Cooling system for double sided display assembly

Information

  • Patent Grant
  • 10820445
  • Patent Number
    10,820,445
  • Date Filed
    Monday, March 6, 2017
    7 years ago
  • Date Issued
    Tuesday, October 27, 2020
    3 years ago
Abstract
A pair of electronic displays are placed back to back and are configured for mounting to a vehicle. A pair of thermal plates are located behind the electronic displays and a pair of transparent plates are located in front of the electronic displays. A closed loop of air travels vertically through the space between the electronic displays and transparent panels and through a closed loop plenum. An open loop of air travels horizontally through the space between thermal plates and the rear surface of the electronic displays.
Description
TECHNICAL FIELD

Embodiments of the present invention generally relate to cooling systems for electronic displays.


BACKGROUND

Electronic displays are sometimes used in outdoor environments or other areas where the surrounding temperatures may be high or there may be other sources of heat such as solar loading causing the temperatures within the display to rise. However, some portions of the display can be difficult to cool as simply ingesting ambient air into some portions of the display can introduce dust and contaminates into sensitive portions of the display, which can lead to premature failures.


SUMMARY OF THE INVENTIVE CONCEPT

Exemplary embodiments may comprise multiple separate flow paths for a fluid, such as air, through an electronic display housing. At least one path may be a closed loop and several other paths may provide open loops. The closed loop path preferably circulates through a sealed electronics compartment as well as pass between the electronic display(s) and a front transparent panel. A first open loop of ambient air may pass behind the first electronic display while a second path of ambient air may pass behind the second electronic display. In some embodiments the open loop air also removes heat from a thermal plate having electronic components and in some embodiments the open loop air also removes heat from an LED backlight (or LED display). The fans can be positioned so as to precisely control the amount of fluid travelling through each path.





BRIEF DESCRIPTION OF THE DRAWINGS

In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:



FIG. 1 is a front perspective view showing an exemplary embodiment of the double sided display assembly, as well as the location for section lines A-A, B-B, and C-C.



FIG. 2 is a side section view of the embodiment shown in FIG. 1, taken along the section line A-A.



FIG. 3 is a front section view of the embodiment shown in FIG. 1, taken along the section line B-B.



FIG. 4 is a top section view of the embodiment shown in FIG. 1, taken along the section line C-C and indicating the location for Detail A.



FIG. 5 is a detailed section view of Detail A.



FIG. 6 is a partial exploded view of the embodiment shown in FIG. 1.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT(S)

The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/ or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.



FIG. 1 is a front perspective view showing an exemplary embodiment of the double sided display assembly, as well as the location for section lines A-A, B-B, and C-C. Generally speaking, an exemplary embodiment includes two displays 30 and 31 positioned back to back and placed within a housing 25. An inlet aperture 50 accepts a flow of ambient air 60 into and through the housing 25. The ambient air 60 is preferably exhausted out of the housing 25 through the exhaust aperture 55. A closed loop flow of circulating gas 70 travels within the housing 25 as well, but preferably does not mix with the flow of ambient air 60 in any substantial manner.


As used herein, the term ambient air 60 simply refers to common atmospheric air that would provide the surrounding environment for the assembly. This ambient air 60 is known to contain a mixture of different types of gaseous elements, as well as dust, dirt, pollen, water vapor, and other particulate. Also as used herein, the term circulating gas 70 can refer to any gaseous matter, which might be a mixture of different types of gases or could be a pure gaseous matter. Preferably, the circulating gas 70 does not contain substantial amounts of dust, dirt, pollen, or other types of particulate.


Exemplary embodiments of the present invention may be configured for mounting to a vehicle, preferably to the roof. The housing 25 may be sized and configured for fitting atop a vehicle roof. Further, the housing 25 may be sized and adapted to minimize aerodynamic drag. The housing 25 may comprise a pair of feet 26 for mounting the housing 25 to the vehicle. The feet 26 may be sized and configured to be secured to a vehicle's roof, or to be secured to internal supports placed on or within the vehicle. In such embodiments, the housing 25 is preferably thin and comprises rounded corners and other features to minimize aerodynamic drag. The housing 25 may comprise a variety of stiffening members to provide structural rigidity and strength to accommodate the forces caused by a moving vehicle. Likewise, the various components of the display assembly may be configured or comprised of a sufficiently rigid material so as to accommodate the forces caused by a moving vehicle. Furthermore, the housing and various components of the display assembly may be configured to withstand the forces, vibrations, and other rigors of being mounted to a vehicle. For example, but not to serve as a limitation, the feet 26 and other components of the display assembly may comprise rubber pads or other vibration and shock absorption devices.


As indicated in the figure, section line A-A is positioned horizontally down the center of the assembly and cuts through the assembly vertically. Section line B-B is oriented vertically and cuts through the assembly horizontally. Finally, section line C-C is oriented horizontally and cuts through the assembly horizontally as well. The section line arrows in FIG. 1 indicate the direction of hypothetical cut to obtain the section view.



