welding is advantageous to the extent that, for this purpose, one can use welding robots which can be programmed appropriately ahead of time for the application of welding or fastening locations. This programming can be implemented, for example, in such a way that the result is an arrangement of the joints and/or joint sections resulting in meandering flow paths of the coolant, optionally with turbulence. Furthermore, based on the invention, one obtains the advantageous embodiment where the recesses and/or flow conducting means can be produced using a simple construction with joints and/or joint sections.
To allow the cooling jacket to be able to be applied with its inner wall with close fitting contacts against the solid to be cooled, a shape adaptation to the solid is needed, which can be achieved, for example, by means of a deformation device. In this connection, it is advantageous to form mounting and/or fixation means on or in the outer and/or inner wall of the cooling jacket, to allow the attachment to the deformation device.
To improve the heat transfer, the interior of cooling jacket/heat exchanger and/or the outer casing or side of the solid object to be cooled can be provided with a coating which improves the heat transfer. This coating consists preferably of a viscoelastic polymer which is applied, for example, on the inner side of the cooling jacket, and which, after the mounting of the cooling jacket, compensates for slightly uneven parts of both the external surface of the product to be cooled and also the internal surface of the cooling jacket. Such coatings can be produced with commercially available products, such as, for example, ISO-PUR K 750/HDI23-2000 (a transparent, unfilled, cold hardened 2-component polyurethane casting resin), which is available from the company ISO-ELEKTRA GmbH, Im Mühlenfeld 5, 31008 Elze. An alternative PU casting compound can be produced with the product Rhenatech® PU 4714 FR with the hardener PU4900 available from the company Beckelectrical insulation GmbH, Goβmannstraβe 105, 20539 Hamburg. Such polymer viscoelastic coatings intended to improve the heat transfer are applied advantageously before the mounting of the cooling jacket on the external surface of the solid product to be cooled and/or the inner side of the cooling jacket. The use of heat conducting pastes or adhesives in itself is already known. The disadvantages here are the handling during the mounting and the risk of soiling, particularly if the product to be cooled together with a cooling jacket is to be lacquered at the end. An additional advantage of the embodiment comprising the polymer coating is that it allows, in the case of possible damage, simply removing an already mounted cooling jacket/heat exchanger from the motor or from another product to be cooled, and replacing it.
To compensate for uneven places, interstices, open places or the like between the external side of the cooling jacket inner wall of the facing external side of the product to be cooled, a complementary alternative possibility exists where a casting compound or impregnating resin which is used anyway for the stator plate or the stator windings is also used for the mentioned. An additional coating material for the mentioned purposes could then be omitted. As long as the casting compound for the stator or its windings or for another similar product has not yet hardened completely, the cooling jacket can be mounted advantageously in the context of the invention. Then, there is automatic shape adaptation of the casting compound to still existing uneven places, free interstices, etc., between the facing external sides of the cooling jacket and the product to be cooled. As long as the casting compound and/or the impregnating resin used commonly for electrical sheets or windings of stators has not hardened yet, it can spread out between the facing application surfaces of the cooling jacket and the product to be cooled, and, as a result, close any heat transfer gaps that may still be present. When using the casting compound which is used anyway for the product to be cooled, such as, a motor stator, the additional work step required for that purpose—namely, the application of a polymer viscoelastic intermediate coating—can be omitted in the above-explained invention embodiment. Uneven places on the periphery of the product to be cooled, such as, for example, an electromotor and/or on the external side of the inner wall of the cooling jacket, can also be filled out or compensated with casting compound.
