Cooling system for electronic display

Information

  • Patent Grant
  • 10359659
  • Patent Number
    10,359,659
  • Date Filed
    Monday, August 27, 2018
    5 years ago
  • Date Issued
    Tuesday, July 23, 2019
    4 years ago
  • Inventors
  • Original Assignees
    • MANUFACTRUING RESOURCES INTERNATONAL, INC. (Alpharetta, GA, US)
  • Examiners
    • Haughton; Anthony M
    Agents
    • Standley Law Group LLP
    • Standley; Jeffrey S.
    • Smith; Adam J.
Abstract
A cooling assembly for an electronic display includes a front channel that passes in front of the viewable area of the electronic display. A center channel is located behind the electronic display. A rear channel is located behind the second channel. A first plurality of subchannels are located within the center channel and connect only to the front channel. A second plurality of subchannels are located within the center channel and connect only to the rear channel.
Description
TECHNICAL FIELD

Embodiments generally relate to cooling systems for electronic displays.


BACKGROUND OF THE ART

Electronic displays are sometimes used in outdoor environments or other areas where the surrounding temperatures may be high or there may be other sources of heat such as solar loading causing the temperatures within the display to rise. However, some portions of the display can be difficult to cool as simply ingesting ambient air into some portions of the display can introduce dust and contaminates into sensitive portions of the display, which can lead to premature failures.


SUMMARY OF THE EXEMPLARY EMBODIMENTS

Exemplary embodiments provide a figure eight closed loop circulating gas path which defines a center channel for the closed loop of circulating gas. A pair of open loop ambient air channels may be placed on opposite sides of the center channel, in order to remove heat from at least the center channel and the closed loop circulating gas. One or more open loop ambient air pathways may pass through the figure eight but do not allow the circulating gas and the ambient air to mix. In some embodiments, the open loop ambient air pathway travels along a rear surface of the electronic display. In some embodiments, the circulating gas pathways contain a front channel placed in front of the electronic display, a rear channel placed behind the electronic display, and a center channel placed between the front and rear channels. Pass-through apertures may be placed within the path of the circulating gas and/or the ambient air to allow the paths of the two gaseous matters to cross without allowing them to mix with one another.


The foregoing and other features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments, as illustrated in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of an exemplary embodiment will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:



FIG. 1 is a simplified illustration of an exemplary embodiment of the figure eight closed loop cooling system.



FIG. 2 is a side rear perspective view showing the overall assembly of the display with the rear cover removed and indicating the section line 3-3.



FIG. 3 is a perspective section view taken from the section line 3-3 and indicating the locations for Detail 4 and Detail 5.



FIG. 4 is a detailed perspective section view of Detail 4.



FIG. 5 is a detailed perspective section view of Detail 5.



FIG. 6 is a bottom rear perspective view showing the overall assembly of the display and indicating the section line 7-7.



FIG. 7 is a perspective section view taken from the section line 7-7.





DETAILED DESCRIPTION

The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.



FIG. 1 is a simplified illustration of an exemplary embodiment of the figure eight closed loop cooling system 400. This exemplary embodiment contains a plurality of channels in the assembly. The front channel 18 is placed in front of the display 160 and preferably allows closed loop circulating gas 20 to remove heat from the front of the display 160. The front open loop channel 16 is positioned behind the display 160 and preferably allows open loop air 15 to pass behind the display 160, removing heat at least from the rear portion of the display 160 and the center channel 13. The center channel 13 is preferably positioned between the front open loop channel 16 and the rear open loop channel 11 and allows closed loop circulating gas 20 to cross paths with itself (creating the figure eight) and to cross paths with the open loop air 10 and 15 without allowing the closed loop circulating gas and open loop air to mix.


The rear open loop channel 11 is preferably positioned immediately adjacent to the center channel 13, and allows open loop air 10 to flow through, thereby removing heat from the center channel 13 (and/or the closed loop circulating gas 13 contained within) and the rear channel 30. The rear channel 30 is positioned near the rear of the display and may contain various electronic components 35 for operating the overall display assembly, fans, or the display 160 itself.


In an exemplary embodiment, the front channel 18, center channel 13, and rear channel 30 are in sealed gaseous communication with each other. In other words, these channels do not permit closed loop circulating gas 20 to substantially escape or to allow ambient air or open loop air to enter these channels. Also in an exemplary embodiment, open loop air 10 and 15 is simply ambient air surrounding the display assembly. However, in some embodiments the open loop air 10 and 15 may be treated in some way (ex. filtered, air conditioned, or pre-cooled in some way) prior to being ingested into the display assembly. In this particular embodiment, the closed loop fan 100 is positioned within the rear channel 30, although this is not required. All that is required is that the closed loop fan 100 is positioned to force the closed loop circulating gas 20 through the front channel 18, center channel 13, and rear channel 30. The closed loop circulating gas 20 can be any gaseous matter that preferably does not contain large amounts of particulate. However, it does not have to be pure gas of any type; simple clean air works fine with the exemplary embodiments.



