The present invention relates generally to a system and method for cooling manufactured articles and, more particularly, to a system and method for cooling extruded and molded materials with a fluid that is below about 80 degrees Fahrenheit. The present invention may also be used in other types of manufacturing techniques in which the output or material must be cooled from a heated state. The present invention includes a system and method for cooling synthetic wood composite materials including, but not limited to, cellulosic-filled plastic composites. In addition, the present invention may also be used to cool other types of pure or mixed materials including, but not limited to, plastics, polymers, foamed plastics, plastic compositions, inorganic-filled plastic compositions, metals, metallic compositions, alloys, mixtures including any of the aforementioned materials, and other similar, conventional, or suitable materials that need to be cooled after being processed. For instance, the present invention may be used to cool polyvinyl chloride (PVC) products and products made from other plastics.
For several reasons, there is a need to find materials that exhibit the look and feel of natural wood. The supply of wood in the world's forests for construction and other purposes is dwindling. Consequently, the supply of wood from mature trees has become a concern in recent years, and the cost of wood has risen. As a result, several attempts have been made by others to find a suitable wood-like material.
Cellulosic/polymer composites have been developed as replacements for all-natural wood, particle board, wafer board, and other similar materials. For example, U.S. Pat. Nos. 3,908,902, 4,091,153, 4,686,251, 4,708,623, 5,002,713, 5,055,247, 5,087,400, 5,151,238, 6,011,091, and 6,103,791 relate to processes and/or compositions for making wood replacement products. As compared to natural woods, cellulosic/polymer composites offer superior resistance to wear and tear. In addition, cellulosic/polymer composites have enhanced resistance to moisture, and it is well known that the retention of moisture is a primary cause of the warping, splintering, and discoloration of natural woods. Moreover, cellulosic/polymer composites may be sawed, sanded, shaped, turned, fastened, and finished in the same manner as natural woods. Therefore, cellulosic/polymer composites are commonly used for applications such as interior and exterior decorative house moldings, picture frames, furniture, porch decks, deck railings, window moldings, window components, door components, roofing structures, building siding, and other suitable indoor and outdoor items. However, many attempts to make products from cellulosic/polymer composite materials have failed due to poor or improper manufacturing techniques.
In the present invention, a product or article is manufactured by a desired technique such as, but not limited to, extrusion, compression molding, injection molding, or other similar, suitable, or conventional manufacturing techniques. The product is then cooled by subjecting it to a cooling fluid including, but not limited to, direct contact with a liquid cryogenic fluid. The present invention can be used alone or in conjunction with other known or later developed cooling methods. Accordingly, the present invention can more thoroughly and efficiently cool the manufactured product or article to a desired level. This can lead to faster production times as well as a product having improved structural, physical, and aesthetic characteristics.
In addition to the novel features and advantages mentioned above, other objects and advantages of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments.
The present invention is directed to a system and method for cooling manufactured articles or products. It is not intended to limit the present invention to particular manufacturing techniques or particular materials. The present invention may be used to cool articles or products made by variety of different manufacturing techniques. Examples of manufacturing techniques that may utilize the present invention include, but are not limited to, extrusion (including co-extrusion), compression molding, injection molding, and other known, similar, or conventional techniques for manufacturing products or articles from plastic, wood, metal, mixtures of these materials, or other materials used to make products.
