Conventional methods for cooling an electric machine include spraying or dispersing a coolant directly onto the electric machine. The coolant is often dispersed onto stator end turns near an upper portion of the electric machine. The coolant can cool the electric machine as it drips down the stator end turns and pools near a lower portion of the electric machine. The pooled coolant must be maintained at a specific level within the lower portion of the electric machine in order to help cool the stator end turns near the lower portion of the electric machine.
Embodiments of the invention provide an electric machine module including an electric machine which can include a stator assembly. The stator assembly can include stator end turns. Some embodiments can provide a housing at least partially enclosing the electric machine and the housing can at least partially define a machine cavity. Further, at least one baffle can be coupled to the housing at a region near the stator end turns, so that the at least one baffle surrounds a portion of a perimeter of the stator end turns.
Some embodiments of the invention provide a method for cooling an electric machine including providing an electric machine which includes a stator assembly. The stator assembly can include stator end turns. Some embodiments can include providing a housing at least partially enclosing the electric machine. The housing can at least partially define a machine cavity and can include a generally lower region. In some embodiments, baffles can be coupled to the housing substantially within the generally lower region near the stator end turns, so that the baffles surround a portion of a perimeter of the stator end turns and a coolant can be introduced into the machine cavity. Some embodiments provide a portion of the coolant can circulate through the machine cavity toward the generally lower region so that some of the portion of the coolant contacts the baffles to at least partially aid in cooling the electric machine.
Some embodiments of the invention provide an electric machine module including an electric machine which can include a stator assembly. The stator assembly can include stator end turns. Some embodiments can provide a housing at least partially enclosing the electric machine and the housing can include a generally lower region. Some embodiments can provide that baffles can be coupled to the housing substantially within the generally lower region near the stator end turns, and the baffles can include being formed from a substantially non-conductive material and can surround a portion of a perimeter of the stator end turns.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.
The electric machine 20 can include a rotor 24, a stator assembly 26 comprising a stator 28 and stator end turns 30, and bearings 32, and can be disposed about a main output shaft 34. As shown in
In some embodiments, as shown in
In some embodiments, the coolant jacket 21 can be formed within the sleeve member 14 or the canister 15 where a radially innermost wall 23 of the housing 12 (e.g., of the sleeve member 14 or the canister 15) can substantially separate the coolant jacket 21 from the machine cavity 22. In some embodiments, as shown in
As shown in
The electric machine 20 can be, without limitation, an electric motor, such as a hybrid electric motor, an electric generator, or a vehicle alternator. In one embodiment, the electric machine 20 can be a High Voltage Hairpin (HVH) electric motor for use in a hybrid vehicle. In yet another embodiment, the electric machine 20 can be an interior permanent magnet (IPM) electric machine for use in a hybrid vehicle.
Components of the electric machine 20 such as, but not limited to, the stator assembly 26 and the rotor 24 can generate heat during operation of the electric machine 20. These components can be cooled to enhance the performance of and increase the lifespan of the electric machine 20.
As shown in
According to some embodiments of the invention, the baffles 42 can be comprised of multiple units or a substantially single unit. For example, the baffles 42 can be comprised of a vertical subunit 56 and a horizontal subunit 58. In some embodiments, the vertical subunit 56 can be oriented substantially perpendicular with a horizontal axis of the main output shaft 34 and the horizontal subunit 58 can be oriented substantially parallel to the horizontal axis of the main output shaft 34. Also, the horizontal subunit 58 can extend axially inward toward the stator assembly 26, as shown in
Further, in some embodiments, the baffles 42 can comprise a generally curved, angled, or bent shape to substantially follow the shape of the generally circular-shaped stator assembly 26, as shown in
Referring to
As shown in
According to some embodiments of the invention, the coolant circulating through the coolant jacket 21 can be sprayed or dispersed into the machine cavity 22 from a plurality of coolant apertures 25 extending through at least one of the inner wall 23, as shown in
In some embodiments, in addition to the plurality of coolant apertures 25, an additional volume of coolant can be expelled near the rotor hub 36 (not shown), for example, from a base of the rotor hub 36 or from the main output shaft 34. As shown in
In some embodiments, after the coolant is introduced into the machine cavity 22, gravity can aid in drawing at least a portion of the coolant in a generally downward direction. As the coolant flows in the generally downward direction, it can aid in cooling the electric machine 20 by receiving and removing at least a portion of the heat energy produced by the electric machine 20. As the coolant flows generally downward, some of the coolant can flow down along the electric machine 20 and/or housing 12, which can lead to further cooling of the electric machine module 10. For example, in some embodiments, at least a portion of the coolant can flow across an outside diameter and/or an inside diameter of the stator end turns 30 to at least partially aid in cooling the electric machine 20.
