The invention relates to a cooling member and a lighting or signaling device for a motor vehicle comprising such a member.
Motor vehicle lighting or signaling devices are composed by and large of a housing that is closed by a transparent wall, through which one or a plurality of light beams emerge. This housing accommodates at least one optical module, largely comprising a light source, and an optical system capable of modifying at least one parameter of the light generated by the light source for the emission of the light beam by the optical module. The optical system comprises optical components such as a reflector, a lens, a diffusing element or a collimator, or any other member capable of modifying at least one of the parameters of the light generated by the light source.
Developments in technology tend to favor the use of light sources constituted by at least one LED (Light Emitting Diode), because of their low energy consumption and the quality of the lighting obtained. LEDs do not radiate in an omnidirectional manner, but in a more directional manner than other light sources. The compact dimensions of the LEDs and their directional light radiation permit the dimensions to be reduced and the structure of the optical module to be simplified, with the advantage of facilitating its integration in the interior of the housing. In the course of their operation, however, LEDs produce heat which is detrimental to their performance, since the greater the rise in the temperature of an LED, the greater is the reduction in its luminous flux. The heat that is released may even give rise to problems relating to the adequate supply of electrical power to the LEDs. It is therefore necessary to make provisions in order to permit cooling of the one or more LEDs which constitute the light source of the optical module, so as to prevent an increase in the temperature of the LEDs beyond an acceptable operating threshold.
For this purpose, it is customary to equip the optical module with a finned heat dissipator. The heat generated by the light source is evacuated in this way towards the internal volume of the housing and/or towards the exterior of the housing, on the basis of a thermal exchange utilizing the surface area of the fins that make up the dissipator. The optimization of the thermal exchange, between the finned dissipator heated by the LED and the air, may be achieved by the enlargement of the surface area via an increase in the size and/or the number of fins of the cooling member. However, this solution is implemented by increasing the size of a flat supporting base. This has the disadvantage of resulting in the enlargement of the surface dimensions of the optical module, which must be avoided in order to facilitate its implantation in the interior of the housing. In addition, such implantation is likely to be difficult in view of the restricted nature of the space available to accommodate the one or more optical modules, and/or in view of the constraints associated with the general arrangement of the lamp unit in respect of its immediate environment when it is mounted on the vehicle. It is consequently appropriate to organize the cooling of the one or more optical modules in such a way as not to obstruct their implantation in the interior of the housing.
It is also necessary to take account of the fact that the volume of the means used for the cooling of the LEDs that are contained in the optical modules is dependent on the quantity of heat that they generate at their operating power, this in turn being dependent on the luminous intensity that is necessary for the emission of light by the corresponding light beam. The volume of the lighting devices may sometimes be large, however, and it is important to restrict their dimensions.
Furthermore, it is important to identify solutions which permit the exchange surface to be increased without compromising their reliability, in particular mechanically, and which are cost-effective.
The aim of the present invention is to propose a cooling member for a lighting and/or signaling device for a motor vehicle which respects the aforementioned constraints.
Proposed according to the present invention is a cooling member for a lighting and/or signaling device for a motor vehicle, said member comprising a base that is configured to support a light source of said device, and at least one heat dissipating device in thermal conduction connection with said base, said heat dissipating device comprising a plurality of heat dissipation fins, said base having large faces linked by a wafer, each of the fins extending from one of said large faces, said base extending in shape such that junction areas of at least two of said fins with said base extend in different planes.
The expression fins is used to denote elements having a thickness that is much smaller than their other dimensions. These are, for example, flat elements, having two mutually parallel plane faces. In other words, each of the fins has a junction area with said base extending linearly, in particular in a straight line, on one of said large faces.
By providing an extension in the form of the base, the dimensions of the cooling member are distributed inside the space. It is possible in this way to make available a larger exchange surface, by limiting the enlargement of the size of said member in a single plane. Using fins extending from one and only one of said large faces in addition makes it possible to avoid the use of fins of complex shape while allowing the establishment of an effective thermal connection with the base, according to low-cost and mechanically reliable techniques, in particular in respect of the resistance to vibrations. These may include, among others:
fins extruded with the base;
fins attached individually to the base, along their wafer;
fins matched in pairs of fins obtained from the “U”-shaped folding of a sheet of material; this pair of fins may be joined to the base in the area of the section joining the two branches of the “U”, in particular in such a way as to permit their attachment to the base on a larger contact surface than on a wafer of a fin and accordingly a more secure attachment; as a variant, this pair of fins may be joined to the base in the area of the extremities of the two branches of the “U”, thus permitting the exchange surface to be increased, since the section joining the two branches of the “U” is then at a distance from the base;
fins obtained from the folding like an accordion of a sheet of material; this makes it possible in particular to combine the advantages of the two variants of the pairs of “U”-shaped fins, due to the presence both of junctions to the base in the area of the sections joining the fins, in particular in such a way as to permit attachments to the base on contact surfaces that are larger than on fin wafers and therefore a more secure attachment, and of an increase in the exchange surface thanks to the sections joining the fins at a distance from the base.