FIG. 2 is a side section view of the embodiment shown in FIG. 1, taken along the section line A-A. The ambient air 60 may enter the housing 25 through the inlet aperture 50, where it may then be directed into an entrance plenum, and pass through one of a plurality of entrance apertures 200 which connect with the open loop channels (described further below). The ambient air 60 is preferably pulled by one or more fans 100, but the fans 100 could also be positioned to push the ambient air 60, or several fans could be used for a combination of push/pull. In this particular embodiment, the fan 100 is located near an exit plenum, where the ambient air 60 is collected from the open loop channels by travelling through one of a plurality of exit aperture 201, collected within the exit plenum, and directed out of the housing 25 through the exhaust aperture 55.


As will be described further below, the entrance apertures 200 and exit apertures 201 are in gaseous communication with a first open loop channel running behind the electronic display 31. There is preferably another set of entrance apertures and exit apertures on the opposite side of the assembly (not shown in this view), which communicate with a second open loop channel running behind the electronic display 30. The apertures 200 and 201 are preferably distributed across the width of the electronic display 30/31 in a substantially equidistant manner from one another. The apertures 200/201 allow the flow of ambient air 60 to pass through the housing 25 and the open loop channels without substantially mixing with the circulating gas 70 or entering the sealed electronics compartment 125.


A plurality of electronic components 110 are preferably placed within a sealed electronics compartment 125 which forms a part of the closed loop for the circulating gas 70. The electronic components 110 may comprise one or more of the following: power modules, video player, electronic data storage, microprocessor, satellite/wireless receiver/transmitter, and timing and control board. At least some of the electronic components 110 may be in electrical connection with the displays 30 and 31.


One or more fans 90 may force the closed loop of circulating gas 70 over the electronic components 110. While shown with two fans 90, this is not required. Additionally, while shown pushing the circulating gas 70 over the electronic components 110, this is not required as the fans 90 could also be positioned to pull the circulating gas 70, or several fans 90 could be used in a combination push/pull of the circulating gas 70.



FIG. 3 is a front section view of the embodiment shown in FIG. 1, taken along the section line B-B. Here, the closed loop of circulating gas 70 can be clearly shown. As mentioned above, the circulating gas 70 preferably travels over the electronic components 110 within the sealed electronics compartment 125 and then splits to wrap around each of the displays 30 and 31. Regarding the first display 30, a transparent panel 35 is preferably placed in front of the display 30 to define a closed loop channel between the display 30 and the transparent panel 35 for accepting circulating gas 70. Once the circulating gas 70 has travelled across the display 30, it is directed back in to the sealed electronics compartment 125 to begin the closed loop again.


Similarly, regarding the second display 31, a transparent panel 36 is preferably placed in front of the display 31 to define a closed loop channel between the display 31 and the transparent panel 36 for accepting circulating gas 70. Once the circulating gas 70 has travelled across the display 31, it is directed back in to the sealed electronics compartment 125 to begin the closed loop again.


As shown, the flow of ambient air 60 is preferably split into at least two channels, with one open loop channel travelling behind each display. Regarding display 30, a path of ambient air 60 preferably travels between the rear surface of the display 30 and a thermal wall 126 of the sealed electronics compartment 125. Although not required, when using a direct LED backlit LCD as the display 30, the ambient air 60 preferably travels between the rear surface of the LED backlight 40 and the thermal wall 126. As shown above, a plurality of electronic components 110 are preferably attached to (or near) one or both thermal walls 126 and 127. In this way, heat from the electronic components 110 may be transferred (preferably through conduction but some convection and radiation may occur as well) to the walls 126 and 127 and removed by the flow of ambient air 60.


Similarly regarding display 31, a path of ambient air 60 preferably travels between the rear surface of the display 31 and a thermal wall 127 of the sealed electronics compartment 125. Although not required, when using a direct LED backlit LCD as the display 31, the ambient air 60 preferably travels between the rear surface of the LED backlight 41 and the thermal wall 127. It should be expressly noted that although a direct LED backlit LCD is shown in these embodiments, this type of display and its associated backlight is not necessary for every embodiment. The displays 30 and 31 could be any one of the following: plasma, OLED, LCD (direct lit or edge lit), LED, and any type of electroluminescent polymer display.



FIG. 4 is a top section view of the embodiment shown in FIG. 1, taken along the section line C-C and indicating the location for Detail A. In this figure, the two channels for ambient air 60 behind each of the displays 30 and 31 can be seen. Again, preferably the two paths of ambient air 60 can remove heat from the electronic displays 30 and 31 as well as the electronics 110 (through the thermal walls 126 and 127).



FIG. 5 is a detailed section view of Detail A. Once the ambient air 60 has travelled through each of the open loop channels, it can be gathered by the exit plenum and forced out of the display housing 25 by the fan 100.