FIG. 2 is a side rear perspective view showing the overall assembly of the display with the rear cover removed and indicating the section line 3-3. In this particular embodiment, the display assembly is designed for a portrait orientation with the closed loop fans 100 positioned at the top of the assembly and the open loop fans 200 positioned at the bottom of the assembly. This is of course not required however, as the embodiments herein can be flipped or oriented for a landscape orientation if desired. Further, the open loop fans 200 do not have to be placed at the bottom of the assembly, but could be positioned anywhere so that the open loop air travels in the paths specified in these exemplary embodiments. It of course goes without saying that additional fans could also be used to increase flow rates and/or pressure.



FIG. 3 is a perspective section view taken from the section line 3-3 and indicating the locations for Detail 4 and Detail 5. Here, the front channel 18 is defined between the front transparent plate 150 and the electronic display 160. In an exemplary embodiment the electronic display 160 may be an LED backlit liquid crystal display (LCD), but this is not required. Alternative embodiments may utilize any type of flat panel electronic display, including but not limited to plasma, OLED, electroluminescent polymers, or similar. In some embodiments, the various electrical components 35 (power supplies, printed circuit boards, microprocessors, electronic storage, etc.) may be attached and in thermal communication with a plate 31 which may form the rear portion of channel 11 for open loop air 10. In this way, heat that is generated by the electrical components 35 may be transferred to the plate 31, where it can be removed by open loop air 10.



FIG. 4 is a detailed perspective section view of Detail 4. Closed loop circulating gas 20 is permitted to pass through the rear open loop channel 11 without mixing with the open loop air 10 by use of pass-through apertures 200, which provide sealed gaseous communication between the rear channel 30 and the center channel 13, without permitting open loop air 10 to enter the channels 30 and 13. In an exemplary embodiment, rear open loop channel 11 may also contain cooling fins 400 for distributing heat from the adjacent channels (30 and 13) and/or electronic components 35 in order to be efficiently removed by the open loop air 10. Similarly, front open loop channel 16 may also contain cooling fins 450 for distributing heat from the adjacent channels (30 and 18) and/or the rear surface of the display 160 in order to be efficiently removed by the open loop air 15. In an exemplary embodiment, the display 160 contains a direct lit LED backlight where the cooling fins 450 are placed in thermal communication with the LED backlight. The cooling fins 450 and 400 may be comprised of any thermally conductive material, but would preferably be comprised of metal and in an exemplary embodiment would be a thin sheet (or multiple thin sheets) of metal.



FIG. 5 is a detailed perspective section view of Detail 5. Closed loop circulating gas 20 is permitted to pass through the front open loop channel 16 without mixing with the open loop air 15 by use of pass-through apertures 205, which provide sealed gaseous communication between the front channel 18 and the center channel 13, without permitting open loop air 15 to enter the channels 18 and 13.



FIG. 6 is a bottom rear perspective view showing the overall assembly of the display and indicating the section line 7-7.



FIG. 7 is a perspective section view taken from the section line 7-7. The center channel 13 is preferably divided into a plurality of subchannels 300 and 305. On this end of the overall assembly, subchannels 300 are in gaseous communication with the pass-through apertures 200 (which connects the subchannel 300 with the rear channel 30) while subchannels 305 are in gaseous communication with the pass-through apertures 205 (which connects the subchannel 305 with the front channel 18). However, on the opposite end of the assembly (see FIG. 3) subchannels 300 are in gaseous communication with the pass-through apertures 205 (which connects the subchannel 300 with the front channel 18) while subchannels 305 are in gaseous communication with the pass-through apertures 200 (which connects the subchannel 305 with the rear channel 30). In this way, the closed loop of circulating gas 20 travels through the front channel 18, through a pass-through aperture to travel along subchannel 305, through another pass-through aperture to travel along the rear channel 30, through another pass-through aperture to travel along the subchannel 300, and finally through another pass-through aperture to return to the front channel 18. In this way, the closed loop of circulating gas 20 performs the ‘figure eight’ through the assembly, as it weaves its way across the front channel 18, through the center channel 13, across the rear channel 30, again through the center channel 13, and returning to the front channel 18.


It should be noted that subchannels 300 and 305 may not be required in some embodiments as the center channel 13 could be completely open. It should also be noted that other embodiments may use the subchannels 300 and 305 but would not allow a single subchannel to communicate gaseously with both the front channel 18 and the rear channel 30. In other words, when viewing the end of the assembly as shown in FIG. 7, the opposing end of the assembly would be substantially similar. Thus, subchannels 300 would only communicate with pass-through apertures 200 and the rear channel 30, while the subchannels 305 would only communicate with pass-through apertures 205 and front channel 18. Thus, in this embodiment there would be two separate closed loops.


Although there is preferably gaseous communication throughout the figure eight, subchannel 300 directs the flow of closed loop circulating gas 20 through rear channel 30 and center channel 13 while subchannel 305 directs the flow of closed loop circulating gas 20 through the center channel 13 and front channel 18. In this preferred embodiment, the subchannels 300 and 305 allow separate flow paths for closed loop circulating gas 20 within the center channel 13, without requiring additional fans. These separate flow paths which cross through the center and loop around the display in a single continuous flow, define the figure eight path for the closed loop circulating gas 20 (seen also in FIG. 1). Further, in this preferred embodiment, the flow direction of closed loop circulating gas 20 through the center channel 13 is opposite the flow direction of open loop air 15 and 10, creating a counter-flow heat exchanger between the center channel 13 and the front/rear open loop channels 11 and 16. However, this is not required, as a parallel flow or a cross flow design would work as well.