In some embodiments, the housing 12 can include coolant guides 60. In some embodiments, the coolant guides 60 can comprise generally raised ridges, ledges, troughs, shrouds, ribbed structures, and other similar features, which can axially and/or radially extend from the end caps 16, 18 and the sleeve member 14, the end cap 17 and the canister 15, or other suitable locations on or within the housing 12 into the machine cavity 22. As some of the coolant flows generally downward, the coolant can be guided or directed along an interior surface of the housing 12 by the coolant guides 60. In some embodiments, the coolant guides 60 can be formed so that the coolant guides 60 are integral with elements of the housing 12. In other embodiments, the coolant guides 60 can coupled to the housing 12 using any of the previously mentioned coupling techniques.
Additionally, in some embodiments, the housing 12 can include coolant guide drains 61. In some embodiments, the coolant guide drains 61 can be positioned substantially near the baffles 42 so that at least a portion of the coolant being guided by the coolant guides 60 can be guided, directed, drained, or aimed toward the baffles 42. In some embodiments, the coolant guide drains 61 can be located through the coolant guides 60 at intervals so that as the coolant flows along the coolant guides 60, the coolant can flow through the drains 61 to more quickly flow toward the generally lower region 50. In some embodiments, the coolant guide drains 61 can comprise a generally tube-like configuration defined through a portion of the coolant guides 60, the end caps 16, 18 and the sleeve member 14, the end cap 17 and the canister 15, or another element of the housing 12 to aid in funneling the coolant toward the baffles 42, as shown in
In some embodiments, the baffles 42, which can be positioned within the generally lower region 50, as previously mentioned, can further enhance cooling of the electric machine 20. For example, in some embodiments, as the coolant flows generally downward, portions of the coolant can flow over the inner diameter of the stator end turns 30, can flow through the electric conductors of the stator end turns 30, can flow around the perimeter of the stator end turns 30, and can flow around the outside diameter of the stator end turns 30, as shown by the arrows in
As shown in
As shown in
Also, in some embodiments of the invention, one or more coolant outlets 64 can be included in the electric machine module 10. In some embodiments, the coolant outlets 64 can be apertures defined through portions of the housing 12, such as the end caps 16, 18 and the sleeve member 14, or the end cap 17 and the canister 15. In some embodiments, the coolant outlets can be formed through portions of the generally lower region 50 of the housing 12 at substantially opposite axial ends of the housing 12, as shown in
Referring to
Also, as shown in
Additionally, in some embodiments of the invention, the inclusion of baffles 42 can eliminate or reduce the need for maintaining a coolant pool at the bottom of the housing 12 and can simplify the flow control of the coolant. In some conventional electric machine modules, the coolant pool can be an important feature because it can aid in the cooling of the stator assembly 26 and the stator end turns 30 (i.e., the pool can rise high enough so that the coolant can contact the stator end turns 30). The coolant pool also can cause difficulties in electric machine module operation, for example by causing flooding of an air gap 66 between the stator assembly 26 and the rotor 24, which can interrupt operation of the electric machine 20. As a result, it can be necessary to carefully regulate flow rates of coolant entering and exiting the module to avoid flooding the air gap 66. The inclusion of the baffles 42 in some embodiments of the invention