This invention is directed generally to turbine blades, and more particularly to hollow turbine blades having internal cooling channels for passing cooling fluids, such as air, through the cooling channels to cool the blade platform.
Typically, gas turbine engines include a compressor for compressing air, a combustor for mixing the compressed air with fuel and igniting the mixture, and a turbine blade assembly for producing power. Combustors often operate at high temperatures that may exceed 2,500 degrees Fahrenheit. Typical turbine combustor configurations expose turbine blade assemblies to these high temperatures. As a result, turbine blades must be made of materials capable of withstanding such high temperatures. In addition, turbine blades often contain cooling systems for prolonging the life of the blades and reducing the likelihood of failure as a result of excessive temperatures.
Typically, turbine blades are formed from a root portion and a platform at one end and an elongated portion forming a blade that extends outwardly from the platform. The blade is ordinarily composed of a tip opposite the root section, a leading edge, and a trailing edge. The inner aspects of most turbine blades typically contain an intricate maze of cooling channels forming a cooling system. The cooling channels in the blades receive air from the compressor of the turbine engine and pass the air through the blade. The cooling channels often include multiple flow paths that are designed to maintain all aspects of the turbine blade at a relatively uniform temperature. However, centrifugal forces and air flow at boundary layers often prevent some areas of the turbine blade from being adequately cooled, which results in the formation of localized hot spots. Localized hot spots, depending on their location, can reduce the useful life of a turbine blade and can damage a turbine blade to an extent necessitating replacement of the blade.
Conventional turbine blades often include a plurality of channels in the platform of a turbine blade to remove heat. As shown in
This invention relates to a turbine blade cooling system of a turbine engine, and more specifically, to a platform cooling system of a turbine blade. The platform cooling system is positioned in a platform of a turbine blade for reducing the temperature of the platform during operation of a turbine engine in which the turbine blade is mounted. The turbine blade may be formed from a generally elongated blade having a leading edge, a trailing edge, a tip, a root coupled to the blade at an end generally opposite the first end for supporting the blade and for coupling the blade to a disc, at least one cavity forming a cooling system in the turbine blade, at least one outer wall defining the cavity forming the cooling system, and a platform generally orthogonal to the generally elongated blade and proximate to the root.
The platform cooling system may be formed from one or more ribs protruding from a bottom surface of the platform. One or more of the ribs may include a platform cooling channel providing a pathway from the cooling cavity forming the cooling system in the turbine blade to an outer surface of the platform. The ribs may be positioned on an outer surface of the platform on a side of the platform extending proximate to a pressure side or a suction side of the generally elongated blade, or on both sides of the turbine blade. The ribs may be positioned generally parallel to each other or in other appropriate positions. The ribs may also taper from a smaller cross-sectional area at an end proximate a side surface of the platform to a larger cross-sectional area at the root.
During operation, cooling fluids, such as, but not limited to, air, may be passed through the cooling system and through the platform cooling channels. The cooling fluids pass through the platform cooling channels and increase in temperature as heat is transferred from the root of the turbine blade to the cooling fluids. The cooling fluids may be discharged from the turbine blade by passing out of the platform cooling channels and onto outer surfaces of the platform. In at least one embodiment, the cooling fluids may impinge on adjacent turbine components after being discharged from the platform cooling channels.
An advantage of this invention is that the ribs protruding from a bottom surface of the platform act as fins by increasing the surface area upon which convection can occur, thereby increasing the cooling capacity of the internal cooling system of the turbine blade.
Another advantage of this invention is that the configuration of the platform cooling system reduces stress and as a result, reduces the likelihood of cracking of the turbine blade.
These and other embodiments are described in more detail below.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate embodiments of the presently disclosed invention and, together with the description, disclose the principles of the invention.
This invention is directed to a turbine blade cooling system 10 for turbine blades 12 used in turbine engines, as shown in
As shown in
The platform cooling system 10 may be formed from one or more platform cooling channels 32 extending from the cooling cavity 14 to an outer surface 19 of the platform 18, as shown in
The platform cooling system 10 may also include one or more ribs 38 protruding from a bottom surface 40 of the platform 18. The rib 38 may extend from a side surface 42 of the platform 18 to the root 16. In at least one embodiment, the rib 38 may taper from a cross-sectional area at the side surface 42 that is less than a cross-sectional area of the rib 38 at an intersection between the root 16 and the rib 38. In other embodiments, the rib 38 may have other appropriate shapes. The ribs 38 may be positioned on the platform 18 only on a single side of the root 16, for instance, on the suction side 28, as shown in
During operation, cooling fluids, such as, but not limited to, air, are passed through the platform cooling system 10. Cooling fluids are injected into cooling cavity 14 and flow through internal aspects of the turbine blade 12. At least a portion of the cooling fluids are passed into the platform cooling channels 32. The cooling fluids contact the inner surfaces forming the platform cooling channels 32 and increase in temperature as heat moves from the platform 18 to the cooling fluids. The cooling fluids flow from the platform cooling channels 32 to outer surface 19 of the platform 18. In at least one embodiment, the cooling fluids exit from the side surface 42 of the platform 18 and impinge on a platform of an adjacent turbine component, as shown in
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of this invention. Modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of this invention.