Cooling system integrated with vehicle battery tray

Information

  • Patent Grant
  • 11155150
  • Patent Number
    11,155,150
  • Date Filed
    Tuesday, September 1, 2020
    4 years ago
  • Date Issued
    Tuesday, October 26, 2021
    3 years ago
Abstract
A battery support tray for an electric vehicle includes a tray floor structure that has an upper surface that is configured to interface with battery modules. The battery support tray also includes a plurality of cooling features that integrally extend along portions of the tray floor structure that are configured to draw heat away from the battery modules supported at the upper surface of the tray floor structure. The tray floor structure may also have a cross-sectional profile that is substantially consistent longitudinally along a length of the tray floor structure or laterally across a width of the tray floor structure, such as formed from extruding a metal, such as an aluminum alloy.
Description
TECHNICAL FIELD

The present disclosure generally relates to vehicle battery support structures, and more particularly to cooling systems or devices for batteries stored in such trays or structures, such as for battery packs or modules or the like that power electric and hybrid-electric vehicles.


BACKGROUND

Electric and hybrid-electric vehicles are typically designed to locate and package battery modules on the vehicle in a manner that protects the batteries from damage when driving in various climates and environments. These batteries are also located and packaged to protect the batteries from different types of impacts. It is also relatively common for vehicle frames to locate batteries in a portion of the frame or sub-structure of the vehicle, such as between the axles and near the floor of the vehicle, which can distribute the weight of the batteries across the vehicle frame and establish a low center of gravity for the vehicle.


SUMMARY

The present disclosure provides a battery tray or structure for an electric vehicle, such as an all-electric or hybrid-electric vehicle, that has a tray floor structure that may be integrated with cooling features for cooling batteries contained in or supported by the battery tray or structure. The cooling features may include liquid coolant channels that may be integrally formed in enclosed portions of the battery tray, such as within the tray floor structure or perimeter wall members of the tray, so as to provide a cooling effect to battery modules contained in the tray. Such integrally formed coolant channels may remove or reduce coolant lines that would otherwise be contained within the battery containment area of the tray. The battery tray may provide one or more tray sections that may be extruded, such as with aluminum, or pultruded, such as with a resin and composite substrate, to form a cross-sectional profile that is substantially consistent in the direction of formation, such as to provide openings that may function as coolant channels for cooling the battery modules. Also, the peripheral wall members of the battery tray may include hollow areas that are similarly configured to function as coolant channels that may be connected, such as via a coupling, with coolant channels in the floor structure. Further supplemental cooling elements, such as cooling plates, may be attached to the coolant channels to direct coolant to a desired location, such as to a side portion or an internal portion of a battery module.


According to one aspect of the present disclosure, a battery support tray for a vehicle includes a tray floor structure that has an upper surface that is configured to interface with battery modules. The battery support tray also includes a plurality of cooling features that integrally extend along portions of the tray floor structure that are configured to draw heat away from the battery modules supported at the upper surface of the tray floor structure. The tray floor structure may also have a cross-sectional profile that is substantially consistent longitudinally along a length of the tray floor structure or laterally across a width of the tray floor structure, such as formed from extruding a metal, such as an aluminum alloy.


According to another aspect of the present disclosure, a battery support tray for a vehicle includes a floor structure that has a plurality of enclosed coolant channels that extend within portions of the floor structure. The coolant channels are configured to carry liquid coolant that draws heat away from batteries supported at the floor structure. A frame member may be coupled with an outer portion of the floor structure, such as along an edge of the floor structure, where the frame member may include a passage that interconnects with at least one of the enclosed coolant channels for carrying the liquid coolant. Optionally, the tray floor structure may have panel sections that each include a cross-sectional profile that is substantially consistent laterally across a width of the tray floor structure, where the panel sections may attach together and extend laterally between side reinforcement members that at least partially form a peripheral sidewall that borders a battery containment area.


According to yet another aspect of the present disclosure, a cooling system for a vehicle battery support tray includes a tray floor structure that is configured to support an array of battery modules. The battery support tray may also include a protective cover that is disposed over the tray floor to enclose a battery containment area for the battery modules. A plurality of coolant channels may be disposed within the tray floor structure that are configured to carry liquid coolant. The cooling system may also provide a heat exchanger may be arrange external to the battery containment area and a pump that is connected between the heat exchanger and the coolant channels for moving the liquid coolant as it draws heat away from battery modules disposed in the battery containment area. Optionally, the battery modules may include coolant channels that interconnect with the coolant channels disposed in the tray floor structure to further circulate the liquid coolant and draw heat away from battery modules.