can eliminate the need for the coolant pool because at least some of the coolant is still exposed to some of the heat energy-producing portions of the electric machine 20, but in a more directed manner relative to the coolant pool because a portion of the coolant can be concentrated around the stator assembly 26. Also, coolant can be allowed to pass rapidly through the coolant channels 62 and can drain into the sump system 68, which can further negate the need for a coolant pool so that, in some embodiments, careful regulation of the flow rates can be unnecessary or minimally necessary.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2080678 | Van Horn et al. | May 1937 | A |
2264616 | Buckbee | Dec 1941 | A |
3447002 | Ronnevig | May 1969 | A |
3525001 | Erickson | Aug 1970 | A |
3748507 | Sieber | Jul 1973 | A |
4038570 | Durley, III | Jul 1977 | A |
4959570 | Nakamura et al. | Sep 1990 | A |
5081382 | Collings et al. | Jan 1992 | A |
5180004 | Nguyen | Jan 1993 | A |
5207121 | Bien | May 1993 | A |
5293089 | Frister | Mar 1994 | A |
5372213 | Hasebe et al. | Dec 1994 | A |
5519269 | Lindberg | May 1996 | A |
5616973 | Khazanov | Apr 1997 | A |
5859482 | Crowell et al. | Jan 1999 | A |
5923108 | Matake et al. | Jul 1999 | A |
5937817 | Schanz et al. | Aug 1999 | A |
5965965 | Umeda et al. | Oct 1999 | A |
6011332 | Umeda et al. | Jan 2000 | A |
6069424 | Colello et al. | May 2000 | A |
6075304 | Nakatsuka | Jun 2000 | A |
6087746 | Couvert | Jul 2000 | A |
6095754 | Ono | Aug 2000 | A |
6097130 | Umeda et al. | Aug 2000 | A |
6114784 | Nakano | Sep 2000 | A |
6147430 | Kusase et al. | Nov 2000 | A |
6147432 | Kusase et al. | Nov 2000 | A |
6173758 | Ward et al. | Jan 2001 | B1 |
6181043 | Kusase et al. | Jan 2001 | B1 |
6201321 | Mosciatti | Mar 2001 | B1 |
6208060 | Kusase et al. | Mar 2001 | B1 |
6232687 | Hollenbeck et al. | May 2001 | B1 |
6242836 | Ishida et al. | Jun 2001 | B1 |
6291918 | Umeda et al. | Sep 2001 | B1 |
6300693 | Poag et al. | Oct 2001 | B1 |
6313559 | Kusase et al. | Nov 2001 | B1 |
6333537 | Arita | Dec 2001 | B1 |
6335583 | Kusase et al. | Jan 2002 | B1 |
6346758 | Nakamura | Feb 2002 | B1 |
6359232 | Markovitz et al. | Mar 2002 | B1 |
6404628 | Nagashima et al. | Jun 2002 | B1 |
6417592 | Nakamura et al. | Jul 2002 | B2 |
6459177 | Nakamura et al. | Oct 2002 | B1 |
6509665 | Nishiyama et al. | Jan 2003 | B1 |
6515392 | Ooiwa | Feb 2003 | B2 |
6522043 | Measagi | Feb 2003 | B2 |
6559572 | Nakamura | May 2003 | B2 |
6579202 | El-Antably et al. | Jun 2003 | B2 |
6743135 | Klemen et al. | Jun 2004 | B2 |
6770999 | Sakurai | Aug 2004 | B2 |
6897594 | Ichikawa et al. | May 2005 | B2 |
6903471 | Arimitsu et al. | Jun 2005 | B2 |
6998749 | Wada et al. | Feb 2006 | B2 |
7002267 | Raszkowski et al. | Feb 2006 | B2 |
7026733 | Bitsche et al. | Apr 2006 | B2 |
7239055 | Burgman et al. | Jul 2007 | B2 |
7276006 | Reed et al. | Oct 2007 | B2 |
7284313 | Raszkowski et al. | Oct 2007 | B2 |
7339300 | Burgman et al. | Mar 2008 | B2 |
7352091 | Bradfield | Apr 2008 | B2 |
7402923 | Klemen et al. | Jul 2008 | B2 |
7417344 | Bradfield | Aug 2008 | B2 |
7508100 | Foster | Mar 2009 | B2 |
7538457 | Holmes et al. | May 2009 | B2 |
7545060 | Ward | Jun 2009 | B2 |
7592045 | Smith et al. | Sep 2009 | B2 |
7615903 | Holmes et al. | Nov 2009 | B2 |
7615951 | Son et al. | Nov 2009 | B2 |
7667359 | Lee et al. | Feb 2010 | B2 |
7919890 | Taketsuna | Apr 2011 | B2 |
7939975 | Saga et al. | May 2011 | B2 |
7952240 | Takenaka et al. | May 2011 | B2 |
8067865 | Savant | Nov 2011 | B2 |
8068327 | Seifert et al. | Nov 2011 | B2 |
8269383 | Bradfield | Sep 2012 | B2 |
8597001 | Saari et al. | Dec 2013 | B2 |
8629586 | Minemura et al. | Jan 2014 | B2 |
20020074868 | Ishida | Jun 2002 | A1 |
20030222519 | Bostwick | Dec 2003 | A1 |
20040036367 | Denton et al. | Feb 2004 | A1 |
20040189110 | Ide | Sep 2004 | A1 |