In an exemplary embodiment, the rear channel 30 would share a plate with the rear open loop channel 11, such that one side of the plate would be within the rear channel 30 while the opposing side of the plate would be within the rear open loop channel 11. This arrangement is illustrated in FIG. 3 with the rear plate 31. Similarly, it may be preferable for the center channel 13 and the rear open loop 11 to share a plate, such that one side of the plate is within the center channel 13 while the other side of the plate is within the rear open loop 11. Similarly, it may be preferable for the center channel 13 and the front open loop 16 to share a plate. Finally, it may also be preferable for the rear surface of the display 160 to form the front wall of the front open loop 16, such that open loop ambient air 15 can remove heat from the electronic display 160. In some embodiments the rear surface of the display 160 would be the rear surface of a metallic PCB holding a plurality of LEDs for the backlight.


Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A cooling assembly for an electronic display comprising: a front channel that passes in front of the viewable area of the electronic display;a center channel located behind the electronic display;a rear channel located behind the center channel;a first plurality of subchannels located within the center channel and connecting only to the front channel; anda second plurality of subchannels located within the center channel and connecting only to the rear channel;wherein the front channel, the center channel, and the rear channel form a continuous closed loop pathway for circulating gas.
  • 2. The cooling assembly of claim 1 wherein: the first plurality of subchannels are connected to the front channel by way of a first plurality of pass through devices; andthe second plurality of subchannels are connected to the rear channel by way of a second plurality of pass through devices.
  • 3. The cooling assembly of claim 1 wherein: the first and second plurality of subchannels are configured to permit circulating gas to flow therethrough without substantially mixing.
  • 4. The cooling assembly of claim 1 wherein: the front channel is further defined as extending between a front surface of the electronic display and a transparent plate.
  • 5. The cooling assembly of claim 1 wherein: the rear channel comprises electronic components which are mounted to a plate.
  • 6. The cooling assembly of claim 2 further comprising: an open loop pathway that passes between the front channel and the rear channel.
  • 7. The cooling assembly of claim 6 further comprising: a second open loop pathway that passes between the front channel and the rear channel.
  • 8. The cooling assembly of claim 6 wherein: the open loop pathway travels along a rear surface of the electronic display.
  • 9. The cooling assembly of claim 6 wherein: each of the first and second plurality of pass through devices comprises an aperture, wherein the pass through devices are arranged such that circulating gas travels through the aperture while ambient air passes around the aperture.
  • 10. A cooling assembly for an electronic display comprising: a first channel placed in front of the electronic display;a third channel placed behind the electronic display; anda second channel placed between the first channel and the third channel, wherein the second channel comprises a first plurality of subchannels and a second plurality of subchannels;wherein the first plurality of subchannels are connected only to the first channel;wherein the second plurality of subchannels are connected only to the third channel,wherein the second channel is configured to permit circulating gas to flow simultaneously through the first and second plurality of subchannels without substantially mixing;wherein said first, second, and third channels form a continuos closed loop pathway for circulating gas.
  • 11. The cooling assembly of claim 10 further comprising: a first plurality of pass through devices connecting the first plurality of subchannels to the first channel; anda second plurality of pass through devices connecting the second plurality of subchannels to the third channel.
  • 12. The cooling assembly of claim 10 wherein: the first, second, and third channels are interconnected in a way which forms a substantially figure eight shape.
  • 13. The cooling assembly of claim 11 further comprising: a first open loop pathway for ambient air positioned between the electronic display and the second channel; anda second open loop pathway for ambient air positioned between the second channel and the third channel.
  • 14. The cooling assembly of claim 13 further comprising: a closed loop fan positioned to force ambient air through at least one of the first, second, or third channels.
  • 15. The cooling assembly of claim 14 further comprising: an open loop fan positioned to force ambient air though at least one of the first or second open loop pathways.
  • 16. A cooling assembly for an electronic display comprising: a continuous closed loop pathway for circulating gas comprising: a front channel defined by the space between a front surface of the electronic display and a transparent plate;a plate positioned behind the electronic display;a rear channel defined by the space between the plate and the rear surface of the cooling assembly; anda center channel located between the plate and the rear surface of the electronic display and comprising a first number of independent subchannels and a second number of independent subchannels;wherein the first number of independent subchannels connect only to the front channel;wherein the second number of independent subchannels connect only to the rear channel.
  • 17. The cooling assembly of claim 16 wherein: the center channel is configured to allow the circulating gas to travel through any of said independent subchannels without substantially mixing with circulating gas traveling through any of the other independent subchannels.
  • 18. The cooling assembly of claim 17 further comprising: a first plurality of pass through devices connecting the first number of independent subchannels to the front channel; anda second plurality of pass through devices connecting the second number of independent subchannels to the rear channel.
  • 19. The cooling assembly of claim 18 further comprising: an open loop for ambient air configured to pass between the front and the rear channels without mixing the ambient air and the circulating gas.
  • 20. The cooling assembly of claim 19 further comprising: at least one closed loop fan positioned to force the flow of the circulating gas through the closed loop; andat least one open loop fan positioned to force the flow of the ambient air through the open loop.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/289,563 filed on Oct. 10, 2016, which is a continuation of U.S. patent application Ser. No. 14/326,059 filed on Jul. 8, 2014 now U.S. Pat. No. 9,470,924, which claims priority to U.S. Provisional Application No. 61/843,706 filed on Jul. 8, 2013, the disclosures of each of these applications are hereby incorporated by reference in their entireties.