These and other objects, advantages, purposes, and features of the present disclosure will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevation view of a battery support tray secured at a vehicle;



FIG. 2 is an upper perspective view of a battery support tray with a cooling system in accordance with the present disclosure;



FIG. 2A is an exploded perspective view of the battery support tray shown in FIG. 2;



FIG. 3 is an enlarged upper perspective view of a lateral end portion of the floor structure shown in FIG. 2A, showing interlocking seams between panel sections;



FIG. 3A is an end elevation view of a panel section shown in FIG. 3;



FIG. 4 is an upper perspective view of a lateral end portion of an additional example of a floor structure that shows an alternative coolant channel arrangement;



FIG. 4A is an end elevation view of a panel section shown in FIG. 4;



FIG. 5 is an upper perspective view of a lateral end portion of an additional example of a floor structure that shows a coolant channel disposed in a cross member;



FIG. 5A is an end elevation view of a panel section shown in FIG. 5;



FIG. 6 is an upper perspective view of a lateral end portion of a further example of a floor structure that shows coolant channels disposed in a cross member;



FIG. 6A is an end elevation view of panel section shown in FIG. 6;



FIG. 7 is a cross-sectional view of a fluid coupling interface between a frame member and a floor panel of the tray floor structure shown in FIG. 2;



FIG. 8 is a cross-sectional upper perspective view of an additional example of a tray floor structure that attaches directly to rocker rails of a vehicle frame;



FIG. 9 is a cross-sectional upper perspective view of yet an additional example of a tray floor structure that attaches directly to rocker rails of a vehicle frame;



FIG. 10 is a cross-sectional upper perspective view of an additional example of a tray floor structure that shows battery cell dividers extending upward into battery modules from the tray floor structure;



FIG. 11 is an upper perspective view of a further example of a battery support tray having an array of battery modules disposed within the battery containment area;



FIG. 11A is an upper perspective view of the battery support tray shown in FIG. 11 with the battery modules and tray structure shown in phantom lines to show coolant channels;



FIG. 12 is an exploded upper perspective view of a battery module shown in FIG. 10, showing coolant channels in the tray floor structure and the module end castings;



FIG. 13 is a top plan view of the battery support tray shown in FIG. 11A;



FIG. 13A is an enlarged view of the section denoted as section A on the battery support tray shown in FIG. 13;



FIG. 14 is a bottom perspective view of an additional example of a battery support tray that has coolant channels and an illustrated direction of coolant follow;



FIG. 14A is a perspective view of the direction of coolant follow shown in FIG. 14;



FIG. 15 is a cross-sectional view of an end cap that attaches to the floor structure of the battery support tray shown in FIG. 14; and



FIG. 16 is a bottom perspective view of another example of a battery support tray showing coolant channels that integrate plate coolers on battery modules;



FIG. 17 is an exploded upper perspective view of a plate cooler for a battery module;



FIG. 18 is an upper perspective view of the battery support tray shown in FIG. 16, showing coolant flow paths within engaged plate coolers;



FIG. 19 is a coolant circuit diagram that corresponds with the coolant flow paths shown in FIG. 18; and



FIG. 20 is an exploded upper perspective view of an additional example of a cooling system integrated with a floor structure and battery of a battery support tray.





DETAILED DESCRIPTION

Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle battery tray or structure 10 is provided for supporting and protecting batteries, such as battery packs or modules or the like, for an all-electric or hybrid-electric vehicle 12 (FIG. 1). The battery tray 10 may be attached or mounted at or near the lower frame or rocker rails of the vehicle frame, such as shown in FIGS. 8 and 9, so as to locate the contained battery modules 14 (FIG. 3A) generally in a central location on the vehicle 12, away from probable impact locations, and also in a location that evenly distributes the weight of the battery modules 14 and provides the vehicle with a relatively low center of gravity. The battery tray 10 may span below the vehicle 12, such as shown in FIG. 1 with a generally thin profile as defined between the upper and lower surfaces 16, 18, so as to accommodate various vehicle body types and designs. It is contemplated that the battery tray 10 may be disengaged or detached from the rocker rails or other engaged portion of the vehicle frame, such as for replacing or performing maintenance on the battery module 14 or related electrical components.