An invention embodiment is also conceivable where the cooling jacket is mounted prior to the above-discussed impregnation process. As a result, the impregnating resin can penetrate between the cooling object, for example, a stator, and the cooling jacket. The penetration may optionally be improved further if the cooling jacket, in the interior of each circular weld for connecting the interior and exterior plate, presents a bore through which resin can also penetrate to the jacket surface itself during the impregnation, or air can escape.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, the elevations and recesses present a convex or concave curvature.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, the joints and/or joint sections (10) are implemented by fastening respectively welding, soldering, gluing, folding, clinching, screwing and/or riveting.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, the joints and/or joint sections are arranged in the area of the recesses of the given external side of the inner or outer wall.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, the recesses and/or flow conducting means are implemented with the joints and/or joint sections.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger which presents a cylindrical and/or longitudinal and/or rotation symmetric base form—in an alignment that is parallel or viewed along the cylinder, longitudinal or symmetry axis—on the external surface or side of the inner or outer wall, where each elevation or recess is delimited on all sides in each case from recesses or elevations that are outside the alignment.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, the flow guidance means with the joints and/or joint sections and/or joints or joint sections are implemented between the inner and outer wall.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, an arrangement of the joint places and/or joint section exists which is such that the flow path(s) of the coolant have a meandering course and/or a turbulent course.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger which presents a cylindrical and/or longitudinal and/or rotation symmetrical base form, several longitudinal joint sections of the inner and outer wall are offset, in a peripheral direction about the cylinder, longitudinal and/or symmetry axis, alternatingly more toward one edge and more to a facing edge.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger which presents a cylindrical and/or longitudinal and/or rotation symmetric base form, several joints and/or joint sections are arranged with mutual offset in a peripheral direction about the cylinder, longitudinal and/or symmetry axis and/or in a direction parallel to the cylinder, longitudinal and/or symmetry axis.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, the joints and/or joint sections are arranged with regular structure and/or equal separations from each other.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, mounting and/or fixation means are provided on or in the external and/or inner wall for the attachment to a deformation device.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, the inner and/or outer walls are implemented with plate parts having a thickness of 0.3-2.00 mm, for example, 0.8 mm.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger which presents a hollow cylindrical base shape, where the cylinder peripheral jacket presents an axis-parallel butt seam, or joint, which is formed by edges of the inner and outer wall, which edges face the peripheral direction, the facing edges are held together or immediately opposite each other by spring clamps, claw springs or other elastic clamping means and/or welding locations.
To ensure, in the case of the cooling jacket and/or heat exchanger, an effective heat exchange between the contact side assigned to the object to be cooled, and the outside environment, the outer and inner wall are formed with a smooth or largely smoothened exterior side for the close fitting contact with the solid product.
In the above-mentioned embodiments of the first variant of the invention, a separate work step for the fixation of a deformation device is necessary. Furthermore, the cooling jacket so obtained must also be fixed by appropriate clamping means on the motor or other object to be cooled. Here, a strong clamping force in the peripheral direction is necessary to ensure a sufficient application pressure of the cooling jacket around the object to cool.
As a cost saving measure, thin plates made, for example, of tenitic steel, are used for the cooling mantel or its double walled structure, which, however, results in a certain sensitivity of the cooling jacket with respect to mechanical damage from outside. As a correction, the following variants of the invention are used.
After the plate sandwich representing the cooling jacket has been bent after its welding to a cylinder jacket, it is provided with connectors which are welded preferably in the form of threaded flanges directly on the cover plate of the cooling jacket or plate sandwich. Now, a second plate cylinder is manufactured as cover jacket, which is made from normal steel plate to save cost. This jacket is designed with a thicker wall than the individual plates of the cooling jacket. If the thickness of the individual plates is 0.8 millimeter, for example, the thickness of the cover jacket is, for example, 2.5 millimeter or more. This cover jacket is provided with bores or other perforations through which the inlet/outlet connection flange or other connection elements of the cooling jacket can protrude later. Furthermore, the cover jacket is welded to a cylinder, by means of a longitudinal or a helical seam, depending on the winding of the cylinder. The cover jacket is given dimensions such that the cooling jacket fits with only little tolerance in its cavity. In a following manufacturing step, the cooling jacket is shifted into the cover jacket respectively its cavity. Because the cooling jacket itself is not yet welded to the cylinder, the threaded flange or other connection elements can be inserted, with appropriate placement, by elastic deformation of the cooling jacket, during the insertion, from inside through the prepared bores of the cover jacket.