US Referenced Citations (363)
Number Name Date Kind
4093355 Kaplit et al. Jun 1978 A
4593978 Mourey et al. Jun 1986 A
4634225 Haim et al. Jan 1987 A
4748765 Martin Jun 1988 A
4763993 Vogeley et al. Aug 1988 A
4921041 Akachi May 1990 A
4952783 Aufderheide et al. Aug 1990 A
4952925 Haastert Aug 1990 A
5029982 Nash Jul 1991 A
5088806 McCartney et al. Feb 1992 A
5132666 Fahs Jul 1992 A
5247374 Terada Sep 1993 A
5282114 Stone Jan 1994 A
5293930 Pitasi Mar 1994 A
5351176 Smith et al. Sep 1994 A
5432526 Hyatt Jul 1995 A
5535816 Ishida Jul 1996 A
5559614 Urbish et al. Sep 1996 A
5621614 O'Neill Apr 1997 A
5657641 Cunningham et al. Aug 1997 A
5748269 Harris et al. May 1998 A
5765743 Sakiura et al. Jun 1998 A
5767489 Ferrier Jun 1998 A
5808418 Pitman et al. Sep 1998 A
5818010 McCann Oct 1998 A
5818694 Daikoku et al. Oct 1998 A
5835179 Yamanaka Nov 1998 A
5864465 Liu Jan 1999 A
5869818 Kim Feb 1999 A
5869919 Sato et al. Feb 1999 A
5903433 Gudmundsson May 1999 A
5991153 Heady et al. Nov 1999 A
6003015 Kang et al. Dec 1999 A
6007205 Fujimori Dec 1999 A
6089751 Conover et al. Jul 2000 A
6104451 Matsuoka et al. Aug 2000 A
6125565 Hillstrom Oct 2000 A
6157432 Helbing Dec 2000 A
6181070 Dunn et al. Jan 2001 B1
6191839 Briley et al. Feb 2001 B1
6198222 Chang Mar 2001 B1
6211934 Habing et al. Apr 2001 B1
6215655 Heady et al. Apr 2001 B1
6351381 Bilski et al. Feb 2002 B1
6392727 Larson et al. May 2002 B1
6417900 Shin et al. Jul 2002 B1
6428198 Saccomanno et al. Aug 2002 B1
6473150 Takushima et al. Oct 2002 B1
6493440 Gromatsky et al. Dec 2002 B2
6504713 Pandolfi et al. Jan 2003 B1
6535266 Nemeth et al. Mar 2003 B1
6628355 Takahara Sep 2003 B1
6701143 Dukach et al. Mar 2004 B1
6714410 Wellhofer Mar 2004 B2
6727468 Nemeth Apr 2004 B1
6812851 Dukach et al. Nov 2004 B1
6825828 Burke et al. Nov 2004 B2
6839104 Taniguchi et al. Jan 2005 B2
6850209 Mankins et al. Feb 2005 B2
6885412 Ohnishi et al. Apr 2005 B2
6886942 Okada et al. May 2005 B2
6891135 Pala et al. May 2005 B2
6909486 Wang et al. Jun 2005 B2
6943768 Cavanaugh et al. Sep 2005 B2
6961108 Wang et al. Nov 2005 B2
7015470 Faytlin et al. Mar 2006 B2
7059757 Shimizu Jun 2006 B2
7083285 Hsu et al. Aug 2006 B2
7157838 Thielemans et al. Jan 2007 B2
7161803 Heady Jan 2007 B1
7190416 Paukshto et al. Mar 2007 B2
7190587 Kim et al. Mar 2007 B2
7209349 Chien et al. Apr 2007 B2
7212403 Rockenfeller May 2007 B2
7259964 Yamamura et al. Aug 2007 B2
7269023 Nagano Sep 2007 B2
7284874 Jeong et al. Oct 2007 B2
7452121 Cho et al. Nov 2008 B2
7457113 Kumhyr et al. Nov 2008 B2
7480140 Hara et al. Jan 2009 B2
7535543 Dewa et al. May 2009 B2
7591508 Chang Sep 2009 B2
7602469 Shin Oct 2009 B2
D608775 Leung Jan 2010 S
7667964 Kang et al. Feb 2010 B2
7682047 Hsu et al. Mar 2010 B2
7752858 Johnson et al. Jul 2010 B2
7753567 Kang et al. Jul 2010 B2
7800706 Kim et al. Sep 2010 B2
7813124 Karppanen Oct 2010 B2
7903416 Chou Mar 2011 B2
7995342 Nakamichi et al. Aug 2011 B2
8004648 Dunn Aug 2011 B2
8035968 Kwon et al. Oct 2011 B2
8081465 Nishiura Dec 2011 B2
8102173 Merrow Jan 2012 B2
8142027 Sakai Mar 2012 B2
8208115 Dunn Jun 2012 B2
8223311 Kim et al. Jul 2012 B2
8241573 Banerjee et al. Aug 2012 B2
8248784 Nakamichi et al. Aug 2012 B2
8254121 Lee et al. Aug 2012 B2
8269916 Ohkawa Sep 2012 B2
8270163 Nakamichi et al. Sep 2012 B2
8274622 Dunn Sep 2012 B2
8274789 Nakamichi et al. Sep 2012 B2
8300203 Nakamichi et al. Oct 2012 B2
8320119 Isoshima et al. Nov 2012 B2
8351014 Dunn Jan 2013 B2
8358397 Dunn Jan 2013 B2