The battery tray 10 includes a tray floor structure 20 that may be engineered or configured to provide integral cooling features for cooling the battery modules 14 contained in or supported by the battery tray 10. The cooling features may be integrally formed in portions of the battery tray 10, such as within the tray floor structure 20 or perimeter wall members 26, so as to provide a cooling effect to battery modules 14 contained in the tray 10. As shown in FIG. 3A, the tray floor structure 20 battery support tray 10 may include an upper surface 20a that is configured to interface with battery modules 14. The cooling features may integrally extend along portions of the tray floor structure 20 that are configured to draw or transfer heat away from the battery modules 14 supported at the upper surface 20a of the tray floor structure 20. For example, the cooling features may extend within the tray floor structure, such as the coolant channels shown in FIGS. 2-7. As another example, the cooling features may extend downward from the tray floor structure, such as the heat sink fins shown in FIG. 8. Further, the cooling features may extend upward from the tray floor structure to more effectively transfer heat downward, such as the battery cell unit dividers shown in FIG. 10, or any combination of these or other integrally formed cooling features.


The tray floor structure 20 may also have a cross-sectional profile that is substantially consistent in a direction of formation, such as along a length of the tray floor structure or laterally across a width of the tray floor structure. In doing so, the cooling features may be formed with a consistent shape along the tray floor structure, such as to have a cross-sectional profile that is substantially consistent longitudinally along a length of the tray floor structure (FIG. 9) or laterally across a width of the tray floor structure (FIGS. 2-7). The tray floor structure 20 may be formed by extruding a metal, such as an aluminum alloy. It is also contemplated that additional embodiments of a tray floor structure may be formed by pultruding various types of fibers through a resin to provide a composite-based structure. Such a pultruded tray floor structure may have openings or channels formed within and along its consistent cross-sectional shape, which may function as coolant channels, such as by providing the openings or channels with pipes or conduit liners or the like.


As shown in FIGS. 2-7, the cooling features may include liquid coolant channels 22, 24 that may be integrally formed in enclosed portions of the battery tray 10, such as within the tray floor structure 20 or perimeter wall members 26, so as to transverse liquid coolant through the channels as part of a cooling circuit to provide a cooling effect to battery modules 14 contained in the tray 10. Such integrally formed coolant channels 22, 24 may remove or reduce coolant lines that may otherwise be contained within the battery containment area 28 of the battery tray 10 to provide liquid cooling. As shown in FIG. 2, the battery containment area 28 of the tray 10 may be at least partially surrounded or bordered by a side reinforcement member or peripheral frame member 26 that may be coupled with an outer portion of the floor structure 20, such as along a lateral edge of the floor structure 20. The peripheral frame member 26 may also include coolant passages or channels 24 that interconnects with at least one of the enclosed coolant channels 22 of the floor structure 20 for transferring the liquid coolant through the portions of the battery tray 10 desired to be cooled.


The battery tray 10 may provide one or more sections that may be extruded, such as with aluminum, or pultruded, such as with a resin and composite substrate, to form a cross-sectional profile that is substantially consistent in the direction of formation. As illustrated in FIG. 2A, the tray floor structure 20 may have panel sections 32a, 32b, 32c, 32d that each include the same or similar cross-sectional profile that is taken transverse to the direction of formation and that is substantially consistent laterally across a width of the tray floor structure 20. The illustrated panel sections may attach together at seams, such as via welding, where the seams may also extend laterally across the width of the tray floor structure 20. As shown in FIG. 3, the seams 30 may be an overlapping or interlocking connection, such as to assist in welding or attaching in a manner that provides a water-tight seal. The illustrated seam overlap has a flange 33 that protrudes from a lower edge area of the panel section and an upward protruding recess 34 at the lower edge area of the adjacent panel section, such that the flange 33 is configured to mate with the recess 34. The illustrated overlapping arrangement may be reversed in additional embodiments with the flange and recess at upper edge areas of the panels or may be an alternative configuration of overlapping or interlocking features.


The floor panel structure 20 may also include front and rear end panel sections 36a, 36b, such as shown in FIG. 2A to provide enclosed ends to the battery containment area 28. These end panel sections 36a, 36b may have a wall portion 38 that attaches with the side reinforcement members 26 to further form a sealed peripheral sidewall. Also, the end panel sections 36a, 36b may have a base portion 40 that attaches with the corresponding base portion of the adjacent panel section, such as to generally align the upper surfaces across the seams of the adjacent panel sections. Thus, the end panel sections 36a, 36b may form an overlapping or interlocking connection with the forward and rearward most interior panel sections 32a, 32d. The front end panel section 36a has a recess 44 at the lower edge area of the base portion to interface and mate with the flange 33 that protrudes forward from a lower edge area of the panel section 32a. Similarly, the rear end panel section 36b has a flange 46 at the lower edge area of the base portion to interface and mate with the recess 34 that protrudes upward at a lower edge area of the panel section 32d.