According to different modes of implementation of the invention, which may be considered together or separately:
the material of the fins is a deformable metal, for example aluminum or an alloy of aluminum;
said fins are attached to said base by welding, gluing and/or brazing;
said base comprises a floor and at least one lateral fin;
the one or more lateral fins extend from the floor;
the floor is configured to support said light source;
the floor and/or the one or more lateral fins are flat and each comprise two of said large faces;
a first plurality of said fins extends from said floor, and/or a second plurality of said fins extends from said lateral fin;
one at least of said pluralities of fins is extruded and/or molded with said base, as already discussed above;
one at least of said pluralities of fins is attached to said base;
the fins of the one or more said pluralities of fins attached to said base are secured individually to said base;
grooves are provided in said base to receive said fins;
at least certain of the fins of the one or more said pluralities of fins attached to said base are secured in pairs to said base in the form of a folded sheet, as already discussed above;
at least certain of the fins of the one or of said pluralities of fins attached to said base are secured to said base in the form of a sheet folded like an accordion, as already discussed above;
said sheet is folded continuously as a series of adjacent air convection channels;
the thickness of said fins is between 0.8 and 1 millimeter, in particular for the fins of the one or more series of fins attached to said base;
the distance between said fins is between 4 and 6 millimeters in particular for the fins of the one or more series of fins attached to said base;
said fins are configured in such a way as to permit the convection of the air between them, which offers the advantage of not having to resort to forced circulation of the air.
The invention also relates to a lighting and/or signaling device for a motor vehicle comprising a cooling member as described previously.
Said lighting and/or signaling device comprises, in particular, a housing that is closed by an outer lens intended to be traversed by one or a plurality of light beams, the housing accommodating at least one optical module comprising said light source and an optical system that is capable of modifying at least one parameter of the light generated by the light source for the emission of the one or more light beams by said lighting device, said heat dissipating device being mounted in the available volume of the housing around the optical module and/or the optical system.
In other words, the heat dissipating device is adapted to the optical module and/or to the optical system so as to be capable of being mounted in the available volume of the housing around said members without impeding the operation of the latter.
The result of this provision is an enlargement of the heat exchange surface associated with the lighting and/or signaling device without having to increase its dimensions. This enlargement of the heat exchange surface makes it possible to optimize the cooling of the optical module and to adapt this cooling to a more powerful light source in case of need.
Said lighting and/or signaling device may include one or more optical modules, of which the light sources have an operating power capable of emitting a light beam of moderate to strong intensity. Advantageously, the light source includes LEDs, or electroluminescent diodes, and the heat generated by them must be removed. The LEDs may, for example, emit a powerful lighting beam, for example of the low beam and/or high beam type, or they may also emit a moderate lighting beam for the emission of a daytime position light or signaling light. The powerful LEDs are LEDs generally having a luminous flux in the order of at least 30 lumens and releasing a greater heat than LEDs with a moderate luminous flux intended for signaling.
The fins are configured in particular in order not to impede an ascending convection air flow.
The heat exchange surface or the plane of the fins of said heat dissipating device is more specifically oriented in the general axis of gravity. This heat exchange surface is thus oriented in such a way that it is naturally swept by the ascending flow of the air from the housing as it is heated in contact with the fins, this orientation being considered when the general axis of emergence of the light from the optical module is oriented approximately perpendicularly to the general axis of gravity. Such a general orientation of emergence of the light corresponds approximately to the orientation exhibited by the lighting and/or signaling device, once it is mounted on the vehicle for which it is intended. The fins are thus oriented along a general plane in the general axis of gravity.
Advantageously, said base exhibits a U-shaped profile comprising two lateral branches that are connected via a central branch, and the optical module is situated at the level of said central branch.
The above characterizing features and other characterizing features of the present invention will be appreciated more clearly with respect to the following description of modes of implementation of the invention with reference to the figures in the accompanying drawings, in which:
Identical references are used below to designate identical or similar elements.