20040195929 | Oshidari | Oct 2004 | A1 |
20050012423 | Yasuhara et al. | Jan 2005 | A1 |
20050023266 | Ueno et al. | Feb 2005 | A1 |
20050023909 | Cromas | Feb 2005 | A1 |
20050188532 | Kato et al. | Sep 2005 | A1 |
20050194551 | Klaussner et al. | Sep 2005 | A1 |
20050274450 | Smith et al. | Dec 2005 | A1 |
20050285456 | Amagi et al. | Dec 2005 | A1 |
20070024130 | Schmidt | Feb 2007 | A1 |
20070052313 | Takahashi | Mar 2007 | A1 |
20070063592 | Pashnik et al. | Mar 2007 | A1 |
20070063607 | Hattori | Mar 2007 | A1 |
20070145836 | Bostwick | Jun 2007 | A1 |
20070149073 | Klaussner et al. | Jun 2007 | A1 |
20070216236 | Ward | Sep 2007 | A1 |
20080223557 | Fulton et al. | Sep 2008 | A1 |
20090121562 | Yim | May 2009 | A1 |
20090174278 | Sheaffer et al. | Jul 2009 | A1 |
20090206687 | Woody et al. | Aug 2009 | A1 |
20100026111 | Monzel | Feb 2010 | A1 |
20100045125 | Takenaka et al. | Feb 2010 | A1 |
20100102649 | Cherney et al. | Apr 2010 | A1 |
20100109454 | Vadillo et al. | May 2010 | A1 |
20100176668 | Murakami | Jul 2010 | A1 |
20100264760 | Matsui et al. | Oct 2010 | A1 |
20110050141 | Yeh et al. | Mar 2011 | A1 |
20110084561 | Swales et al. | Apr 2011 | A1 |
20110101700 | Stiesdal | May 2011 | A1 |
20110109095 | Stiesdal | May 2011 | A1 |
20110156509 | Minemura et al. | Jun 2011 | A1 |
20130009493 | Ramey | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
05-103445 | Apr 1993 | JP |
05-292704 | Nov 1993 | JP |
06-036364 | May 1994 | JP |
06-311691 | Nov 1994 | JP |
07-264810 | Oct 1995 | JP |
08-019218 | Jan 1996 | JP |
09-046973 | Feb 1997 | JP |
09-154257 | Jun 1997 | JP |
10-234157 | Sep 1998 | JP |
11-132867 | May 1999 | JP |
11-206063 | Jul 1999 | JP |
2000-152563 | May 2000 | JP |
2000-324757 | Nov 2000 | JP |
2000-333409 | Nov 2000 | JP |
2001-333559 | Nov 2001 | JP |
2002-095217 | Mar 2002 | JP |
2002-119019 | Apr 2002 | JP |
2003-250247 | Sep 2003 | JP |
2003-299317 | Oct 2003 | JP |
2003-324901 | Nov 2003 | JP |
2004-215353 | Jul 2004 | JP |
2004-236376 | Aug 2004 | JP |
2004-248402 | Sep 2004 | JP |
2004-297924 | Oct 2004 | JP |
2004-312886 | Nov 2004 | JP |
2004-357472 | Dec 2004 | JP |
2005-012989 | Jan 2005 | JP |
2005-057957 | Mar 2005 | JP |
2005-168265 | Jun 2005 | JP |
2006-060914 | Mar 2006 | JP |
2000-152561 | Sep 2006 | JP |
2006-297541 | Nov 2006 | JP |
2006-528879 | Dec 2006 | JP |
2007-282341 | Oct 2007 | JP |
2008-021950 | Feb 2008 | JP |
2008-206213 | Sep 2008 | JP |
2008-219960 | Sep 2008 | JP |
4187606 | Nov 2008 | JP |
2008-544733 | Dec 2008 | JP |
2009-247084 | Oct 2009 | JP |
2009-247085 | Oct 2009 | JP |
2009-254205 | Oct 2009 | JP |
2010-028908 | Feb 2010 | JP |
2010-028958 | Feb 2010 | JP |
2010-035265 | Feb 2010 | JP |
2010-063253 | Mar 2010 | JP |
2010-121701 | Jun 2010 | JP |
10-1997-0055103 | Jul 1997 | KR |
10-2000-0013908 | Mar 2000 | KR |
10-2006-0102496 | Sep 2006 | KR |
10-2007-0027809 | Mar 2007 | KR |
10-2009-0048028 | May 2009 | KR |
Entry |
---|
International Search Report, mailed Jul. 31, 2012. |
WIPO Search Report and Written Opinion dated Oct. 29, 2012 for corresponding Application No. PCT/US2012/033915; 8 sheets. |
WIPO Search Report and Written Opinion dated Nov. 14, 2012 for corresponding Application No. PCT/US2012/040794; 8 sheets. |
International Search Report, Received Jan. 9, 2012. |
International Search Report, Received Feb. 16, 2012. |
International Search Report, Received Dec. 22, 2011. |
International Search Report, Received Dec. 5, 2011. |
International Search Report, Received Dec. 27, 2011. |
International Search Report completed Apr. 19, 2012. |
International Search Report completed Apr. 9, 2012. |
International Search Report completed Apr. 20, 2012. |
International Search Report completed Mar. 8, 2012. |
international Search Report completed Apr. 24, 2012. |
Number | Date | Country | |
---|---|---|---|
20130009493 A1 | Jan 2013 | US |