For the mounting of the cooling jacket on the motor, the two coaxially premounted jackets are shifted axially onto the cylindrical motor section to be cooled. Subsequently, the channel structure is expanded by internal high-pressure deformation with water or oil. In the process, a much higher pressure is now necessary than in the above-described first variant of the invention with optional improvements, at which the cooling jacket alone is fixed and pressed onto a deformation device. As a result of the higher pressure to be used in the second variant of the invention, the thicker plate of the cover jacket is also deformed. In contrast to the case of the cooling jacket, where the duct structure is formed, the cover jacket is expanded predominantly in the peripheral direction, elastically or elastically-plastically depending on the interior pressure. When reducing the pressure, the existing very high preliminary tension of the cover jacket leads to a large radial force component directed inward. Because the duct pattern of the cooling jacket represents a structure with relatively high spatial frequency with material parts in a radial direction, the cooling jacket in radial direction with flat force introduction is sufficiently rigid so that a large part of the preliminary tension in the cover jacket is maintained, and radial components of said tension are active as a contact pressing force for the cooling jacket, to press the latter on the motor with reduction of the heat transfer resistance. In comparison to the application by pressing the cooling jacket alone on a deformation device according to the first variant of the invention, in the second variant of the invention, greater contact surfaces on the motor are generated due to the higher potential pressure during application by pressing with the cover jacket. These surfaces adapt completely to any unevenness of the motor outer casing, in any case to any unevenness that does not exceed a certain spatial frequency.
To improve the heat transfer, the cooling jacket or the motor surface can again be provided here, as in the first variant of the invention, prior to the mounting, with a coating which improves the heat transfer, and which then also compensates for small uneven places occurring at higher spatial frequency.
The second invention variant is characterized particularly by the process of pressing the structure that represents the cooling jacket directly on the object to be cooled, for example, a stator of an electromotor, using the cover jacket, to produce in this way a transversely pressed composite made of a cover jacket, a cooling jacket, and motor or other object to be cooled (reactor, vessel, container). One advantage is that, due to the application by pressing, a symmetric cushion or duct structure forms under the cover jacket. As a result, the local deformation in the area of the joints or joint sections, for example, of the welding seam penetration, is smaller. In addition, due to the radial pressure on the cooling jacket, compressive prestressing is generated in the welding seams that delimit the meander or cushion structure of the cooling jacket. Similarly, the method according to the second variant of the invention resembles in this regard the method of autofrettage, where, by controlled overextension using an internal pressure, compressive prestressing is generated. As a result, in comparison to the composite according to the first variant of the invention, which is pressed on separately and clamped around the motor, this composite possesses a durability that is increased by several orders of magnitude, providing even permanent resistance to swelling and/or pulsing pressure loads, which may occur in the cooling system if the system pressure changes often.
According to an optional invention embodiment, in the case of the cooling jacket and/or heat exchanger, both the inner wall and also the outer wall are designed with several alternating elevations and recesses on their given exterior sides. It is preferred for the elevations on the two sides to run symmetrically with respect to a middle line of the flow cavity, which line connects the joint places or joint sections.
According to an optional invention embodiment, a cover jacket thus covers and/or clamps around the cooling jacket and/or heat exchanger. The cover jacket is advantageously manufactured from steel plate and/or with a greater wall thickness than that of the inner or outer wall of the cooling jacket and/or heat exchanger.
According to an optional invention embodiment, the cooling jacket and/or heat exchanger is characterized by a structural integration with the cover jacket like a shrink wrap.
According to an optional embodiment variant, in the case of the cooling jacket or heat exchanger, the inlet and outlet means for the cooling medium are designed so they protrude through passages formed in the wall of the cover jacket.
According to an optional embodiment of the method according to the invention, for the formation of the solid composite, the two heat conducting plates are placed one above in the flat state respectively flatly, if possible congruently, and welded or otherwise connected at their edges.
According to an optional embodiment of the method according to the invention, for the formation of the solid composite, individual joints or joint sections are formed through its external side(s) and/or its outer casing, which results in mutually connecting facing inner sides of the inner and outer wall. The application of the individual joints or joint sections occurs advantageously by welding through the inner or outer wall. In the process, the joints or joint sections can be generated by point, circular and/or linear welding on the exterior side of the inner or outer wall.
According to an optional embodiment of the method according to the invention, the solid composite is adapted by deformation to the external contour(s) of a product to be cooled, in order to bring the cooling jacket or heat exchanger with the exterior side of its outer or inner wall into as close fitting a contact as possible with the product to be cooled.
According to an optional embodiment of the method according to the invention, for the deformation, the still flat plate composite is plastically deformed by means of a deformation device or a support body whose external contour corresponds to that of the product to be cooled. For the deformation, the still flat plate composite is advantageously bent to a cylindrical shape, or it is bent about a deformation core or a support body to a cylindrical shape, and connected to edges which in the process are facing and/or mutually impact. In particular, the plate composite can here be held with the external side of its outer or inner wall by fixation means in contact with the deformation device or the support body. Furthermore, the plate composite can be pressed for its fixation in the area of the welding or other joints on the support body or the deformation device. This application by pressing occurs particularly in the step b) indicated in Claim 22.