The present invention is particularly useful for cooling plastics, polymers, and cellulosic/polymer composite materials that have been extruded or molded. The materials that may be used to make cellulosic/polymer composites include, but are not limited to, cellulosic fillers, polymers, plastics, thermoplastics, inorganic fillers, cross-linking agents, lubricants, process aids, stabilizers, accelerators, inhibitors, enhancers, compatibilizers, blowing agents, foaming agents, thermosetting materials, and other similar, suitable, or conventional materials. Examples of cellulosic fillers include sawdust, newspapers, alfalfa, wheat pulp, wood chips, wood fibers, wood particles, ground wood, wood flour, wood flakes, wood veneers, wood laminates, paper, cardboard, straw, cotton, rice hulls, coconut shells, peanut shells, bagass, plant fibers, bamboo fiber, palm fiber, kenaf, flax, and other similar materials. In addition to PVC, examples of polymers include multilayer films, high density polyethylene (HDPE), polypropylene (PP), low density polyethylene (LDPE), chlorinated polyvinyl chloride (CPVC), acrylonitrile butadiene styrene (ABS), ethyl-vinyl acetate, other similar copolymers, other similar, suitable, or conventional thermoplastic materials, and formulations that incorporate any of the aforementioned polymers. Examples of inorganic fillers include talc, calcium carbonate, kaolin clay, magnesium oxide, titanium dioxide, silica, mica, barium sulfate, acrylics, and other similar, suitable, or conventional materials. Examples of thermosetting materials include polyurethanes, such as isocyanates, phenolic resins, unsaturated polyesters, epoxy resins, and other similar, suitable, or conventional materials. Combinations of the aforementioned materials are also examples of thermosetting materials. Examples of lubricants include zinc stearate, calcium stearate, esters, amide wax, paraffin wax, ethylene bis-stearamide, and other similar, suitable, or conventional materials. Examples of stabilizers include tin stabilizers, lead and metal soaps such as barium, cadmium, and zinc, and other similar, suitable, or conventional materials. In addition, examples of process aids include acrylic modifiers and other similar, suitable, or conventional materials.
Depending on the type of cooling fluid and the desired expulsion rate of the cooling fluid, the container 308 may be pressurized. The container 308 may be connected to a compressor, e.g., an air compressor or any other similar, suitable, or conventional compressing device, in order to maintain the desired pressure in the container 308. Additionally, the container 308 may be in fluid communication with a blower or a pump to obtain the desired expulsion rate of the cooling fluid from the container 308. A blower in fluid communication with the container 308 may also be utilized to accelerate the cooling fluid to a desired velocity after it has been expelled.
It should be recognized that
It should also be recognized that the cooling fluid of the present invention may be expelled elsewhere relative to the manufactured product (i.e., other than in a hollow portion of the product). For example,
Turning to
The die 700 may be heated to a sufficient level to facilitate extrusion and limit premature curing of the extrudate in the die 700. In this example of an in-line system, the passages 710 actually extend through the die 700, intersecting the path of flow of the extruded material through the die 700. In such embodiments, it may be preferable to limit cooling of the die 700 by the cooling fluid in the passages 710. Accordingly, the passages 710 may be insulated by a suitable material. For example, the passages 710 may be lined with ceramic insulation, putty ceramics, or any other similar, suitable, or conventional insulating material in order to limit undesired heat loss by the die 700. In fact, it should be recognized that the transfer device for the cooling fluid in any type of embodiment may be insulated in order to limit undesired cooling of surrounding items.
As best seen in the example of
Any desired cooling fluid may be used in the present invention. In one exemplary embodiment, the cooling fluid, e.g., gas or liquid, may have a temperature below about 80 degrees Fahrenheit, more preferably below about 68 degrees Fahrenheit, still more preferably below about 32 degrees Fahrenheit, even more preferably below about minus 100 degrees Fahrenheit. On the other hand, the temperature may be above about minus 325 degrees Fahrenheit, more preferably above about minus 300 degrees Fahrenheit, still more preferably above about minus 275 degrees Fahrenheit, even more preferably above about minus 250 degrees Fahrenheit. However, in some embodiments of the present invention, the cooling fluid may be above about 80 degrees Fahrenheit or below about minus 325 degrees Fahrenheit. Examples of the cooling fluid are air and water. Another example of the cooling fluid is gas or vapor that is produced from a cryogenic fluid. For instance, a cryogenic fluid may have a temperature below about minus 250 degrees Fahrenheit. Examples of cryogenic fluids include, but are not limited to, liquid oxygen, liquid nitrogen, liquid neon, liquid hydrogen, liquid helium, and other similar, suitable, or conventional cryogenic fluids.
