The invention relates to cooling systems for cooling electronic components, e.g. computer components. More particularly, it relates to a cooling system characterized by a body of cooling fluid within a housing in which the electronic components are situated and by a cooling jacket in walls of the housing, or in coils inside the housing, through which a cooling fluid is circulated.
It is well known that computers include components that produce heat. Various types of cooling systems have been proposed for removing heat from the computer components to maintain the computer within acceptable operating temperature limits. The known systems include the systems disclosed by my U.S. Pat. No. 5,731,954, granted Mar. 24, 1998, and entitled Cooling System For Computer, by my U.S. Pat. No. 6,234,240, granted May 22, 2001, and entitled Fanless Cooling System For Computer, by my U.S. Pat. No. 6,313,990, granted Nov. 6, 2001, and entitled Cooling Apparatus For Electronic Devices, and by my U.S. Pat. No. 6,664,627, granted Dec. 19, 2003, and entitled Water Cooling Type Cooling Block For Semiconductor Chip.
The principal object of the present invention is to provide a cooling system that is especially appropriate for use with small computers, including personal computers, work stations, servers, and small mainframes, and which includes a cooling fluid in the housing in the components to be cooled are situated.
The cooling system of the present invention is used to cool electronic components that generate heat when they are in use. The system comprises a housing defining an interior space. At least one heat producing electronic component is in the interior space. A cooling fluid is housed within the interior space in direct contact with the heat producing electronic component. In one embodiment the housing walls include a coolant passageway that has an inlet and an outlet. In use, a cooling fluid is introduced into the passageway through the inlet, is moved through the passageway, and then is removed from the passageway through the outlet. The cooling fluid removes heat from the housing and the cooling fluid in the interior space of the housing.
In the preferred embodiment, the housing has four sidewalls comprising spaced apart first and second sidewalls and spaced apart third and fourth side walls that extend between and interconnect the first and second sidewalls. The sidewalls form end openings at the opposite ends of the housing. The housing includes first and second end walls that extend over and cover the end openings of the housing. The end walls are connected to the sidewalls.
The inlet may be at one end of the first end wall. The coolant passageway may include a first section that extends lengthwise through the first sidewall, a second section that extends lengthwise through the second end wall, and a third section that extends lengthwise through the second sidewall. The inlet may communicate with the first section of the coolant passageway. The first section of the coolant passageway may communicate with the second section of the coolant passageway. The second section of the coolant passageway may communicate with the third section of the coolant passageway. The third section of the coolant passageway may communicate with the outlet.
In a preferred embodiment, the four sidewalls are parts of an extrusion and the end walls are separate members that are connected to opposite end portions of the extrusion.
In a second embodiment, the coolant passageway in the housing walls is replaced by a coil that is inside the housing. The coil has an inlet and an outlet. A cooling fluid is introduced into the coil through the inlet, is moved through the coil, and then is removed from the coil through the outlet. The cooling fluid removes heat from the housing and the cooling fluid in the interior space of the housing.
According to an aspect of the invention, a sealing gasket is provided between each end wall and its end of the extrusion. Also, the cooling fluid in the interior space of the housing is a body of liquid.
According to another aspect of the invention, a balloon may be positioned inside the cooling liquid in the interior space. This balloon contains a compressible fluid. Expansion of the liquid cooling fluid in the interior space will contract the balloon and compress the compressible fluid in the balloon.
Other objects, advantages and features of the invention will become apparent from the description of the best mode set forth below, from the drawings, from the claims and from the principles that are embodied in the specific structures that are illustrated and described.
Like reference numerals are used to designate like parts throughout the several views of drawing, and
Referring to the drawing, and in particular to
As clearly shown by
End wall 20 may include an inlet fitting 40 and an outlet fitting 42. The fittings 40, 42 have inner end portions that thread into threaded openings formed in the end wall 20. They also include threaded outer end portions which connect to hoses or conduits which deliver a cooling fluid to the inlet 40 and move it away from the outlet 42. There are openings in the end wall 20 which connect the fittings 40, 42 with the passageways 34, 36 when the end wall 20 is connected to the main portion 18 of the housing 12.
The end wall 22 is constructed similar to end wall 20. However, it does not include the fittings 40, 42. Rather, it includes ports 44, 46 that align with the passageways 34, 36 in the walls 26, 28. A transverse passageway 45 (
The system for connecting the end walls 20, 22 to the main housing 18 is the same at both ends of the housing 12. Fastener openings 50 are formed in the four corners of the end members 20, 22. Corner recesses 52 are formed in the outer four corner portions of the end wall 20, 22. Coiled end portions 54 are formed at the ends of elongated flat bar members 56. The coiled end portions 54 are fitable in the corner recesses 52. They include center openings that are aligned with the fastener openings 50 in the end members 20, 22. Fasteners are shown in the form of machine screws 60. The threaded ends of the screws 60 are extended through the coiled end portions 54 of the members 56 and into and through the openings 50. They screw into the fastener openings 38 formed in the ends of the sidewalls 26, 28. The threads on the inner ends of the screws 60 may be self-tapping threads that screw themselves into the sidewalls of the fastener openings 38.
Referring to
During use of the electronic device, at least some of the electronic components on board 60 generate heat. This heat is transferred to the cooling fluid 65. In the process, the electronic components are cooled and the cooling fluid 65 and the housing 12 are heated. The second cooling fluid that is circulated through the sidewalls 26, 28 and end wall 22 functions to remove heat from the housing 12 and the cooling liquid inside of it. The cooling fluid that is circulated through the walls 26, 22, 28 may be cooled by a radiator or other means before it is introduced into the inlet 40. When this cooling fluid is moved out of the outlet 42 it is returned to the radiator or other device for removing heat from it.
As the temperature of the cooling fluid in chamber 24 rises, the cooling fluid 65 will expand and want to take up more space in the housing 12. The balloon 66 allows this to happen. The expanding fluid 65 on the outside of the balloon 66 exerts an inward force on the balloon wall, contracting the balloon and compressing the fluid within the balloon 66. This reduces the amount of space taken up by the balloon 66 and allows the cooling fluid 65 inside a chamber 24 to move into the space relinquished by the contracting balloon 66.
The top wall 30 of the housing 12 may include a window 70 formed from a transparent or translucent material. This allows a person to view through the window 70 into the interior of the housing in order to check the condition of the cooling fluid 65 in the housing 12. A seal is provided between the window 70 and the housing wall 30 so that the cooling fluid 65 does not leak out of the housing 12 in the vicinity of the window 70.
The illustrated embodiment is only one example of the present invention and, therefore, is non-limitive. It is to be understood that many changes in the particular structure, materials and features of the invention may be made without departing from the spirit and scope of the invention. Therefore, it is my intention that my patents rights not be limited by the particular embodiment that is illustrated and described herein, but rather is to be determined by the following claims, interpreted according to accepted doctrines of patent claim interpretation, including use of the doctrine of equivalents.