8369083 Dunn et al. Feb 2013 B2
8373841 Dunn Feb 2013 B2
8379182 Dunn Feb 2013 B2
8400608 Takahashi et al. Mar 2013 B2
8472174 Idems et al. Jun 2013 B2
8472191 Yamamoto et al. Jun 2013 B2
8482695 Dunn Jul 2013 B2
8497972 Dunn et al. Jul 2013 B2
8590602 Fernandez Nov 2013 B2
8649170 Dunn et al. Feb 2014 B2
8649176 Okada et al. Feb 2014 B2
8654302 Dunn et al. Feb 2014 B2
8678603 Zhang Mar 2014 B2
8693185 Dunn et al. Apr 2014 B2
8700226 Schuch et al. Apr 2014 B2
8711321 Dunn et al. Apr 2014 B2
8749749 Hubbard Jun 2014 B2
8755021 Hubbard Jun 2014 B2
8758144 Williams et al. Jun 2014 B2
8760613 Dunn Jun 2014 B2
8767165 Dunn Jul 2014 B2
8773633 Dunn et al. Jul 2014 B2
8804091 Dunn et al. Aug 2014 B2
8823916 Hubbard et al. Sep 2014 B2
8827472 Takada Sep 2014 B2
8854572 Dunn Oct 2014 B2
8854595 Dunn Oct 2014 B2
8879042 Dunn Nov 2014 B2
8988647 Hubbard Mar 2015 B2
9030641 Dunn May 2015 B2
9089079 Dunn Jul 2015 B2
9119325 Dunn et al. Aug 2015 B2
9119330 Hubbard et al. Aug 2015 B2
9173322 Dunn Oct 2015 B2
9173325 Dunn Oct 2015 B2
9282676 Diaz Mar 2016 B1
9285108 Dunn et al. Mar 2016 B2
9313917 Dunn et al. Apr 2016 B2
9370127 Dunn Jun 2016 B2
9448569 Schuch et al. Sep 2016 B2
9451060 Bowers et al. Sep 2016 B1
9451733 Dunn et al. Sep 2016 B2
9456525 Yoon et al. Sep 2016 B2
9470924 Dunn et al. Oct 2016 B2
9500896 Dunn et al. Nov 2016 B2
9516485 Bowers et al. Dec 2016 B1
9549490 Hubbard Jan 2017 B2
9594271 Dunn et al. Mar 2017 B2
9613548 DeMars Apr 2017 B2
9622392 Bowers et al. Apr 2017 B1
9629287 Dunn Apr 2017 B2
9648790 Dunn et al. May 2017 B2
9655289 Dunn et al. May 2017 B2
9703230 Bowers et al. Jul 2017 B2
9723765 DeMars Aug 2017 B2
9797588 Dunn et al. Oct 2017 B2
9801305 Dunn et al. Oct 2017 B2
9823690 Bowers et al. Nov 2017 B2
9835893 Dunn Dec 2017 B2
9894800 Dunn Feb 2018 B2
20010001459 Savant et al. May 2001 A1
20010019454 Tadic-Galeb et al. Sep 2001 A1
20020009978 Dukach et al. Jan 2002 A1
20020033919 Sanelle et al. Mar 2002 A1
20020050793 Cull et al. May 2002 A1
20020065046 Mankins et al. May 2002 A1
20020084891 Mankins et al. Jul 2002 A1
20020101553 Enomoto et al. Aug 2002 A1
20020112026 Fridman et al. Aug 2002 A1
20020126248 Yoshia Sep 2002 A1
20020148600 Bosch et al. Oct 2002 A1
20020149714 Anderson et al. Oct 2002 A1
20020154255 Gromatzky et al. Oct 2002 A1
20020164944 Haglid Nov 2002 A1
20020164962 Mankins et al. Nov 2002 A1
20020167637 Burke et al. Nov 2002 A1
20030007109 Park Jan 2003 A1
20030020884 Okada et al. Jan 2003 A1
20030043091 Takeuchi et al. Mar 2003 A1
20030104210 Azumi et al. Jun 2003 A1
20030128511 Nagashima et al. Jul 2003 A1
20030214785 Perazzo Nov 2003 A1
20040012722 Alvarez Jan 2004 A1
20040035032 Milliken Feb 2004 A1
20040035558 Todd et al. Feb 2004 A1
20040036622 Dukach et al. Feb 2004 A1
20040036834 Ohnishi et al. Feb 2004 A1
20040103570 Ruttenberg Jun 2004 A1
20040105159 Saccomanno et al. Jun 2004 A1
20040165139 Anderson et al. Aug 2004 A1
20040223299 Ghosh Nov 2004 A1
20050012039 Faytlin et al. Jan 2005 A1
20050012722 Chon Jan 2005 A1
20050062373 Kim et al. Mar 2005 A1
20050073632 Dunn et al. Apr 2005 A1
20050073639 Pan Apr 2005 A1
20050134525 Tanghe et al. Jun 2005 A1
20050134526 Willem et al. Jun 2005 A1
20050213950 Yoshimura Sep 2005 A1
20050229630 Richter et al. Oct 2005 A1
20050237714 Ebermann Oct 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20050286131 Saxena et al. Dec 2005 A1
20060012958 Tomioka et al. Jan 2006 A1
20060018093 Lai et al. Jan 2006 A1
20060034051 Wang et al. Feb 2006 A1