In addition to the temperature, the velocity of the cooling fluid may also impact its effectiveness. By selecting a suitable velocity and temperature of the cooling fluid, the inventors have discovered that an entire product can be thoroughly cooled just by injecting the cooling fluid into a hollow portion of the product. The velocity of the cooling fluid may be greater than about 10 miles per hour, more preferably greater than about 40 miles per hour, and it may be less than about 100 miles per hour, more preferably less than about 50 miles per hour. However, it should be recognized that the velocity of the cooling fluid may be less than about 10 miles per hour or greater than about 100 miles per hour in some embodiments.
The efficiency of the present invention may be further increased by diverting the flow of the cooling fluid toward the surface of the extruded product as it exits the die. By concentrating the cooling fluid on a surface of the extrudate, the desired amount of cooling may occur more quickly resulting in the use of less cooling fluid as compared to non-diversion methods. Moreover, the increased cooling efficiency enables the use of warmer cooling fluids and a reduction in the velocity of the cooling fluid as compared to non-diversion methods. For example, this embodiment of the present invention may be particularly useful if it is desired to use a cooling fluid that is warmer than about 80 degrees Fahrenheit. However, it should be recognized that, in many embodiments, it may be desirable to use a cooling fluid below about 80 degrees Fahrenheit for optimal cooling efficiency.
The baffle 820 may be placed in fluid communication with the passage 810 in any suitable manner. In the example of
The inventors have also made the surprising and significant discovery that the efficiency and efficacy of the manufacturing process may be improved by placing a liquid cryogenic fluid in direct contact with the material to be cooled. As a result, the rate of output may be increased, thereby decreasing the unit cost of the manufactured product. In addition, the inventors have discovered that the more rapid cooling providing by direct contact with a liquid cryogenic fluid may improve the structural characteristics of the manufactured product, especially in the case of foam products. In particular, the rapid removal of the heat may help to maintain the desired foam structure.
The features and physical dimensions of the bath 126 may be selected taking into consideration the minimum length of material needed for a specific application, the line speed, the desired amount of heat removal, and other factors relevant to the safety, maintenance, and performance of the system 120. In one exemplary embodiment, the bath 126 may include at least one sizing component (i.e., sizer or sizing box) 128. A sizing component 128 may be partially or totally submersed in the liquid cryogenic fluid during operation of the system 120. The bath 126 may also be equipped with suitable safety and maintenance features. For example, the bath 126 may have a cover 130 to facilitate maintenance of the bath 126. Additionally, the bath 126 may be dual-walled and insulated, and the bath 126 may include a suitable exhaust system.
The bath 126 may include a level of liquid cryogenic fluid sufficient to partially or totally submerse the material to be cooled. For instance, the bath 126 may include a level of liquid cryogenic fluid sufficient to directly contact one portion of the material to be cooled while another portion does not come into contact with the liquid cryogenic fluid. Moreover, it should be recognized that the liquid cryogenic fluid may be transferred into and out of the bath 126 based on the operational status of the system 120. For example, the system 120 may also include a pump 132 and a holding tank 134. The pump 132 may transfer the liquid cryogenic fluid to the bath 126 from the tank 134 approximately when the particular manufacturing process (e.g., extrusion) is initiated or at any other suitable time such that there is a desired amount of liquid cryogenic fluid in the bath 126. Furthermore, the pump 132 may transfer the liquid cryogenic fluid back to the tank 134 after the manufacturing process (e.g., extrusion) is complete or at any other suitable time. The tank 134 may be equipped with any suitable safety and maintenance features including, but not limited to, those included on the bath 126. Additionally, it should be recognized that a suitable safety interlock system may be included to prohibit undesired transfer of the liquid cryogenic fluid between the bath 126 and the tank 134.
At least one additional cooling system 136 may be included subsequent to the bath 126. Examples of a cooling system 136 include, but are not limited to, a water bath, a spray mist, air flow, another cooling system as described herein, or any other conventional or new cooling system. Additionally, it should be noted that a cooling system 136 (or additional manufacturing equipment) may be included prior to the bath 126 without departing from the scope of the present invention.
