The improvements in technology makes it possible for portable devices, such as portable phones, to do more. Power delivery mechanisms such as batteries improve. The processors and coprocessing circuits improve. The devices can do more as time goes on.
Electronic circuits in portable devices such as phones are often used to take, play and/or edit pictures, and/or take/play/edit videos. The circuitry in a phone or other device is also often used for the transmit and receive function. The processors are often used to carry out position detection, e.g., by GPS. Future telephones may also carry out a number of other features beyond these.
It is important to keep these portable telephones to small, so that they get reasonably good user acceptance.
The present application teaches cooling systems and methods for a portable communication device such as a cellular phone.
These and other aspects will now be described in detail with reference to the accompanying drawings, wherein:
FIGS. 2 and 2A-2D show embodiments with cooling orifices on edges of a cellular phone
The inventor recognizes that as the processing power and capability of a portable device gets more sophisticated, the heat penalty of the processing becomes more severe. Bigger batteries and better processors will create more of a heat penalty. As more is done in a portable device, more heat is created. As the different processing components get smaller, they can do more, but in so doing they still produce heat.
An embodiment describes applying these techniques to a portable phone. The desired form factor of a phone has made it difficult, the inventor recognizes, to effectively cool some of the internal components of the phone. That is, the desire to keep the phone style small and sleek has interfered with the ability to effectively cool the phone.
Moreover, it is desirable to avoid leaving openings that extend into the phone. This is because any opening into the phone allows water, air, dirt and the like to enter the phone and come into contact with the sensitive electronic components therein.
An embodiment cooling system for a cellular phone or other handheld device is illustrated in
The fan can open by spring force, for example. The fan is latched closed by the latch 121 holding against catch 119. When additional cooling is required, the catch 119 is electrically actuated to allow the fan's spring force to cause it to open. The spring force of the hinge then folds open the fan. The fan can be closed by a motor, or by a user folding closed the fan. If the phone is still overheating, for example, the latch might be still open, so that the fan cannot be kept closed.
The fold out fan can be on any surface of the phone, including on the side, bottom, or other. Two fans can fold out from opposite directions if desired.
As another embodiment, a cover for the fan may be provided, and that cover may be movable. The cover is movable to a first location that causes the fan to be exposed, and to a second location that covers the fan.
The air duct 122 is fluidically coupled to be cooled by the fan. For example, heat sinks 128,129 may perform a heat sink function. In addition, the fan can be placed in a way that creates an air draft that sucks air through the air duct as generally shown as 123.
A fold out fan, when folded out, therefore can carry out significant amounts of cooling.
Another embodiment is shown in
Another cooling structure, shown as 210 may be located at the bottom of the phone. This cooler may simply have the structure shown in
Cellular transceiver 220, the processor 222 and co-processor 224. This may also be used to cool, for example, any bulb or lighting element that is used for backlighting. The embodiment in
The fans 204, 206, 208 may be used only when a thermal condition such as overheating is detected in one embodiment. In another embodiment, the supplemental cooling system is used only when external power is applied to the device.
By using a different cooling scheme for when external power is applied as compared when operating on batteries, several new paradigms become possible. For example, a first paradigm may allow certain phone functions to be used which might be considered too power hungry for normal phone operations. One example of this, for example, might be certain kinds of video rendering, or use of the phone to create a video that is coupled through an external port 211 to an external player. For example, these kinds of operations may be extremely power-hungry, and may be allowed only when external power is applied to the phone. At those times, the fans 206, 208 may also be operated.
An alternative system shown in
In any of the embodiments described herein, including those described previously in those described further herein, a number of different improvements may be possible.
In any of the embodiments, the fan(s) may be for example periodically reversed, so that for example the fans 260, 264 may periodically change their directions; causing the air to flow down first for a period, then up for the next period. Since the fan itself uses energy, the fan may be driven at a duty cycle; for example, the fans may stay on for 1-30 seconds, and then turn off until the heat rebuilds to an unacceptable level. The next time they turn on, they can operate in the same direction as previously, or can operate for example in the opposite direction.
Another embodiment detects the location of the heat, for example in a sensed quadrant within which the heat is located, and operates the fans more aggressively that are in the location of the heat.
In an embodiment, the electronic device 410 includes a heatsink 412 which may be active or passive. Heatsink 412 is coupled to a copper heat line 414. Another heatsink, such as 418 is also coupled to the copper line 414. The copper line may include fins therein or the like. A number of temperature sensing devices may be provided shown as 420, 422, 424 and 426. While four temperature sensing devices are shown, it should be understood that there can be only two or only one devices. The vent is normally closed, and operated by an electronic controller shown as 430. The controller senses the temperatures from the temperature sensing devices 420-426. When the temperature gets too high, the controller substantially simultaneously opens the vents 400 and also turns on the fan 433. This causes the air to be sucked in through the vent, and drawn down through the phone.