20060056994 Van Lear et al. Mar 2006 A1
20060082271 Lee et al. Apr 2006 A1
20060092348 Park May 2006 A1
20060125998 Dewa et al. Jun 2006 A1
20060132699 Cho et al. Jun 2006 A1
20060177587 Ishizuka et al. Aug 2006 A1
20060199514 Kimura Sep 2006 A1
20060209266 Utsunomiya Sep 2006 A1
20060260790 Theno et al. Nov 2006 A1
20060262079 Seong et al. Nov 2006 A1
20060266499 Choi et al. Nov 2006 A1
20060283579 Ghosh et al. Dec 2006 A1
20070013647 Lee et al. Jan 2007 A1
20070019419 Hafuka et al. Jan 2007 A1
20070030879 Hatta Feb 2007 A1
20070047239 Kang et al. Mar 2007 A1
20070065091 Hinata et al. Mar 2007 A1
20070076431 Atarashi et al. Apr 2007 A1
20070103863 Kim May 2007 A1
20070103866 Park May 2007 A1
20070115686 Tyberghien May 2007 A1
20070139929 Yoo et al. Jun 2007 A1
20070140671 Yoshimura Jun 2007 A1
20070151274 Roche et al. Jul 2007 A1
20070151664 Shin Jul 2007 A1
20070171353 Hong Jul 2007 A1
20070206158 Kinoshita et al. Sep 2007 A1
20070211205 Shibata Sep 2007 A1
20070212211 Chiyoda et al. Sep 2007 A1
20070217221 Lee et al. Sep 2007 A1
20070237636 Hsu Oct 2007 A1
20070267174 Kim Nov 2007 A1
20080055534 Kawano Mar 2008 A1
20080076342 Bryant et al. Mar 2008 A1
20080099193 Aksamit et al. May 2008 A1
20080148609 Ogoreve Jun 2008 A1
20080209934 Richards Sep 2008 A1
20080218446 Yamanaka Sep 2008 A1
20080236005 Isayev et al. Oct 2008 A1
20080267790 Gaudet et al. Oct 2008 A1
20080283234 Sagi et al. Nov 2008 A1
20080285290 Ohashi et al. Nov 2008 A1
20080310116 O'Connor Dec 2008 A1
20090009047 Yanagawa et al. Jan 2009 A1
20090009729 Sakai Jan 2009 A1
20090059518 Kakikawa et al. Mar 2009 A1
20090065007 Wilkinson et al. Mar 2009 A1
20090086430 Kang et al. Apr 2009 A1
20090120629 Ashe May 2009 A1
20090122218 Oh et al. May 2009 A1
20090126906 Dunn May 2009 A1
20090126907 Dunn May 2009 A1
20090126914 Dunn May 2009 A1
20090135365 Dunn May 2009 A1
20090147170 Oh et al. Jun 2009 A1
20090154096 Iyengar et al. Jun 2009 A1
20090174626 Isoshima et al. Jul 2009 A1
20090244472 Dunn Oct 2009 A1
20090279240 Karppanen Nov 2009 A1
20090302727 Vincent et al. Dec 2009 A1
20090306820 Simmons et al. Dec 2009 A1
20100060861 Medin Mar 2010 A1
20100079949 Nakamichi et al. Apr 2010 A1
20100162747 Hamel et al. Jul 2010 A1
20100171889 Pantel et al. Jul 2010 A1
20100182562 Yoshida et al. Jul 2010 A1
20100220249 Nakamichi et al. Sep 2010 A1
20100226091 Dunn Sep 2010 A1
20100232107 Dunn Sep 2010 A1
20100238394 Dunn Sep 2010 A1
20100321887 Kwon et al. Dec 2010 A1
20110001898 Mikubo et al. Jan 2011 A1
20110013114 Dunn et al. Jan 2011 A1
20110019363 Vahlsing et al. Jan 2011 A1
20110051071 Nakamichi et al. Mar 2011 A1
20110058326 Idems et al. Mar 2011 A1
20110075361 Nakamichi et al. Mar 2011 A1
20110083460 Thomas et al. Apr 2011 A1
20110083824 Rogers Apr 2011 A1
20110085301 Dunn Apr 2011 A1
20110114384 Sakamoto et al. May 2011 A1
20110116000 Dunn et al. May 2011 A1
20110116231 Dunn et al. May 2011 A1
20110122162 Sato et al. May 2011 A1
20110141724 Edon Jun 2011 A1
20110261523 Dunn et al. Oct 2011 A1
20120006523 Masahiro et al. Jan 2012 A1
20120012295 Kakiuchi et al. Jan 2012 A1
20120012300 Dunn et al. Jan 2012 A1
20120014063 Weiss Jan 2012 A1
20120020114 Miyamoto et al. Jan 2012 A1
20120038849 Dunn et al. Feb 2012 A1
20120044217 Okada et al. Feb 2012 A1
20120106081 Hubbard May 2012 A1
20120188481 Kang et al. Jul 2012 A1
20120206687 Dunn et al. Aug 2012 A1
20120249402 Kang Oct 2012 A1
20120255704 Nakamichi Oct 2012 A1
20120274876 Cappaert et al. Nov 2012 A1