As mentioned above, many significant advantages may be achieved by placing the material to be cooled in direct contact with liquid cryogenic fluid. In addition to cooling extruded products, the present invention may be used to cool products made by any other methods including, but not limited to, compression molded products and injection molded products. Regardless of the manufacturing method, the output rate may increased and the unit cost may be decreased due to the dramatic improvement in cooling efficiency. Also, the capital cost of an exemplary system of the present invention may be reduced as compared to conventional gas cooling systems which require some gas velocity. In addition, the increased cooling efficiency may allow shorter manufacturing lines, thereby further reducing the manufacturing cost.
The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.
This is a continuation-in-part of U.S. application Ser. No. 10/131,578, filed Apr. 24, 2002, now U.S. Pat. No. 6,637,213 which is a continuation-in-part of U.S. application Ser. No. 10/025,432, filed Dec. 19, 2001, now U.S. Pat. No. 6,708,504 which is a continuation-in-part of U.S. application Ser. No. 09/766,054, filed Jan. 19, 2001, now U.S. Pat. No. 6,578,368 each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2010207 | Topham et al. | Aug 1935 | A |
2188936 | Semon | Jan 1940 | A |
2489373 | Gilman | Nov 1949 | A |
2514471 | Calhoun | Jul 1950 | A |
2519442 | Delorme et al. | Aug 1950 | A |
2558378 | Petry | Jun 1951 | A |
2635976 | Meiler et al. | Apr 1953 | A |
2680102 | Becher | Jun 1954 | A |
2789903 | Lukman et al. | Apr 1957 | A |
2935763 | Newman et al. | May 1960 | A |
3287480 | Wechsler et al. | Nov 1966 | A |
3308218 | Etal | Mar 1967 | A |
3308507 | Black | Mar 1967 | A |
3309444 | Schueler | Mar 1967 | A |
3492388 | Inglin-Knüsel | Jan 1970 | A |
3493527 | Schueler | Feb 1970 | A |
3562373 | Logrippo | Feb 1971 | A |
3599286 | Karet | Aug 1971 | A |
3645939 | Gaylord | Feb 1972 | A |
3671615 | Price | Jun 1972 | A |
3864201 | Susuki et al. | Feb 1975 | A |
3867493 | Seki | Feb 1975 | A |
3878143 | Baumann et al. | Apr 1975 | A |
3879505 | Boutillier et al. | Apr 1975 | A |
3888810 | Shinomura | Jun 1975 | A |
3899559 | Johnanson et al. | Aug 1975 | A |
3907961 | Carrow | Sep 1975 | A |
3908902 | Collins et al. | Sep 1975 | A |
3922328 | Johnson | Nov 1975 | A |
3931384 | Forquer et al. | Jan 1976 | A |
3943079 | Hamed | Mar 1976 | A |
3954555 | Kole et al. | May 1976 | A |
3956541 | Pringle | May 1976 | A |
3956555 | McKean | May 1976 | A |
3959431 | Nissel | May 1976 | A |
3969459 | Fremont et al. | Jul 1976 | A |
4005162 | Bucking | Jan 1977 | A |
4012348 | Chelland et al. | Mar 1977 | A |
4016232 | Pringle | Apr 1977 | A |
4016233 | Pringle | Apr 1977 | A |
4018722 | Baker | Apr 1977 | A |
4029831 | Daunheimer | Jun 1977 | A |
4045603 | Smith | Aug 1977 | A |
4054632 | Franke | Oct 1977 | A |