The panel sections, such as further shown in FIG. 2A, may each have a cross member 48 portion that integrally extends upward from the base portion of the panel section. The cross member portions 48 extend laterally between and engage interior surfaces of the side reinforcement members 26, such as via welding, adhesive, and/or fasteners. The structure of the cross member portion 48 may stiffen the base portion of the panel for supporting the battery weight, may provide cross-car load transfer paths for lateral impacts and the like, and may serve as a contamination barrier between sections of the battery containment area, among other potential purpose. Accordingly, the shape and thickness of the cross member portions 48 of the panels may be configured for the desire characteristics, such as based on the battery module layout, tray design, and design of the base portion of the floor structure. To provide further distribution of liquid coolant near and around the battery modules, the cross member portions 48″ of the panel sections may also provide one or more integral coolant channels 23″, such as shown at an upper edge area of the cross member portions 48″ in FIGS. 5 and 5A. As also shown in FIGS. 6 and 6A, the panel sections with integrated cross members 48″′ may be situated between panel sections without cross members. The integrated cross member 48′″ shown in FIGS. 6 and 6A has integrated coolant channels 23 in the cross member portion.


The panel sections may attach between the peripheral frame members 30, such as shown in FIG. 2A, where the panel that at least partially form a peripheral sidewall that borders the battery containment area 28. It is understood that the attachment of the panel sections to each other and to the side reinforcement members may be done by various forms of welding, adhesive, fasteners, or the like or combinations thereof to provide a stable and sealed attachment interface. Also, as shown in FIG. 2A, a sealing member may be disposed about the upper portion of the seam between the peripheral frame members 30 and the base portion of the panel sections 32a, 32b, 32c, 32d. To accommodate space for this sealing member, the cross-member portions may each include a notch at the interface of the cross-member portion and the base portion of the panel sections, such as shown in FIGS. 3 and 4. The peripheral frame member in additional embodiments may, however, include various cross-sectional profile shapes, thicknesses, hollow area configurations and the like.


With further reference to FIG. 2A, the peripheral frame member 26 may include a flange 50 at the lower edge area that engages and supports the lower lateral edges of the floor panel structure 20. The lower edge area of the peripheral frame member 30 may also include a lateral indentation 52 along the frame member for matably receiving the lateral edges of the floor panel structure 20. As shown in FIG. 7, the area provided at the lateral indention 52 also provides space for couplings or fittings 54 to engage between the coolant channels 22 in the floor structure and the coolant passages or channels 24 that extend longitudinally along the peripheral frame member 26. The couplings or fittings may be threaded, press-fit, adhered, or welded attachments or combinations thereof, such as the illustrated fitting 54 that has a threaded engagement 56 with the peripheral frame member 26 and a connection formed at the floor structure by expandable sealant adhesive 58 that may expand from the application of heat, such as heat generated by welding the floor structure 20 to the frame member 26. It is also understood that the passages or channels, such as the channel 24 extending along the peripheral frame member 26 may be integral channels that do not require any liners or inserts to function as a flow channel or may house an inserted tube or pipe or other conduit piece, such as a conduit made of rubber or plastic, which may be less susceptible to damage than relying entirely on the integrated channels.


The coolant channels 22 formed in the floor structure 20 may be formed in various shapes and arrangements to provide the channels at the desired locations for efficiently distributing the coolant to effectuate heat transfer from the battery modules. For example, as shown in FIGS. 3 and 3A, the channels 22 are located at a vertically offset position that is closer to the upper surface 20a of the floor structure than the lower surface. Further, a mass of conductive material 60 is disposed between directly between the coolant channel and the upper surface, while an air gap 62 is disposed directly between the coolant channel 22 and the lower surface of the floor structure. The air gap 62 is formed by opposing support legs 64 that extend diagonally between the coolant channel 22 and a lower panel section of floor structure. As another example, as shown in FIGS. 4 and 4A, the coolant channels 22′ are similarly disposed at a vertically offset position that is closer to the upper surface 20a′ of the floor structure than the lower surface. The material surrounding the coolant channels 22′ in FIGS. 4 and 4A is integrated with an upper panel section of the floor structure, while a spacer piece or leg 64′ is provided between the material surrounding the coolant channels and the lower panel section. Thus, there may be more conductive material provided between the coolant channel and the upper surface that supports the battery modules and the lower surface of the floor structure.