20120284547 Culbert et al. Nov 2012 A1
20130170140 Dunn Jul 2013 A1
20130173358 Pinkus Jul 2013 A1
20130176517 Kim et al. Jul 2013 A1
20130201685 Messmore et al. Aug 2013 A1
20130258659 Erion Oct 2013 A1
20130279154 Dunn Oct 2013 A1
20130294039 Chao Nov 2013 A1
20140044147 Wyatt et al. Feb 2014 A1
20140085564 Hendren et al. Mar 2014 A1
20140111758 Dunn et al. Apr 2014 A1
20140113540 Dunn et al. Apr 2014 A1
20140313698 Dunn et al. Oct 2014 A1
20140314395 Dunn et al. Oct 2014 A1
20150009627 Dunn et al. Jan 2015 A1
20150253611 Yang et al. Sep 2015 A1
20150264826 Dunn et al. Sep 2015 A1
20150319882 Dunn et al. Nov 2015 A1
20150366101 Dunn et al. Dec 2015 A1
20160041423 Dunn Feb 2016 A1
20160044829 Dunn Feb 2016 A1
20160192536 Diaz Jun 2016 A1
20160195254 Dunn et al. Jul 2016 A1
20160198588 DeMars Jul 2016 A1
20160238876 Dunn et al. Aug 2016 A1
20160242329 DeMars Aug 2016 A1
20160242330 Dunn Aug 2016 A1
20160249493 Dunn et al. Aug 2016 A1
20160302331 Dunn Oct 2016 A1
20170023823 Dunn et al. Jan 2017 A1
20170068042 Dunn et al. Mar 2017 A1
20170074453 Bowers et al. Mar 2017 A1
20170083043 Bowers et al. Mar 2017 A1
20170083062 Bowers et al. Mar 2017 A1
20170111486 Bowers et al. Apr 2017 A1
20170111520 Bowers et al. Apr 2017 A1
20170111521 Bowers et al. Apr 2017 A1
20170127579 Hubbard May 2017 A1
20170140344 Bowers et al. May 2017 A1
20170147992 Bowers et al. May 2017 A1
20170163519 Bowers et al. Jun 2017 A1
20170175411 Bowers et al. Jun 2017 A1
20170188490 Dunn et al. Jun 2017 A1
20170245400 Dunn et al. Aug 2017 A1
20170257978 Diaz Sep 2017 A1
20170332523 DeMars Nov 2017 A1
20180042134 Dunn et al. Feb 2018 A1
20180116073 Dunn Apr 2018 A1
Foreign Referenced Citations (97)
Number Date Country
2011248190 May 2011 AU
2014287438 Jan 2018 AU
2015253128 Mar 2018 AU
2705814 Feb 2018 CA
2947524 Apr 2018 CA
2702363 May 2005 CN
107251671 Oct 2017 CN
1408476 Apr 2004 EP
1647766 Apr 2006 EP
1762892 Mar 2007 EP
1951020 Jul 2008 EP
2225603 Sep 2010 EP
2370987 Oct 2011 EP
2603831 Jun 2013 EP
2801888 Nov 2014 EP
2909829 Aug 2015 EP
3020260 May 2016 EP
3117693 Jan 2017 EP
3259968 Dec 2017 EP
2402205 Dec 2004 GB
402062015 Mar 1990 JP
402307080 Dec 1990 JP
3153212 Jul 1991 JP
H06-2337 Jan 1994 JP
6082745 Mar 1994 JP
8115788 May 1996 JP
8194437 Jul 1996 JP
H08-305301 Nov 1996 JP
8339034 Dec 1996 JP
H09246766 Sep 1997 JP
11160727 Jun 1999 JP
H11296094 Oct 1999 JP
2000-10501 Jan 2000 JP
2001209126 Aug 2001 JP
2002158475 May 2002 JP
2004053749 Feb 2004 JP
2004-199675 Jul 2004 JP
2005017556 Jan 2005 JP
2000131682 May 2005 JP
2005134849 May 2005 JP
2005265922 Sep 2005 JP
2006513577 Apr 2006 JP
2007322718 May 2006 JP
2006148047 Jun 2006 JP
2006163217 Jun 2006 JP
2007003638 Jan 2007 JP
2007-293105 Nov 2007 JP
09307257 Nov 2007 JP
2008010361 Jan 2008 JP
2008292743 Dec 2008 JP
2010024624 Feb 2010 JP
2010-102227 May 2010 JP
2010-282109 Dec 2010 JP
2011-503663 Jan 2011 JP
2011-75819 Apr 2011 JP
2012-133254 Jul 2012 JP
2013-537721 Oct 2013 JP
2014-225595 Dec 2014 JP
2017518526 Jul 2017 JP
2018-511838 Apr 2018 JP
6305564 Apr 2018 JP
200366674 Nov 2004 KR
20050033986 Apr 2005 KR
200401354 Nov 2005 KR
20060016469 Feb 2006 KR
100666961 Jan 2007 KR
1020070070675 Apr 2007 KR
1020070048294 Aug 2007 KR
101764381 Jul 2017 KR
10-1847151 Apr 2018 KR
10-1853885 Apr 2018 KR
10-1868077 Jun 2018 KR
10-1885884 Jul 2018 KR
2513043 Apr 2014 RU
WO2005079129 Aug 2005 WO
WO2007116116 Oct 2007 WO
WO2008050660 May 2008 WO
WO2009065125 May 2009 WO
WO2009065125 May 2009 WO