4056591 | Goettler et al. | Nov 1977 | A |
4058580 | Flanders | Nov 1977 | A |
4071479 | Broyde et al. | Jan 1978 | A |
4071494 | Gaylord | Jan 1978 | A |
4081582 | Butterworth et al. | Mar 1978 | A |
4097648 | Pringle | Jun 1978 | A |
4102106 | Golder et al. | Jul 1978 | A |
4107110 | Lachowicz et al. | Aug 1978 | A |
4115497 | Halmø et al. | Sep 1978 | A |
4129132 | Butterworth et al. | Dec 1978 | A |
4130616 | Clifford | Dec 1978 | A |
4145389 | Smith | Mar 1979 | A |
4157415 | Lindenberg | Jun 1979 | A |
4168251 | Schinzel et al. | Sep 1979 | A |
4178411 | Cole et al. | Dec 1979 | A |
4181764 | Totten | Jan 1980 | A |
4187352 | Klobbie | Feb 1980 | A |
4191798 | Schumacher et al. | Mar 1980 | A |
4192839 | Hayashi et al. | Mar 1980 | A |
4203876 | Dereppe et al. | May 1980 | A |
4221621 | Seki et al. | Sep 1980 | A |
4228116 | Colombo et al. | Oct 1980 | A |
4239679 | Rolls et al. | Dec 1980 | A |
4241125 | Canning et al. | Dec 1980 | A |
4241133 | Lund et al. | Dec 1980 | A |
4244903 | Schnause | Jan 1981 | A |
4248743 | Goettler | Feb 1981 | A |
4248820 | Haataja | Feb 1981 | A |
4250222 | Mavel et al. | Feb 1981 | A |
4263184 | Leo et al. | Apr 1981 | A |
4263196 | Schumacher et al. | Apr 1981 | A |
4272577 | Lyng | Jun 1981 | A |
4273688 | Porzel et al. | Jun 1981 | A |
4277428 | Luck et al. | Jul 1981 | A |
4290988 | Nopper et al. | Sep 1981 | A |
4297408 | Stead et al. | Oct 1981 | A |
4303019 | Haataja et al. | Dec 1981 | A |
4305901 | Prince et al. | Dec 1981 | A |
4317765 | Gaylord | Mar 1982 | A |
4323625 | Coran et al. | Apr 1982 | A |
4351873 | Davis | Sep 1982 | A |
4376144 | Goettler | Mar 1983 | A |
4382108 | Carroll et al. | May 1983 | A |
4382758 | Nopper et al. | May 1983 | A |
4393020 | Li et al. | Jul 1983 | A |
4414267 | Coran et al. | Nov 1983 | A |
4420351 | Lussi et al. | Dec 1983 | A |
4430468 | Schumacher | Feb 1984 | A |
4440708 | Haataja et al. | Apr 1984 | A |
4480061 | Coughlin et al. | Oct 1984 | A |
4481701 | Hewitt | Nov 1984 | A |
4491553 | Yamada et al. | Jan 1985 | A |
4503115 | Hemels et al. | Mar 1985 | A |
4505869 | Nishibori | Mar 1985 | A |
4506037 | Suzuki et al. | Mar 1985 | A |
4508595 | Gåsland | Apr 1985 | A |
4562218 | Fornadel et al. | Dec 1985 | A |
4573893 | Waters et al. | Mar 1986 | A |
4594372 | Natov et al. | Jun 1986 | A |
4597928 | Terentiev et al. | Jul 1986 | A |
4610900 | Nishibori | Sep 1986 | A |
4645631 | Hegenstaller et al. | Feb 1987 | A |
4659754 | Edwards et al. | Apr 1987 | A |
4663107 | Takada et al. | May 1987 | A |
4663225 | Farley et al. | May 1987 | A |
4687793 | Motegi et al. | Aug 1987 | A |
4717742 | Beshay | Jan 1988 | A |
4734236 | Davis | Mar 1988 | A |
4737532 | Fujita et al. | Apr 1988 | A |
4746688 | Bistak et al. | May 1988 | A |
4769109 | Tellvik et al. | Sep 1988 | A |
4769274 | Tellvik et al. | Sep 1988 | A |
4783493 | Motegi et al. | Nov 1988 | A |