As illustrated in
The housing 3 in this case accommodates an optical module 7 for the emission of at least one global light beam via the outer transparent closing lens 5. This optical module 7 includes, for example, a light source constituted by one or a plurality of LEDs 9. An optical system 11 is associated with the optical module 7. It is intended to modify at least one of the parameters of the light generated by the light source 9, such as its average reflection and/or its direction. In the example depicted, the optical system 11 comprises a reflector 13, which concentrates the light emitted by the light source 9 into a light beam in the direction of the closing lens 5, facing towards the observer in
The invention also relates to a cooling member 15 for such a lighting and/or signaling device. This cooling member 15 is intended to dissipate the heat generated by the light source 9 during operation. It comprises a base 17, on which said optical module is mounted. In the illustrative embodiment shown here, the optical module 7 is supported by a middle section 17a of the base. Said base 17 comprises large faces 30, 32 linked by a wafer 34, in particular large plane faces, which are parallel to one another in pairs. This base 17 is relatively solid, for example being molded in metal of the aluminum type or in an alloy of aluminum.
Said base 17 comprises, for example, said middle section 17a and at least one lateral fin 17b, being two in number in this case. Said middle section 17a and the one or more said fins 17b are flat, for example. In other words, they each comprise two large flat parallel faces 30, 32 that are connected together by said wafer 34. The one or more said lateral fins 17b extend, for example, from said middle section 17a of the base, in particular by being produced from the material of the latter. Said base can thus be obtained by molding and/or by extrusion. It exhibits a U-shaped profile in this case, said lateral fins 17b defining the lateral branches of the U and the middle section 17a defining its central branch. In other words, said lateral fins in this case are turned at a right angle to the central plate 17a of the base.
Said cooling member in addition comprises a heat dissipator 21 in thermal conduction connection with said base 17. Said heat dissipating device 21 comprises a plurality of cooling fins 19, 23, which are arranged with a space for the convection of the air between them.
In particular, said heat dissipator 21 comprises a first series of fins 19 associated with the central plate 17a of the base, in particular being produced from the material of said central plate, and advantageously being extruded. The fins 19 of the first series of fins are parallel to each other and parallel to said lateral fins 17b of the base 17.
The heat dissipator 21 in addition includes two other series 25 of fins 23, in this case identical, mounted to either side of the middle section 17a, facing towards the reflector 13, these sides being constituted by plates 17b forming the fins of the base 17. The fins 23 in this case are parallel to the plate 17a. The series includes a median plane of symmetry P.
These series 25, for example, are brazed, welded and/or glued by means of a thermally conductive glue to the side plates 17b. They occupy a parallelepipedic rectangular volume, to either side of the sides 17b of the base. They are thus perfectly suitable to be integrated in the space available in the housing 3, as can be appreciated in
The fins 23 of the one or more other series of fins are produced from thin aluminum sheet, for example with a thickness of 0.8 millimeter, folded continuously on each of said series 25 in order to form air convection channels 27, as can be seen in
It should be noted that, having regard for the given form of the base, the fins 19 associated with the middle section 17a of the base and the fins 23 associated with each of the lateral fins 17b exhibit junction areas 35 with said base that are situated in different planes.
The fins 19 of the first series of fins and the fins 23 of the one or more other series in this way constitute a general surface for thermal exchange with the ambient air in order to obtain cooling of the optical module 7 and thus of the light source 9 which is allocated to them.
The cooling air flow is naturally generated by the ascending movement of the air as it is heated in contact with the fins 19, 23 constituting the heat exchange surface for cooling, the temperature of this heat exchange surface being greater than that of the surrounding air. The available space in the housing beneath the cooling member 15 and beneath each of the series 25 of the heat dissipator is configured in such a way as to be sufficient to permit the air to circulate in said fins.
With reference to
A variant embodiment is depicted in
Thus, in the embodiment depicted in
This being the case, the first series of fins 19 and the one or more other series of fins 23 may define channels that are oriented in a different manner, as shown in
It should be noted that the shape of the fins may be adapted to the shape of the housing in order to provide a minimum space for the circulation of the air between the extremities of the fins and the wall of the housing. Said fins may exhibit smooth and flat walls, for example, in order to facilitate the convection.
These fins could still have a curved profile on a part of their section, for example sinusoidal, in a substantially vertical axis of development, which further increases the heat exchange surface relative to a straight profile.
The invention thus affords a possibility of optimizing the cooling of a light source, in particular of the electroluminescent diode type, in the lighting and signaling devices for motor vehicles.
Number | Date | Country | Kind |
---|---|---|---|
1353628 | Apr 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/058011 | 4/18/2014 | WO | 00 |