Referring now to FIGS. 8 and 9, the tray floor structure may be mounted directly to the frame or rocker rails 166, 266. This, the supportive structure of the tray and the cooling features of the tray may be integrated with the floor structure, so as to illuminate peripheral frame members of the tray. The cooling features may integrated into the tray floor structure, for example as shown in FIG. 8 by providing downward protruding fins 168. These fins 168 can act provide heat dissipation from the batteries 114 similar to a heat sink, such as aided by air flow under the vehicle from movement of the vehicle. Also, the fins 168 can provide longitudinal stiffness to the floor structure 120, such as to otherwise reduce or eliminate demands on an outer frame structure. It is understood that the fins 168 may also or alternatively be oriented in a lateral direction relative to the vehicle and may be alternatively shaped and structured to increase surface area for airflow contact. Further, it is contemplated that structural and heat dissipating fins may be incorporated into the other illustrated floor structures disclosed herein and other various floor structures within the scope of the present disclosure.


Another example of a tray floor structure mounted directly to the frame or rocker rails 266 is shown in FIG. 9, which also illustrates longitudinally disposed coolant channels 222 integrally extending along the tray floor structure 220. The coolant channels 222 that are shown in FIG. 9 are provided with separate coolant lines, such as pipes or tubes, that are disposed within some of the coolant channels 222 to transfer the coolant longitudinally along the tray, such as to allow vertically oriented openings in the upper surface of the floor tray structure 220 to access the coolant lines, such as for cooling an individual battery module or set of modules.


A shown in FIG. 10, the tray floor structure 320 may also or alternatively be integrated with the structure of the battery modules 314. The battery modules 314 illustrated in FIG. 10 include an outer housing 370 that has four walls 372 attached to the upper surface of the tray floor structure 320 and a cover 374 attached around the upper edges of the walls to enclose an array of battery cell units 376, such as pouches or the like. The tray floor structure includes dividers 378 that integrally protrude upward from the upper surface of the tray floor within the module area surrounded by the housing walls 372 and cover 374. The dividers 378 may interface with vertical surfaces of the battery cell units 376 so as to dissipate or transfer heat downward from the battery cell units into the tray floor structure, which may have integrated coolant channels 322, as shown in FIG. 10.


Further supplemental cooling elements, such as additional cooling lines or cooling plates, may be attached to the coolant channels formed into the floor structure to direct the coolant to a desired location, such as at an additional surface of a battery module. With reference to FIGS. 11-13A, the battery modules 414 may include end castings 480 that may be configured with an integral coolant channel 482, whereby the end castings 480 may each have couplings that engage the coolant channels in the floor structure. As shown in FIG. 12, the end casting 480 may have downward extending protrusions 484 that engage openings or ports extending through the upper surface of the floor structure 420 to interconnect with the coolant channels. The illustrated end castings 480 may be arranged as opposing walls of the battery module 414, whereby support rods 486 may extend between the end castings 480 to engage a series of vertically oriented battery cell units 476. The end castings may be drawn toward each other to hold the battery cell units together, such as by threadably tightening the rods and the rod interface with the end castings. The coolant channels extending with the end castings may connect with the coolant channels in the floor structure so that the coolant flows through the each end casting in series, such as shown in FIGS. 13 and 13A. It is contemplated that the coolant flow in additional embodiments may be differently arranged from that shown in FIG. 13, such as with different oriented flow channels disposed in the floor structure.


As shown in FIGS. 14 and 14A an additional embodiment shows a coolant flowing into the tray floor structure 520 at a centrally located inlet and dissipating laterally outward through a series of serpentine channels 522 that lead to outlets disposed at or near the laterally outermost portion of the tray floor structure, such as that portion that attaches with the tray peripheral walls or the vehicle frame rails. The curved ends 522a of the serpentine channels may be provided by an end cap 588, such as shown in FIG. 15, that have curved coolant channels and through holes for connecting the end cap 588 to the floor, in a manner that aligns the openings of curved channels 522a in the end cap with the channels in the floor, which may be extruded to provide linear coolant channels. Such an end cap 588 arranged, as shown in FIG. 14, may be utilized for various embodiments or portions of the battery tray, such as ends of the tray floor structure and plate coolers. Battery cells may heat up relatively uniformly from their core, whereby battery packs or modules may subsequently heat up from their center, such that the temperature profile may fall to its outer boundaries, as shown in the heat map overlaid on the lower surface of the tray floor structure shown in FIG. 14. Accordingly, the flow pattern shown in FIGS. 14 and 14A provide cooling flow that starts with cold coolant liquid or medium coming from external heat exchanges to the center of the tray and distributing outwards to increase cooling efficiency.