FIG. 6 is a partial exploded view of the embodiment shown in FIG. 1. This shows the stacking of the elements for one side of the assembly, i.e. the components surrounding electronic display 31. The ambient air 60 is preferably directed through the entrance apertures 200 so that it may pass between the thermal plate 127 and the rear of the electronic display 31 (in this embodiment, the rear surface of the LED backlight 41). Once passing through the open loop channel, the ambient air 60 is preferably directed out of an exit aperture 201 so that it can be collected in the exit plenum and exhausted out of the display housing. The circulating gas 70 generally encircles the open loop channel(s) having the ambient air 60. In other words, the open loop ambient air 60 passes through the center of the closed loop of circulating gas 70.


As noted above, the circulating gas 70 preferably passes over electronic components 110, exits the sealed electronics compartment 125, travels between the front transparent plate 36 and the front of the electronic display 31, eventually returning to the sealed electronics compartment 125. Again it should be noted that only one half of the embodiment is shown in this partial exploded view. Generally, there would be a second closed loop of circulating gas 70 travelling around the opposing display 30 and a second open loop channel for ambient air 60 passing behind the display 30, as shown and described above.


It should also be noted that the variety of open and closed cooling loops that are shown in the figures may be shown in a horizontal or vertical arrangement but it is clearly contemplated that this can be reversed or changed depending on the particular embodiment. Thus, the closed loop may run horizontally or vertically and in a clockwise or counter-clockwise direction. Further, the open loop may also be horizontal or vertical and can run left to right, right to left, and top to bottom, or bottom to top.


Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A display assembly for mounting to a roof of a vehicle comprising: a housing adapted to be mounted to the roof of the vehicle, said housing defining at least a bottom wall, a front wall, and a rear wall;a first and second electronic display positioned in a back to back arrangement within the housing, wherein each of said first and second electronic displays has a front surface and a rear surface;a first and second transparent panel, wherein each of said first and second transparent panels are positioned in front of the front surface of one of the first and second electronic displays;a first and second thermal plate, wherein each of said first and second thermal plates are positioned behind the rear surface of one of the first and second electronic displays;an open loop pathway comprising: an inlet aperture located in the housing for ingesting ambient air;a first and second open loop channel, wherein each of the first and second open loop channels are located between one of the first and second thermal plates, respectively, and the rear surface of one of the first and second electronic displays, respectively;a number of entrance apertures located on each of the first and second thermal plates, wherein each of said entrance apertures are configured to permit gaseous communication between the inlet aperture and the first and second open loop channels, respectively;an exhaust aperture located in the housing for exhausting ambient air;a number of exit apertures located on each of the first and second thermal plates, wherein each of said exit apertures are configured to permit gaseous communication between the exhaust aperture and the first and second open loop channels, respectively; andone or more open loop fans positioned vertically along said rear wall of said housing between each of the number of exit apertures and the exhaust aperture;wherein the one or more open loop fans, when operated, are configured to pull a flow of ambient air through said inlet aperture, split said flow after entering the inlet aperture such that a portion of said flow travels through each of said entrance apertures and each of said first and second open loop channels, through each of said number of exit apertures, and rejoin said split flow, after exiting each of said exit apertures, prior to pushing the flow through said exhaust aperture to exhaust said flow; anda closed loop pathway comprising: a first and second closed loop channel, wherein each of said first and second closed loop channels are located between one of the first and second transparent panels, respectively, and one of the first and second electronic displays, respectively;a sealed electronics compartment defined by the first and second thermal plates, wherein the sealed electronics compartment is configured to permit gaseous communication with each of the first and second closed loop channels, and wherein said sealed electronics compartment defines a plenum which accepts only circulating gas; anda plurality of closed loop fans spaced apart between said first and second electronic displays and along a bottom wall of siad housing;wherein said plurality of closed loop fans are configured to circulate circulating gas vertically through said first and second closed loop channels and the sealed electronics compartment;a number of electronic components placed within the sealed electronics compartment, wherein said number of electronic components are selected from the group consisting of: power modules, video players, eletronic data storage devices, microprocessors, wireless transmitters/receivers, and timing and control boards.
  • 2. The display assembly of claim 1, wherein: at least some of the number of electronic components are mounted to a rear surface of at least one of the first and second thermal plates.
  • 3. The display assembly of claim 1, further comprising: a number of feet attached to said housing, wherein each of said feet has a lower surface which is configured to contact, and substantially match the pitch of, an upper surface of the roof of the vehicle.
  • 4. The display assembly of claim 1, wherein: each of the number of entrance apertures are spaced apart along a first end of each of the first and second thermal plates; andeach of the number of exit apertures are spaced apart along a second end of the first and second thermal plates.
  • 5. The display assembly of claim 4, wherein: each of the number of entrance apertures are vertically spaced apart; andeach of the number of exit apertures are vertically spaced apart.
  • 6. The display assembly of claim 5, wherein: each of said number of entrance apertures are positioned outside of the sealed electronics compartment; andeach of said number of exit apertures are positioned outside of the sealed electronics compartment.
CROSS REFERENCE TO RELATED APPLICATIONS

The application claims the benefit of U.S. Provisional Patent Application No. 62/303,806 filed on Mar. 4, 2016, which is hereby incorporated by reference in its entirety.