4788017 | Schlomer et al. | Nov 1988 | A |
4789604 | van der Hoeven | Dec 1988 | A |
4790966 | Sandberg et al. | Dec 1988 | A |
4791020 | Kokta | Dec 1988 | A |
4800214 | Waki et al. | Jan 1989 | A |
4801495 | van der Hoeven | Jan 1989 | A |
4807964 | Sare | Feb 1989 | A |
4818590 | Prince et al. | Apr 1989 | A |
4818604 | Tock | Apr 1989 | A |
4820749 | Beshay | Apr 1989 | A |
4851458 | Hopperdietzel | Jul 1989 | A |
4865788 | Davis | Sep 1989 | A |
4874000 | Tamol et al. | Oct 1989 | A |
4889673 | Takimoto | Dec 1989 | A |
4894192 | Warych | Jan 1990 | A |
4915764 | Miani | Apr 1990 | A |
4927572 | van der Hoeven | May 1990 | A |
4927579 | Moore | May 1990 | A |
4935182 | Ehner et al. | Jun 1990 | A |
4960548 | Ikeda et al. | Oct 1990 | A |
4968463 | Levasseur | Nov 1990 | A |
4973440 | Tamura et al. | Nov 1990 | A |
4978489 | Radvan et al. | Dec 1990 | A |
4978575 | Ziess | Dec 1990 | A |
4988478 | Held | Jan 1991 | A |
5002713 | Palardy et al. | Mar 1991 | A |
5008310 | Beshay | Apr 1991 | A |
5009586 | Pallmann | Apr 1991 | A |
5049223 | Dais et al. | Sep 1991 | A |
5049334 | Bach | Sep 1991 | A |
5057167 | Gersbeck | Oct 1991 | A |
5064592 | Ueda et al. | Nov 1991 | A |
5075057 | Hoedl | Dec 1991 | A |
5075359 | Castagna et al. | Dec 1991 | A |
5078937 | Eela | Jan 1992 | A |
5082605 | Brooks et al. | Jan 1992 | A |
5087400 | Theuveny | Feb 1992 | A |
5088910 | Goforth et al. | Feb 1992 | A |
5091436 | Frisch et al. | Feb 1992 | A |
5096046 | Goforth et al. | Mar 1992 | A |
5096406 | Brooks et al. | Mar 1992 | A |
5110663 | Nishiyama et al. | May 1992 | A |
5110843 | Bries et al. | May 1992 | A |
5120776 | Raj et al. | Jun 1992 | A |
5137673 | Bourcier et al. | Aug 1992 | A |
5137969 | Marten et al. | Aug 1992 | A |
5153241 | Beshay | Oct 1992 | A |
5160784 | Shmidt et al. | Nov 1992 | A |
5194461 | Bergquist et al. | Mar 1993 | A |
5218807 | Fulford | Jun 1993 | A |
5219634 | Aufderhaar | Jun 1993 | A |
5272000 | Chenoweth et al. | Dec 1993 | A |
5276082 | Forry et al. | Jan 1994 | A |
5284710 | Hartley et al. | Feb 1994 | A |
5288772 | Hon | Feb 1994 | A |
5295366 | Lopez et al. | Mar 1994 | A |
5302634 | Mushovic | Apr 1994 | A |
5351495 | Lermuzeaux | Oct 1994 | A |
5356697 | Jonas | Oct 1994 | A |
5369147 | Mushovic | Nov 1994 | A |
5393536 | Brandt et al. | Feb 1995 | A |
5406768 | Giuseppe et al. | Apr 1995 | A |
5422170 | Iwata et al. | Jun 1995 | A |
5435954 | Wold | Jul 1995 | A |
5441801 | Deaner et al. | Aug 1995 | A |
5458834 | Faber et al. | Oct 1995 | A |
5474722 | Woodhams | Dec 1995 | A |
5480602 | Nagaich | Jan 1996 | A |
5486553 | Deaner et al. | Jan 1996 | A |
5497594 | Giuseppe et al. | Mar 1996 | A |
5505900 | Suwanda et al. | Apr 1996 | A |
5516472 | Laver | May 1996 | A |
5518677 | Deaner et al. | May 1996 | A |
5532065 | Gübitz et al. | Jul 1996 | A |
5537789 | Minke et al. | Jul 1996 | A |
5539027 | Deaner et al. | Jul 1996 | A |