The cooling provided by the coolant channels integrated into the tray floor structure may be supplemented or replaced by accessory cooling systems, such as a cooling plate system 621 shown in FIGS. 18 and 19. As shown in FIG. 17, a cooling plate 690 may have an inlet 692 and an outlet 693, such as a plug that engages a hole or port in the tray floor structure. The inlet 692 and outlet 693 lead to a body 694 or housing that has a series of flow channels so as to distribute the coolant within the body of the cooling plate. The channels within the body of the cooling plate may be machines or extruded, whereby in extrusion the interior channels can be capped off at the sides with a cover 695 or plate, as shown in FIG. 17. The inlet and out may be engaged with a separate loop of coolant channels, such as shown in FIGS. 16 and 18, whereby separate loops that engage the plate coolers are integrated on each side of the tray floor structure or battery pack. The separate loops can run through a common external heat exchanger, however they may have separate flow pumps to individually control flow rates. It is understood that the size of the cooling plate can be custom to the battery module or tray design.


As shown in FIGS. 18 and 19, the coolant channels may be disposed within the tray floor structure that are configured to carry liquid coolant. The cooling system may also provide a heat exchanger 696 may be arrange external to the battery containment area and a pump 697 that is connected between the heat exchanger 696 and the coolant channels for moving the liquid coolant as it draws heat away from the plate coolers disposed at the battery modules in the battery containment area. A controller 698 may be connected to temperature sensors 699 at the plate coolers and to the coolant pump to regulate the coolant flow for achieving the desire temperatures at the plate coolers.


With reference to another example of integrating cooling features with a tray floor structure 720, such as shown in FIG. 20, a battery module 714 has an inlet 792 and an outlet 793 that are engaged with coolant channels 722 disposed in the tray floor structure 720. Instead of passing coolant through channels in the floor structure 720 to create a cold plate, the structural channels 722 in the tray structure 720 pass coolant to the battery module 714 itself. As shown in FIG. 20, the channels 722 extend laterally across the tray, similar to those shown in FIG. 3.


As illustrated in FIG. 20, the tray floor structure 720 may have panel sections 732a, 732b that each include the same or similar cross-sectional profile that is taken transverse to the direction of formation and that is substantially consistent laterally across a width of the tray floor structure 720. The illustrated panel sections may attach together at seams, such as via welding, where the seams may also extend laterally across the width of the tray floor structure 720. As shown in FIG. 20, the seams 730 may be an overlapping or interlocking connection, such as to assist in welding or attaching in a manner that provides a water-tight seal. The illustrated seam overlap has a flange 733 that protrudes from a lower edge area of the panel section and an upward protruding recess 734 at the lower edge area of the adjacent panel section, such that the flange 733 is configured to mate with the recess 734.


The panel sections 732a, 732b, such as shown in FIG. 20, may each have a cross member 748 portion that integrally extends upward from the base portion of the panel section. The structure of the cross member portion 748 may stiffen the base portion of the panel for supporting the battery weight, may provide cross-car load transfer paths for lateral impacts and the like, and may serve as a contamination barrier between sections of the battery containment area 728, among other potential purposes. Accordingly, the shape and thickness of the cross member portions 748 of the panels may be configured for the desire characteristics, such as based on the battery module layout, tray design, and design of the base portion of the floor structure.


With further reference to FIG. 20, the panel sections 732a, 732b may attach between peripheral frame members of the tray structure, where the panel that at least partially form a peripheral sidewall that borders the battery containment area. It is understood that the attachment of the panel sections to each other and to the side reinforcement members may be done by various forms of welding, adhesive, fasteners, or the like or combinations thereof to provide a stable and sealed attachment interface. The peripheral frame members may have hollow interiors that engage with the channels 722 of the panel sections 732a, 732b at the interface, such as similar to the interface shown in FIG. 7. However, each panel section may have an end portion of one of the channels 722 that is plugged, such as with a plug member 723, to entirely or substantially prevent the follow the coolant through the plugged channel. The adjacent channel 722 in the adjacent panel section may however be open, such as to allow coolant to flow into the channel of the panel section from the peripheral member. For example, the panel section 732a may have an open channel 722 to receive coolant, while the adjacent channel 722 of the adjacent panel section 732b may have a plug member 723. Thus, the battery containment area 728 between the cross member portions 748 may receive a batter module 714 that engages the adjacent coolant channels 722, such as via quick disconnect (QD) connectors at the inlet 792 and the outlet 793 of the batter module 714. In this arrangement, the coolant flows into the inlet 792, circulates through the battery module 714, and exits through another QD connector at the outlet 793 disposed at the other end of the battery module 714. This coolant then exits the battery module into the channel 722 with the plugged end and flows in the floor and out to the return channel disposed at the opposing frame member or side rail.