According to an optional embodiment of the method according to the invention, the internal high-pressure deformation is carried out by introducing a pressure medium, such as, for example, pressurized air or water between the inner and outer wall.
According to an optional embodiment of the method according to the invention, it is assumed that a deformation device is used for deforming the solid plate composite, where, to form the solid composite, through the latter's exterior side(s) and/or outer casing, individual joints or joint sections are introduced, whereby facing inner sides or interior flat parts of the inner and outer wall are connected to each other. During the phase of internal high-pressure deformation, holding-down devices are applied against the exterior side(s) or the outer casing of the outer wall in the area of the joints or joint sections and/or in the area of a peripheral seam or a welded peripheral edge, in order to hold the composite with the exterior side of its outer or inner wall in contact with the deformation device.
In an optional embodiment of the method according to the invention, the exterior side of the outer wall and inner wall is provided with a coating made of viscoelastic polymer, casting and/or impregnation resin and/or another coating substance that improves the heat transfer. Here, it is advantageous to use a cooling jacket and/or heat exchanger for a stator of an electrical machine without casing, where the machine is impregnated with casting and/or impregnation resin. The deformed plate composite is placed so that its inner wall is in contact with the stator, as long as the casting and/or impregnation resin has not yet completely hardened. It is advantageous for the stator to be impregnated in the area of its exterior edge or exterior periphery with casting and/or impregnation resin. In particular, before the impregnation, the cooling jacket is mounted on a solid product to be cooled.
According to an optional invention embodiment, in the case of the cooling arrangement, the inner wall is in heat conducting contact only with its protruding elevations with the outer casing or the outer wall of the stator.
According to an optional invention embodiment, in the case of the cooling arrangement, a coating with preferably plastically deformable heat conducting means is arranged between the exterior side of the inner wall and the exterior contour of the product to be cooled.
According to an optional invention embodiment, in the case of the cooling arrangement, where stator windings of the electrical machine are cast or thoroughly impregnated with a casting or impregnation compound, the casting or impregnation compound is also located between the exterior side or the concave outer casing of the inner wall and the outer wall of the stator or stator casing.
For both mentioned variants of the invention, electrical motors and generators, preferably without casing and with a fully plated design, as well as the containers or reactors to be cooled or heated, constitute suitable application fields. Torque motors in particular are suitable as cooling objects for the invention.
Additional details, characteristics, combinations of characteristics, effects, and advantages of the invention result from the following description of embodiment examples of the invention as well as from the drawings. The figures show:
In
According to
According to the embodiment example of
Similar statements apply according to
The length of the longitudinal joint sections 10 is chosen such that they pass—transversely to the longitudinal plate direction (axis-parallel in the final position state according to FIG. 4)—in each case through two rows I, II or IV, V of welding locations 3, 3a which succeed each other in the longitudinal direction. In the process, the longitudinal welding sections 10 start in each case from the welding locations of a row I, V or alignment which are located closest to the two longitudinal lateral edges 8, 8a. They extend in each case between two welding locations 3 which succeed each other directly in their given common row II, IV, where the given row or alignment II, IV is located closest to one of the outermost rows I, V. It is advantageous for the longitudinal welding sections 10 to terminate in the alignment of a middle row III with the welding locations 3a.
According to
After the manufacture according to
According to
The manufacturing by means of bores and fixing screws is advantageous for small piece numbers or for the manufacture of a functional sample. In series manufacture, on the other hand, holding-down devices would be more practical. In that case, the above-mentioned bores within the circular welds can also be omitted. On the other hand, the bores may be maintained with correspondingly smaller diameter for a better penetration of the impregnating resin.
By means of the fixing screws 12, the cooling jacket is secured to the deformation core 13 in such a way that, during the internal high-pressure deformation, the inner heat conducting plate 7 cannot yield through the inner wall 1 (not visible in
In an additional manufacturing step according to
According to
Number | Date | Country | Kind |
---|---|---|---|
07119335.3 | Oct 2007 | EP | regional |
10 2007 054 218.8 | Nov 2007 | DE | national |
10 2007 055 910.2 | Dec 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/64555 | 10/27/2008 | WO | 00 | 12/17/2010 |