US Referenced Citations (356)
Number Name Date Kind
4093355 Kaplit et al. Jun 1978 A
4593978 Mourey et al. Jun 1986 A
4634225 Haim et al. Jan 1987 A
4748765 Martin Jun 1988 A
4763993 Vogeley et al. Aug 1988 A
4921041 Akachi May 1990 A
4952783 Aufderheide et al. Aug 1990 A
4952925 Haastert Aug 1990 A
5029982 Nash Jul 1991 A
5088806 McCartney et al. Feb 1992 A
5132666 Fahs Jul 1992 A
5247374 Terada Sep 1993 A
5282114 Stone Jan 1994 A
5293930 Pitasi Mar 1994 A
5432526 Hyatt Jul 1995 A
5535816 Ishida Jul 1996 A
5559614 Urbish et al. Sep 1996 A
5621614 O'Neill Apr 1997 A
5657641 Cunningham et al. Aug 1997 A
5748269 Harris et al. May 1998 A
5765743 Sakiura et al. Jun 1998 A
5767489 Ferrier Jun 1998 A
5808418 Pitman et al. Sep 1998 A
5818010 McCann Oct 1998 A
5818694 Daikoku et al. Oct 1998 A
5835179 Yamanaka Nov 1998 A
5864465 Liu Jan 1999 A
5869818 Kim Feb 1999 A
5869919 Sato et al. Feb 1999 A
5903433 Gudmundsson May 1999 A
5991153 Heady et al. Nov 1999 A
6003015 Kang et al. Dec 1999 A
6007205 Fujimori Dec 1999 A
6089751 Conover et al. Jul 2000 A
6104451 Matsuoka et al. Aug 2000 A
6125565 Hillstrom Oct 2000 A
6157432 Helbing Dec 2000 A
6181070 Dunn et al. Jan 2001 B1
6191839 Briley et al. Feb 2001 B1
6198222 Chang Mar 2001 B1
6211934 Habing et al. Apr 2001 B1
6215655 Heady et al. Apr 2001 B1
6351381 Bilski et al. Feb 2002 B1
6392727 Larson et al. May 2002 B1
6417900 Shin et al. Jul 2002 B1
6428198 Saccomanno et al. Aug 2002 B1
6473150 Takushima et al. Oct 2002 B1
6493440 Gromatsky et al. Dec 2002 B2
6504713 Pandolfi et al. Jan 2003 B1
6535266 Nemeth et al. Mar 2003 B1
6628355 Takahara Sep 2003 B1
6701143 Dukach et al. Mar 2004 B1
6714410 Wellhofer Mar 2004 B2
6727468 Nemeth Apr 2004 B1
6812851 Dukach et al. Nov 2004 B1
6825828 Burke et al. Nov 2004 B2
6839104 Taniguchi et al. Jan 2005 B2
6850209 Mankins et al. Feb 2005 B2
6885412 Ohnishi et al. Apr 2005 B2
6886942 Okada et al. May 2005 B2
6891135 Pala et al. May 2005 B2
6909486 Wang et al. Jun 2005 B2
6943768 Cavanaugh et al. Sep 2005 B2
6961108 Wang et al. Nov 2005 B2
7015470 Faytlin et al. Mar 2006 B2
7059757 Shimizu Jun 2006 B2
7083285 Hsu et al. Aug 2006 B2
7157838 Thielemans et al. Jan 2007 B2
7161803 Heady Jan 2007 B1
7190587 Kim et al. Mar 2007 B2
7209349 Chien et al. Apr 2007 B2
7212403 Rockenfeller May 2007 B2
7259964 Yamamura et al. Aug 2007 B2
7269023 Nagano Sep 2007 B2
7284874 Jeong et al. Oct 2007 B2
7452121 Cho et al. Nov 2008 B2
7457113 Kumhyr et al. Nov 2008 B2
7480140 Hara et al. Jan 2009 B2
7535543 Dewa et al. May 2009 B2
7591508 Chang Sep 2009 B2
7602469 Shin Oct 2009 B2
D608775 Leung Jan 2010 S
7667964 Kang et al. Feb 2010 B2
7752858 Johnson et al. Jul 2010 B2
7753567 Kang et al. Jul 2010 B2
7800706 Kim et al. Sep 2010 B2
7813124 Karppanen Oct 2010 B2
7903416 Chou Mar 2011 B2
D635614 Yan Apr 2011 S
7995342 Nakamichi et al. Aug 2011 B2
8004648 Dunn Aug 2011 B2
8035968 Kwon et al. Oct 2011 B2
8081465 Nishiura Dec 2011 B2
8102173 Merrow Jan 2012 B2
8142027 Sakai Mar 2012 B2
D657421 Yan Apr 2012 S
D657422 Yan Apr 2012 S
8208115 Dunn Jun 2012 B2
8223311 Kim et al. Jul 2012 B2
8241573 Banerjee et al. Aug 2012 B2
8248784 Nakamichi et al. Aug 2012 B2
8254121 Lee et al. Aug 2012 B2