5574094 | Malucelli et al. | Nov 1996 | A |
5576374 | Betso et al. | Nov 1996 | A |
5585155 | Heikkila et al. | Dec 1996 | A |
5593625 | Riebel et al. | Jan 1997 | A |
5597586 | Wilson et al. | Jan 1997 | A |
5695874 | Deaner et al. | Dec 1997 | A |
5725939 | Nishibori | Mar 1998 | A |
5730914 | Ruppmann, Sr. | Mar 1998 | A |
5735092 | Clayton et al. | Apr 1998 | A |
5759680 | Brooks et al. | Jun 1998 | A |
5773138 | Seethamraju et al. | Jun 1998 | A |
5776841 | Bondoc et al. | Jul 1998 | A |
5783125 | Bastone et al. | Jul 1998 | A |
5795641 | Pauley et al. | Aug 1998 | A |
5807514 | Grinshpun et al. | Sep 1998 | A |
5827462 | Brandt et al. | Oct 1998 | A |
5827607 | Deaner et al. | Oct 1998 | A |
5836128 | Groh et al. | Nov 1998 | A |
5847016 | Cope | Dec 1998 | A |
5863064 | Rheinlander et al. | Jan 1999 | A |
5863480 | Suwanda | Jan 1999 | A |
5866264 | Zehner et al. | Feb 1999 | A |
5882564 | Puppin | Mar 1999 | A |
5910358 | Thoen et al. | Jun 1999 | A |
5932334 | Deaner et al. | Aug 1999 | A |
5948505 | Puppin | Sep 1999 | A |
5948524 | Seethamraju et al. | Sep 1999 | A |
5951927 | Cope | Sep 1999 | A |
5965075 | Pauley et al. | Oct 1999 | A |
5981067 | Seethamraju et al. | Nov 1999 | A |
5985429 | Plummer et al. | Nov 1999 | A |
6004652 | Clark | Dec 1999 | A |
6004668 | Deaner et al. | Dec 1999 | A |
6007656 | Heikkila et al. | Dec 1999 | A |
6011091 | Zehner | Jan 2000 | A |
6015611 | Deaner et al. | Jan 2000 | A |
6015612 | Deaner et al. | Jan 2000 | A |
6035588 | Zehner et al. | Mar 2000 | A |
6044604 | Clayton et al. | Apr 2000 | A |
6054207 | Finley | Apr 2000 | A |
6066680 | Cope | May 2000 | A |
6067776 | Heuer et al. | May 2000 | A |
6103791 | Zehner | Aug 2000 | A |
6106944 | Heikkila et al. | Aug 2000 | A |
6114008 | Eby et al. | Sep 2000 | A |
6117924 | Brandt | Sep 2000 | A |
6122877 | Hendrickson et al. | Sep 2000 | A |
6131355 | Groh et al. | Oct 2000 | A |
6133348 | Kolla et al. | Oct 2000 | A |
6153293 | Dahl et al. | Nov 2000 | A |
6180257 | Brandt et al. | Jan 2001 | B1 |
6207729 | Medoff et al. | Mar 2001 | B1 |
6210616 | Suwanda | Apr 2001 | B1 |
6210792 | Seethamraju et al. | Apr 2001 | B1 |
6248813 | Zehner | Jun 2001 | B1 |
6265037 | Godavarti et al. | Jul 2001 | B1 |
6272808 | Groh et al. | Aug 2001 | B1 |
6280667 | Koenig et al. | Aug 2001 | B1 |
6284098 | Jacobsen | Sep 2001 | B1 |
6295777 | Hunter et al. | Oct 2001 | B1 |
6295778 | Burt | Oct 2001 | B1 |
6323279 | Gunthergerg et al. | Nov 2001 | B1 |
6337138 | Zehner | Jan 2002 | B1 |
6341458 | Burt | Jan 2002 | B1 |
6342172 | Finley | Jan 2002 | B1 |
6344268 | Stucky et al. | Feb 2002 | B1 |
6344504 | Zehner et al. | Feb 2002 | B1 |
6346160 | Puppin | Feb 2002 | B1 |
6357197 | Serino et al. | Mar 2002 | B1 |
6358585 | Wolff | Mar 2002 | B1 |
6360508 | Pelfrey et al. | Mar 2002 | B1 |
6362252 | Prutkin | Mar 2002 | B1 |
6409952 | Hacker et al. | Jun 2002 | B1 |