Another advantage of this kind of separate cooling structure is that different areas, e.g., the first areas and second areas, may require different amounts of cooling. For example when higher heat producing elements are in the second and areas or when the high heat part or when there is some structure in the second area that requires to be kept cooler, it can be separately cooled. By separately cooling this part, the noise and power can be minimized.
In an embodiment, when the temperature at the bottom (420/422) is higher than the temperature at the top (424/426) then the fan may draw air from the bottom to the top. Conversely, when the temperature at the top is higher, then the fan 433 may be reversed and may draw air from the top to the bottom.
This embodiment shows the use of the corkscrew fan 433, although it should be understood that any other kind of bladed fan or any other type of fan could be used for this purpose.
An alternative embodiment, shown in
As an alternative, each flap or other cooling device may be close to a temperature sensing device, and event might only be opened when the temperature near that vent gets hot. At that time, purely passive cooling can be used, or alternatively any of the fans of any of the three embodiments can be used. In addition, any of these fans can be used in a duty cycle mode, where they are on for backs of seconds, and then all for wise sessions. That duty cycle, for example, is preferably shortened when the rate of change if he starts to increase. For example, a duty cycle control may turn the fan on just long enough to exhaust the built up heat in the unit, after which the heat can again start building.
The general structure and techniques, and more specific embodiments which can be used to effect different ways of carrying out the more general goals are described herein.
Although only a few embodiments have been disclosed in detail above, other embodiments are possible and the inventors intend these to be encompassed within this specification. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way. This disclosure is intended to be exemplary, and the claims are intended to cover any modification or alternative which might be predictable to a person having ordinary skill in the art. For example, while the above describes cooling a cellular phone, other devices can be cooled in this way.
Also, the inventors intend that only those claims which use the words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims. The computers described herein may be any kind of computer, either general purpose, or some specific purpose computer such as a workstation. The computer may be an Intel (e.g., Pentium or Core 2 duo) or AMD based computer, running Windows XP or Linux, or may be a Macintosh computer. The computer may also be a laptop.
The programs may be written in C or Python, or Java, Brew or any other programming language. The programs may be resident on a storage medium, e.g., magnetic or optical, e.g. the computer hard drive, a removable disk or media such as a memory stick or SD media, wired or wireless network based or Bluetooth based Network Attached Storage (NAS), or other removable medium or other removable medium. The programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.
Where a specific numerical value is mentioned herein, it should be considered that the value may be increased or decreased by 20%, while still staying within the teachings of the present application, unless some different range is specifically mentioned. Where a specified logical sense is used, the opposite logical sense is also intended to be encompassed.
This application is a continuation application of U.S. Ser. No. 12/860,193 filed Aug. 20, 2008, now U.S. Pat. No. 8,085,537 issued Dec. 27, 2011, which is a divisional of U.S. Ser. No. 12/050,951 filed Mar. 19, 2008, now U.S. Pat. No. 7,782,613 issued Aug. 24, 2010, and entitled “Cooling System for a Portable Device”, the disclosure of which is herewith incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5491610 | Mok et al. | Feb 1996 | A |
5796580 | Komatsu et al. | Aug 1998 | A |
6005770 | Schmitt | Dec 1999 | A |
6031717 | Baddour et al. | Feb 2000 | A |
6362960 | Ducourt et al. | Mar 2002 | B1 |
6579168 | Webster et al. | Jun 2003 | B1 |
6587340 | Grouell et al. | Jul 2003 | B2 |
6708372 | Stewart | Mar 2004 | B2 |
6711013 | Wobig et al. | Mar 2004 | B2 |
7054721 | Malone et al. | May 2006 | B2 |
7244178 | Ueda et al. | Jul 2007 | B2 |
7345875 | Elkins | Mar 2008 | B2 |
7352575 | Anderl et al. | Apr 2008 | B2 |
7361081 | Beitelmal et al. | Apr 2008 | B2 |
7408772 | Grady et al. | Aug 2008 | B2 |
7573713 | Hoffman et al. | Aug 2009 | B2 |
7580259 | Hsiao | Aug 2009 | B2 |
7593223 | Kobayashi | Sep 2009 | B2 |
7688593 | Byers et al. | Mar 2010 | B2 |
7813121 | Bisson et al. | Oct 2010 | B2 |
8553411 | Abraham et al. | Oct 2013 | B2 |
20070041157 | Wang | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
63283046 | Nov 1988 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 12050951 | Mar 2008 | US |
Child | 12860193 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12860193 | Aug 2010 | US |
Child | 13337477 | US |