8269916 Ohkawa Sep 2012 B2
8270163 Nakamichi et al. Sep 2012 B2
8274622 Dunn Sep 2012 B2
8274789 Nakamichi et al. Sep 2012 B2
D669938 Lard et al. Oct 2012 S
8300203 Nakamichi et al. Oct 2012 B2
8320119 Isoshima et al. Nov 2012 B2
8351014 Dunn Jan 2013 B2
8358397 Dunn Jan 2013 B2
8369083 Dunn et al. Feb 2013 B2
8373841 Dunn Feb 2013 B2
8379182 Dunn Feb 2013 B2
8400608 Takahashi et al. Mar 2013 B2
8472174 Idems et al. Jun 2013 B2
8472191 Yamamoto et al. Jun 2013 B2
8482695 Dunn Jul 2013 B2
8497972 Dunn et al. Jul 2013 B2
8649170 Dunn et al. Feb 2014 B2
8649176 Okada et al. Feb 2014 B2
8654302 Dunn et al. Feb 2014 B2
8678603 Zhang Mar 2014 B2
8693185 Dunn et al. Apr 2014 B2
8700226 Schuch et al. Apr 2014 B2
8711321 Dunn et al. Apr 2014 B2
D704265 Yan May 2014 S
8749749 Hubbard Jun 2014 B2
8755021 Hubbard Jun 2014 B2
8760613 Dunn Jun 2014 B2
8767165 Dunn Jul 2014 B2
8773633 Dunn et al. Jul 2014 B2
8804091 Dunn et al. Aug 2014 B2
8823916 Hubbard et al. Sep 2014 B2
8854572 Dunn Oct 2014 B2
8854595 Dunn Oct 2014 B2
8879042 Dunn Nov 2014 B2
8988647 Hubbard Mar 2015 B2
9030641 Dunn May 2015 B2
9089079 Dunn Jul 2015 B2
9119325 Dunn et al. Aug 2015 B2
9119330 Hubbard et al. Aug 2015 B2
9173322 Dunn Oct 2015 B2
9173325 Dunn Oct 2015 B2
9282676 Diaz Mar 2016 B1
9285108 Dunn et al. Mar 2016 B2
9313917 Dunn et al. Apr 2016 B2
9370127 Dunn Jun 2016 B2
9448569 Schuch et al. Sep 2016 B2
9451060 Bowers et al. Sep 2016 B1
9451733 Dunn et al. Sep 2016 B2
9456525 Yoon et al. Sep 2016 B2
9470924 Dunn et al. Oct 2016 B2
9500896 Dunn et al. Nov 2016 B2
9516485 Bowers et al. Dec 2016 B1
9549490 Hubbard Jan 2017 B2
9594271 Dunn et al. Mar 2017 B2
9613548 DeMars Apr 2017 B2
9622392 Bowers et al. Apr 2017 B1
9629287 Dunn Apr 2017 B2
9648790 Dunn et al. May 2017 B2
9703320 Bowers et al. Jul 2017 B2
9723765 DeMars Aug 2017 B2
9823690 Bowers et al. Nov 2017 B2
20010001459 Savant et al. May 2001 A1
20010019454 Tadic-Galeb et al. Sep 2001 A1
20020009978 Dukach et al. Jan 2002 A1
20020033919 Sanelle et al. Mar 2002 A1
20020050793 Cull et al. May 2002 A1
20020065046 Mankins et al. May 2002 A1
20020084891 Mankins et al. Jul 2002 A1
20020101553 Enomoto et al. Aug 2002 A1
20020112026 Fridman et al. Aug 2002 A1
20020126248 Yoshia Sep 2002 A1
20020148600 Bosch et al. Oct 2002 A1
20020149714 Anderson et al. Oct 2002 A1
20020154255 Gromatzky et al. Oct 2002 A1
20020164944 Haglid Nov 2002 A1
20020164962 Mankins et al. Nov 2002 A1
20020167637 Burke et al. Nov 2002 A1
20030007109 Park Jan 2003 A1
20030020884 Okada et al. Jan 2003 A1
20030043091 Takeuchi et al. Mar 2003 A1
20030104210 Azumi et al. Jun 2003 A1
20030128511 Nagashima et al. Jul 2003 A1
20030214785 Perazzo Nov 2003 A1
20040012722 Alvarez Jan 2004 A1
20040035032 Milliken Feb 2004 A1
20040035558 Todd et al. Feb 2004 A1
20040036622 Dukach et al. Feb 2004 A1
20040036834 Ohnishi et al. Feb 2004 A1
20040103570 Ruttenberg Jun 2004 A1
20040105159 Saccomanno et al. Jun 2004 A1
20040165139 Anderson et al. Aug 2004 A1
20040223299 Ghosh Nov 2004 A1
20050012039 Faytlin et al. Jan 2005 A1
20050012722 Chon Jan 2005 A1
20050062373 Kim et al. Mar 2005 A1
20050073632 Dunn et al. Apr 2005 A1
20050073639 Pan Apr 2005 A1
20050134525 Tanghe et al. Jun 2005 A1