In example shown in FIG. 20, aluminum extruded floor panels with integrated cross-car members and cooling channels can accommodate any vehicle width by simply varying the length of the extrusion. Also, the length of the battery enclosure could be incrementally changed by the trim and number of floor panels used. Depending on the type of cooling method used, aluminum or composite materials could be used to tailor the design for cost, weight and performance.


It is also contemplated that additional embodiments of a tray floor structure may be formed by pultruding various types of fibers through a resin to provide a composite-based structure. Such a pultruded tray floor structure may have openings or channels formed within and along its consistent cross-sectional shape, which may function as coolant channels, such as by providing the openings or channels with pipes or conduit liners or the like. Moreover, the battery tray may be formed with more or fewer tray sections from the embodiments disclosed herein.


Several different attachment techniques and configurations may be used to permanently or releasable secure the battery support structure to a vehicle frame, such as below a floor of the vehicle and generally between the axles. Further, with respect to the general installation or attachment or formation, the steps discussed herein may be performed in various different sequences from those discussed to result in engaging, disengaging, or forming the battery support structure or components thereof.


For purposes of this disclosure, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the orientation shown in FIG. 1. However, it is to be understood that various alternative orientations may be provided, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in this specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Changes and modifications in the specifically described embodiments may be carried out without departing from the principles of the present disclosure, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law. The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.