WO2009135308 Nov 2009 WO
WO2010007821 Feb 2010 WO
WO2010080624 Jul 2010 WO
WO2011069084 Jun 2011 WO
WO2011072217 Jun 2011 WO
WO2011140179 Nov 2011 WO
WO2011150078 Dec 2011 WO
WO2012021573 Feb 2012 WO
WO2012024426 Feb 2012 WO
2013182733 Dec 2013 WO
WO2014062815 Apr 2014 WO
WO2014149773 Sep 2014 WO
WO2014150036 Sep 2014 WO
WO2015168375 Nov 2015 WO
WO2016102982 Jun 2016 WO
WO2016127613 Aug 2016 WO
WO2016133852 Aug 2016 WO
WO2017152166 Sep 2017 WO
Non-Patent Literature Citations (30)
Entry
Itsenclosures, Product Catalog, 2009, 48 pages.
Itsenclosures, Standard Product Data Sheet, 2011, 18 pages.
Sunbritetv, All Weather Outdoor LCD Television Model 4610HD, 2008, 1 page.
Sunbritetv, Introduces Two New All-Weather Outdoor Televisions InfoComm 2008, 7 pages.
Itsenclosures, Viewstation, 2017, 16 pages.
Novitsky, Driving LEDs versus CCFLs for LCD backlighting, Nov. 12, 2007, 6 pages.
Federman, Cooling Flat Panel Displays, 2011, 4 pages.
Zeeff, T.M., EMC analysis of an 18″ LCD monitor, 2000, 1 page.
Vertigo Digital Displays, Innovation on Display FlexVu Totem Brochure, 2014, 6 pages.
Vertigo Digital Displays, FlexVu Totem Shelter, 2017, 2 pages.
Vertigo Digital Displays, All Products Catalogue, 2017,14 pages.
Adnation,Turn Key Advertising Technology Solutions, May 23, 2017, 4 pages.
CIVIQ Smartscapes, FlexVue Ferro 55P/55L, Mar. 16, 2017, 4 pages.
Wankhede, Evaluation of Cooling Solutions for Outdoor Electronics, Sep. 17-19, 2007, 6 pages.
Bureau of Ships Navy Department, Guide Manual of Cooling methods for Electronic Equipment, Mar. 31, 1955, 212 pages.
CIVIQ, Invalidity Claim Charts, Appendix A-Appendix D, Jan. 24, 2018, 51 pages.
CIVIQ, Invalidity Contentions, Jan. 24, 2018, 51 page
Scott, Cooling of Electronic Equipment, Apr. 4, 1947, 119 pages.
Sergent, Thermal Management Handbook for Electronic Assemblies, Aug. 14, 1998, 190 pages.
Steinberg, Cooling Techniques for Electronic Equipment First Edition, 1980, 255 pages.
Steinberg, Cooling Techniques for Electronic Equipment Second Edition, 1991, 299 pages.
Yeh, Thermal Management of Microelectronic Equipment, Oct. 15, 2002, 148 pages.
CIVIQ, Invalidity Claim Chart, Appendix I, Mar. 22, 2018, 4 pages.
CIVIQ, Invalidity Claim Charts, Appendix F to H, Mar. 22, 2018, 18 pages.
Yung, Using Metal Core Printed Circuit Board as a Solution for Thermal Management article, 2007, 5 pages.
Mentley, David E., State of Flat-Panel Display Technology and Future Trends, Proceedings of the IEEE, Apr. 2002, vol. 90, No. 4, pp. 453-459.
Rohsenow, Warren M., Handbook of Heat Transfer, Third Edition, 1998, select chapters, 112 pages, McGraw-Hill.
The American Heritage College Dictionary, Third Edition, 1993, excerpt, 3 pages, Houghton Mifilin Company.
CIVIQ Smartscapes LLC. v Manufacturing Resources International, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,854,572 including Declaration of Greg Blonder in Support of Petition, Curriculum Vitae of Greg Blonder and Prosecution History of U.S. Pat. No. 8,854,572, Petition filed Mar. 14, 2018, 427 pages.
CIVIQ Smartscapes LLC. v Manufacturing Resources International, Inc., Defendant's Amended Answer and Countercliams to Plaintiffs First Amended Complaint, Filed Apr. 24, 2018, 240 pages.
Related Publications (1)
Number Date Country
20180364519 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
61843706 Jul 2013 US
Continuations (2)
Number Date Country
Parent 15289563 Oct 2016 US
Child 16114049 US
Parent 14326059 Jul 2014 US
Child 15289563 US