20050134526 Willem et al. Jun 2005 A1
20050213950 Yoshimura Sep 2005 A1
20050229630 Richter et al. Oct 2005 A1
20050237714 Ebermann Oct 2005 A1
20050253699 Madonia Nov 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20050286131 Saxena et al. Dec 2005 A1
20060012958 Tomioka et al. Jan 2006 A1
20060018093 Lai et al. Jan 2006 A1
20060034051 Wang et al. Feb 2006 A1
20060056994 Van Lear et al. Mar 2006 A1
20060082271 Lee et al. Apr 2006 A1
20060092348 Park May 2006 A1
20060125998 Dewa et al. Jun 2006 A1
20060132699 Cho et al. Jun 2006 A1
20060177587 Ishizuka et al. Aug 2006 A1
20060199514 Kimura Sep 2006 A1
20060209266 Utsunomiya Sep 2006 A1
20060260790 Theno et al. Nov 2006 A1
20060262079 Seong et al. Nov 2006 A1
20060266499 Choi et al. Nov 2006 A1
20060283579 Ghosh et al. Dec 2006 A1
20070019419 Hafuka et al. Jan 2007 A1
20070030879 Hatta Feb 2007 A1
20070047239 Kang et al. Mar 2007 A1
20070065091 Hinata et al. Mar 2007 A1
20070076431 Atarashi et al. Apr 2007 A1
20070103863 Kim May 2007 A1
20070103866 Park May 2007 A1
20070115686 Tyberghien May 2007 A1
20070139929 Yoo et al. Jun 2007 A1
20070140671 Yoshimura Jun 2007 A1
20070151274 Roche et al. Jul 2007 A1
20070151664 Shin Jul 2007 A1
20070171353 Hong Jul 2007 A1
20070206158 Kinoshita et al. Sep 2007 A1
20070211205 Shibata Sep 2007 A1
20070212211 Chiyoda et al. Sep 2007 A1
20070217221 Lee et al. Sep 2007 A1
20070237636 Hsu Oct 2007 A1
20070267174 Kim Nov 2007 A1
20080055534 Kawano Mar 2008 A1
20080076342 Bryant et al. Mar 2008 A1
20080099193 Aksamit et al. May 2008 A1
20080148609 Ogoreve Jun 2008 A1
20080209934 Richards Sep 2008 A1
20080218446 Yamanaka Sep 2008 A1
20080236005 Isayev et al. Oct 2008 A1
20080267790 Gaudet et al. Oct 2008 A1
20080283234 Sagi et al. Nov 2008 A1
20080285290 Ohashi et al. Nov 2008 A1
20090009047 Yanagawa et al. Jan 2009 A1
20090009729 Sakai Jan 2009 A1
20090086430 Kang et al. Apr 2009 A1
20090120629 Ashe May 2009 A1
20090122218 Oh et al. May 2009 A1
20090126906 Dunn May 2009 A1
20090126907 Dunn May 2009 A1
20090126914 Dunn May 2009 A1
20090135365 Dunn May 2009 A1
20090147170 Oh et al. Jun 2009 A1
20090154096 Iyengar et al. Jun 2009 A1
20090174626 Isoshima et al. Jul 2009 A1
20090244472 Dunn Oct 2009 A1
20090279240 Karppanen Nov 2009 A1
20090302727 Vincent et al. Dec 2009 A1
20090306820 Simmons et al. Dec 2009 A1
20100060861 Medin Mar 2010 A1
20100079949 Nakamichi et al. Apr 2010 A1
20100079979 Nakamichi et al. Apr 2010 A1
20100162747 Hamel et al. Jul 2010 A1
20100171889 Pantel et al. Jul 2010 A1
20100182562 Yoshida et al. Jul 2010 A1
20100220249 Nakamichi et al. Sep 2010 A1
20100226091 Dunn Sep 2010 A1
20100232107 Dunn Sep 2010 A1
20100238394 Dunn Sep 2010 A1
20100321887 Kwon et al. Dec 2010 A1
20110001898 Mikubo et al. Jan 2011 A1
20110013114 Dunn et al. Jan 2011 A1
20110019363 Vahlsing et al. Jan 2011 A1
20110051071 Nakamichi et al. Mar 2011 A1
20110058326 Idems et al. Mar 2011 A1
20110075361 Nakamichi et al. Mar 2011 A1
20110083460 Thomas et al. Apr 2011 A1
20110083824 Rogers Apr 2011 A1
20110085301 Dunn Apr 2011 A1
20110114384 Sakamoto et al. May 2011 A1
20110116000 Dunn et al. May 2011 A1
20110122162 Sato et al. May 2011 A1
20110141724 Erion Jun 2011 A1