6423257 | Stobart et al. | Jul 2002 | B1 |
6453630 | Buhrts et al. | Sep 2002 | B1 |
6464913 | Korney, Jr. | Oct 2002 | B1 |
6498205 | Zehner | Dec 2002 | B1 |
6511757 | Brandt et al. | Jan 2003 | B1 |
6531010 | Puppin | Mar 2003 | B1 |
6569540 | Preston et al. | May 2003 | B1 |
6578368 | Brandt et al. | Jun 2003 | B1 |
6579605 | Zehner | Jun 2003 | B1 |
6590004 | Zehner | Jul 2003 | B1 |
6605245 | Dubelsten et al. | Aug 2003 | B1 |
6617376 | Korney, Jr. | Sep 2003 | B1 |
6632863 | Hutchison et al. | Oct 2003 | B1 |
6637213 | Hutchison et al. | Oct 2003 | B1 |
6662515 | Buhrts et al. | Dec 2003 | B1 |
6680090 | Godavarti et al. | Jan 2004 | B1 |
6682789 | Godavarti et al. | Jan 2004 | B1 |
6682814 | Hendrickson et al. | Jan 2004 | B1 |
6685858 | Korney, Jr. | Feb 2004 | B1 |
6708504 | Brandt et al. | Mar 2004 | B1 |
6716522 | Matsumoto et al. | Apr 2004 | B1 |
6780359 | Zehner et al. | Aug 2004 | B1 |
6863972 | Burger et al. | Mar 2005 | B1 |
20010019749 | Godavarti et al. | Sep 2001 | A1 |
20010051242 | Godavarti et al. | Dec 2001 | A1 |
20010051243 | Godavarti et al. | Dec 2001 | A1 |
20020015820 | Puppin | Feb 2002 | A1 |
20020038684 | Puppin | Apr 2002 | A1 |
20020040557 | Felton | Apr 2002 | A1 |
20020066248 | Buhrts et al. | Jun 2002 | A1 |
20020090471 | Burger et al. | Jul 2002 | A1 |
20020092256 | Hendrickson et al. | Jul 2002 | A1 |
20020106498 | Deaner et al. | Aug 2002 | A1 |
20020143083 | Korney, Jr. | Oct 2002 | A1 |
20020166327 | Brandt et al. | Nov 2002 | A1 |
20020174663 | Hutchison et al. | Nov 2002 | A1 |
20020192401 | Matsumoto et al. | Dec 2002 | A1 |
20020192431 | Edgman | Dec 2002 | A1 |
20030021915 | Rohatgi et al. | Jan 2003 | A1 |
20030025233 | Korney, Jr. | Feb 2003 | A1 |
20030087994 | Frechette | May 2003 | A1 |
20030087996 | Hutchinson et al. | May 2003 | A1 |
20030154662 | Bruchu et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
2042176 | Apr 1971 | DE |
3801574 | Aug 1989 | DE |
4033849 | Oct 1990 | DE |
4221070 | Dec 1993 | DE |
0269470 | Jan 1988 | EP |
0586211 | Mar 1994 | EP |
0586212 | Mar 1994 | EP |
0586213 | Mar 1994 | EP |
0668142 | Aug 1995 | EP |
0747419 | Dec 1996 | EP |
2270311 | Feb 1974 | FR |
2365017 | Apr 1978 | FR |
2445885 | Aug 1980 | FR |
2564374 | Nov 1985 | FR |
1443194 | Jul 1976 | GB |
2036148 | Jun 1980 | GB |
2104903 | Mar 1983 | GB |
2171953 | Sep 1986 | GB |
2186655 | Aug 1987 | GB |
WO 9008020 | Jul 1990 | WO |
WO 9911444 | Mar 1999 | WO |
WO 0011282 | Mar 2000 | WO |
WO 0034017 | Jun 2000 | WO |
WO 0039207 | Jul 2000 | WO |
WO 0166873 | Sep 2001 | WO |
WO 02057692 | Jul 2002 | WO |
WO 02079317 | Oct 2002 | WO |
WO 03091642 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060010883 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10131578 | Apr 2002 | US |
Child | 10280735 | US | |
Parent | 10025432 | Dec 2001 | US |
Child | 10131578 | US | |
Parent | 09766054 | Jan 2001 | US |
Child | 10025432 | US |