20110261523 Dunn Oct 2011 A1
20120006523 Masahiro et al. Jan 2012 A1
20120012295 Kakiuchi et al. Jan 2012 A1
20120012300 Dunn et al. Jan 2012 A1
20120014063 Weiss Jan 2012 A1
20120020114 Miyamoto et al. Jan 2012 A1
20120038849 Dunn et al. Feb 2012 A1
20120044217 Okada et al. Feb 2012 A1
20120105790 Hubbard May 2012 A1
20120106081 Hubbard et al. May 2012 A1
20120188481 Kang et al. Jul 2012 A1
20120206687 Dunn et al. Aug 2012 A1
20120249402 Kang Oct 2012 A1
20120255704 Nakamichi Oct 2012 A1
20120274876 Cappaert et al. Nov 2012 A1
20120284547 Culbert et al. Nov 2012 A1
20130170140 Dunn Jul 2013 A1
20130173358 Pinkus Jul 2013 A1
20130176517 Kim et al. Jul 2013 A1
20130201685 Messmore et al. Aug 2013 A1
20130258659 Erion Oct 2013 A1
20130279154 Dunn Oct 2013 A1
20130294039 Chao Nov 2013 A1
20140085564 Hendren et al. Mar 2014 A1
20140111758 Dunn et al. Apr 2014 A1
20140113540 Dunn et al. Apr 2014 A1
20140134767 Ishida et al. May 2014 A1
20140313666 Chin Oct 2014 A1
20140313698 Dunn et al. Oct 2014 A1
20140314395 Dunn et al. Oct 2014 A1
20140334100 Yoon et al. Nov 2014 A1
20140361138 Ramirez et al. Dec 2014 A1
20150009625 Chin et al. Jan 2015 A1
20150192371 Hancock Jul 2015 A1
20150264826 Dunn et al. Sep 2015 A1
20150319882 Dunn et al. Nov 2015 A1
20150366101 Dunn et al. Dec 2015 A1
20160041423 Dunn Feb 2016 A1
20160044829 Dunn Feb 2016 A1
20160192536 Diaz Jun 2016 A1
20160195254 Dunn et al. Jul 2016 A1
20160198588 DeMars Jul 2016 A1
20160238876 Dunn et al. Aug 2016 A1
20160242329 DeMars Aug 2016 A1
20160242330 Dunn Aug 2016 A1
20160249493 Dunn et al. Aug 2016 A1
20160302331 Dunn Oct 2016 A1
20170023823 Dunn et al. Jan 2017 A1
20170068042 Dunn et al. Mar 2017 A1
20170074453 Bowers et al. Mar 2017 A1
20170083043 Bowers et al. Mar 2017 A1
20170083062 Bowers et al. Mar 2017 A1
20170111486 Bowers et al. Apr 2017 A1
20170111520 Bowers et al. Apr 2017 A1
20170111521 Bowers et al. Apr 2017 A1
20170127579 Hubbard May 2017 A1
20170140344 Bowers et al. May 2017 A1
20170147992 Bowers et al. May 2017 A1
20170163519 Bowers et al. Jun 2017 A1
20170175411 Bowers et al. Jun 2017 A1
20170188490 Dunn et al. Jun 2017 A1
20170245400 Dunn et al. Aug 2017 A1
20170257978 Diaz Sep 2017 A1
20190089176 Dunn et al. Mar 2019 A1
Foreign Referenced Citations (81)
Number Date Country
2011248190 May 2011 AU
2702363 May 2005 CN
1408476 Apr 2004 EP
1647766 Apr 2006 EP
1762892 Mar 2007 EP
1951020 Jul 2008 EP
2225603 Sep 2010 EP
2370987 Oct 2011 EP
2603831 Jun 2013 EP
2801888 Nov 2014 EP
2909829 Aug 2015 EP
3020260 May 2016 EP
3117693 Jan 2017 EP
2402205 Dec 2004 GB
402062015 Mar 1990 JP
402307080 Dec 1990 JP
3153212 Jul 1991 JP
6082745 Mar 1994 JP
8115788 May 1996 JP
8194437 Jul 1996 JP
H08-305301 Nov 1996 JP
8339034 Dec 1996 JP
H09246766 Sep 1997 JP
11160727 Jun 1999 JP
H11296094 Oct 1999 JP
2000010501 Jan 2000 JP
2001209126 Aug 2001 JP
2002158475 May 2002 JP
2004053749 Feb 2004 JP
2005017556 Jan 2005 JP
2000131682 May 2005 JP
2005134849 May 2005 JP
2005265922 Sep 2005 JP
2006513577 Apr 2006 JP
2007322718 May 2006 JP
2006148047 Jun 2006 JP
2006163217 Jun 2006 JP
2007003638 Jan 2007 JP
2007-293105 Nov 2007 JP
09307257 Nov 2007 JP
2008010361 Jan 2008 JP
2008292743 Dec 2008 JP
2010024624 Feb 2010 JP
2010102227 May 2010 JP
2011503663 Jan 2011 JP
2011075819 Apr 2011 JP
2012133254 Jul 2012 JP
2013537721 Oct 2013 JP
2014225595 Dec 2014 JP
200366674 Nov 2004 KR
20050033986 Apr 2005 KR
200401354 Nov 2005 KR
20060016469 Feb 2006 KR
100666961 Jan 2007 KR
1020070070675 Apr 2007 KR
1020070048294 Aug 2007 KR
10-2013-0126034 Nov 2013 KR
101764381 Jul 2017 KR
2513043 Apr 2014 RU
WO2005079129 Aug 2005 WO
WO2007116116 Oct 2007 WO
WO2008050660 May 2008 WO
WO2009065125 May 2009 WO
WO2009065125 May 2009 WO
WO2009135308 Nov 2009 WO
WO2010007821 Feb 2010 WO
WO2010080624 Jul 2010 WO
WO2011069084 Jun 2011 WO
WO2011072217 Jun 2011 WO
WO2011140179 Nov 2011 WO
WO2011150078 Dec 2011 WO
WO2012021573 Feb 2012 WO
WO2012024426 Feb 2012 WO
2013182733 Dec 2013 WO
WO2014149773 Sep 2014 WO
WO2014150036 Sep 2014 WO
WO2015168375 Nov 2015 WO
WO2016102982 Jun 2016 WO
2016127613 Aug 2016 WO
WO2016133852 Aug 2016 WO
WO2017152166 Sep 2017 WO
Non-Patent Literature Citations (27)
Entry
Itsenclosures, Product Catalog, 2009, 48 pages.
Itsenclosures, Standard Product Data Sheet, 2011, 18 pages.
Sunbritetv, All Weather Outdoor LCD Television Model 4610HD, 2008, 1 page.
Sunbritetv, Introduces Two New All-Weather Outdoor Televisions InfoComm 2008, 7 pages.
Itsenclosures, Viewstation, 2017, 16 pages.
Novitsky, Driving LEDs versus CCFLs for LCD backlighting, Nov. 12, 2007, 6 pages.
Federman, Cooling Flat Panel Displays, 2011, 4 pages.
Zeeff, T.M., EMC analysis of an 18″ LCD monitor, 2000, 1 page.
Wankhede, Evaluation of Cooling Solutions for Outdoor Electronics, Sep. 17-19, 2007, 6 pages.
Bureau of Ships Navy Department, Guide Manual of Cooling methods for Electronic Equipment, Mar. 31, 1955, 212 pages.
Scott, Cooling of Electronic Equipment, Apr. 4, 1947, 119 pages.
Sergent, Thermal Management Handbook for Electronic Assemblies, Aug. 14, 1998, 190 pages.
Steinberg, Cooling Techniques for Electronic Equipment First Edition, 1980, 255 pages.
Steinberg, Cooling Techniques for Electronic Equipment Second Edition, 1991, 299 pages.
Yeh, Thermal Management of Microelectronic Equipment, Oct. 15, 2002, 148 pages.
Civiq Smartscapes, FlexVue Ferro 55P/55L, Mar. 16, 2017, 4 pages.
Adnation,Turn Key Advertising Technology Solutions, May 23, 2017, 4 pages.
Vertigo Digital Displays, All Products Catalogue, 2017,14 pages.
Vertigo Digital Displays, FlexVu Totem Shelter, 2017, 2 pages.
Vertigo Digital Displays, Innovation on Display FlexVu Totem Brochure, 2014, 6 pages.
Miller, Adnation, photos, May 9, 2017, 28 pages.
Civiq, Invalidity Claim Charts, Appendix A—Appendix D, Jan. 24, 2018, 51 pages.
Civiq, Invalidity Contentions, Jan. 24, 2018, 51 pages.
Civiq, Invalidity Claim Chart, Appendix I, Mar. 22, 2018, 4 pages.
Civiq, Invalidity Claim Charts, Appendix F to H, Mar. 22, 2018, 18 pages.
Yung, Using Metal Core Printed Circuit Board as a Solution for Thermal Management article, 2007, 5 pages.
Civiq Smartscapes LLC. v Manufacturing Resources International, Inc., Defendant's Amended Answer and Countercliams to Plaintiffs First Amended Complaint, filed Apr. 24, 2018, 240 pages.
Related Publications (1)
Number Date Country
20170257978 A1 Sep 2017 US
Provisional Applications (1)
Number Date Country
62303806 Mar 2016 US