Claims
  • 1. A battery support tray for a vehicle, said battery support tray comprising: a peripheral sidewall comprising a pair of tray frame members that border opposing sides of a battery containment area; anda tray floor structure comprising a plurality of elongated floor sections disposed parallel and adjacent to each other and each having a length spanning between the pair of tray frame members below the battery containment area,wherein the plurality of elongated floor sections each comprise a cross-sectional profile that is consistent along the length of the respective elongated floor section,wherein the cross-sectional profile of each of the plurality of elongated floor sections comprises (i) a panel portion having an upper surface that thermally couples with battery modules in the battery containment area and (ii) a conduit portion integrally formed with the panel portion and disposed below the panel portion, andwherein the conduit portion of the cross-sectional profile encloses a coolant channel that integrally extends along the length of the respective elongated floor section.
  • 2. The battery support tray of claim 1, wherein the length of each of the plurality of elongated floor sections extends laterally across a width of the tray floor structure.
  • 3. The battery support tray of claim 2, wherein each of the plurality of elongated floor sections comprises an aluminum extrusion.
  • 4. The battery support tray of claim 1, wherein the coolant channels comprise a circular cross-sectional shape.
  • 5. The battery support tray of claim 1, wherein the coolant channels are disposed at a vertically offset position that is closer to the upper surface of the tray floor structure than a lower, downward-facing surface.
  • 6. The battery support tray of claim 1, wherein ends of the plurality of elongated floor sections are attached at the pair of tray frame members.
  • 7. The battery support tray of claim 1, wherein the coolant channels fluidly connect with a longitudinal channel in the pair of tray frame members.
  • 8. The battery support tray of claim 1, wherein each of the plurality of elongated floor sections comprises a cross member portion integrally extending upward from the panel portion and spanning laterally across the tray floor structure between the pair of tray frame members.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part application of International Application No. PCT/US2019/019964, filed Feb. 28, 2019, which claims benefit and priority to U.S. provisional application Ser. No. 62/637,155, filed Mar. 1, 2018, which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (537)
Number Name Date Kind
3708028 Hafer Jan 1973 A
3930552 Kunkle et al. Jan 1976 A
3983952 McKee Oct 1976 A
4174014 Bjorksten Nov 1979 A
4252206 Burkholder et al. Feb 1981 A
4317497 Alt et al. Mar 1982 A
4339015 Fowkes et al. Jul 1982 A
4506748 Thomas Mar 1985 A
5015545 Brooks May 1991 A
5198638 Massacesi Mar 1993 A
5378555 Waters et al. Jan 1995 A
5390754 Masuyama et al. Feb 1995 A
5392873 Masuyama et al. Feb 1995 A
5476151 Tsuchida et al. Dec 1995 A
5501289 Nishikawa et al. Mar 1996 A
5513721 Ogawa et al. May 1996 A
5523666 Hoelzl et al. Jun 1996 A
5534364 Watanabe et al. Jul 1996 A
5549443 Hammerslag Aug 1996 A
5555950 Harada et al. Sep 1996 A
5558949 Iwatsuki et al. Sep 1996 A
5561359 Matsuura et al. Oct 1996 A
5567542 Bae Oct 1996 A
5585204 Oshida et al. Dec 1996 A
5585205 Kohchi Dec 1996 A
5612606 Guimarin et al. Mar 1997 A
5620057 Klemen Apr 1997 A
5678760 Muso Oct 1997 A
5709280 Beckley et al. Jan 1998 A
5736272 Veenstra et al. Apr 1998 A
5760569 Chase, Jr. Jun 1998 A
5833023 Shimizu Nov 1998 A
5853058 Endo et al. Dec 1998 A
5866276 Ogami et al. Feb 1999 A
5934053 Fillman et al. Aug 1999 A
6040080 Minami et al. Mar 2000 A
6079984 Torres et al. Jun 2000 A
6085854 Nishikawa Jul 2000 A
6094927 Anazawa et al. Aug 2000 A
6109380 Veenstra Aug 2000 A
6130003 Etoh et al. Oct 2000 A
6158538 Botzelmann et al. Dec 2000 A
6188574 Anazawa Feb 2001 B1
6189635 Schuler et al. Feb 2001 B1
6220380 Mita et al. Apr 2001 B1
6227322 Nishikawa May 2001 B1
6260645 Pawlowski et al. Jul 2001 B1
6402229 Suganuma Jun 2002 B1
6406812 Dreulle et al. Jun 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6541151 Minamiura et al. Apr 2003 B2
6541154 Oogami et al. Apr 2003 B2
6565836 Ovshinsky et al. May 2003 B2
6598691 Mita et al. Jul 2003 B2
6648090 Iwase Nov 2003 B2
6668957 King Dec 2003 B2
6736229 Amori et al. May 2004 B1
6811197 Grabowski et al. Nov 2004 B1
7004274 Shibasawa et al. Feb 2006 B2
7017361 Kwon Mar 2006 B2
7070015 Mathews et al. Jul 2006 B2
7128999 Martin et al. Oct 2006 B1
7201384 Chaney Apr 2007 B2
7207405 Reid et al. Apr 2007 B2
7221123 Chen May 2007 B2
7249644 Honda et al. Jul 2007 B2
7267190 Hirano Sep 2007 B2
7323272 Ambrosio et al. Jan 2008 B2
7401669 Fujii et al. Jul 2008 B2
7405022 Kang et al. Jul 2008 B2
7412309 Honda Aug 2008 B2
7416039 Anderson et al. Aug 2008 B1
7424926 Tsuchiya Sep 2008 B2
7427156 Ambrosio et al. Sep 2008 B2
7501793 Kadouchi et al. Mar 2009 B2
7507499 Zhou et al. Mar 2009 B2
7520355 Chaney Apr 2009 B2
7610978 Takasaki et al. Nov 2009 B2
7654351 Koike et al. Feb 2010 B2
7654352 Takasaki et al. Feb 2010 B2
7661370 Pike et al. Feb 2010 B2
7686111 Koenekamp et al. Mar 2010 B2
7687192 Yoon et al. Mar 2010 B2
7713655 Ha et al. May 2010 B2
7749644 Nishino Jul 2010 B2
7807288 Yoon et al. Oct 2010 B2
7823671 Inoue Nov 2010 B2
7854282 Lee et al. Dec 2010 B2
7858229 Shin et al. Dec 2010 B2
7875378 Yang et al. Jan 2011 B2
7879480 Yoon et al. Feb 2011 B2
7879485 Yoon et al. Feb 2011 B2
7926602 Takasaki Apr 2011 B2
7931105 Sato et al. Apr 2011 B2
7948207 Scheucher May 2011 B2
7967093 Nagasaka Jun 2011 B2
7984779 Boegelein et al. Jul 2011 B2
7990105 Matsumoto et al. Aug 2011 B2
7993155 Heichal et al. Aug 2011 B2
7997368 Takasaki et al. Aug 2011 B2
8006626 Kumar et al. Aug 2011 B2
8006793 Heichal et al. Aug 2011 B2
8012620 Takasaki et al. Sep 2011 B2
8034476 Ha et al. Oct 2011 B2
8037954 Taguchi Oct 2011 B2
8079435 Takasaki et al. Dec 2011 B2
8091669 Taneda et al. Jan 2012 B2
8110300 Niedzwiecki et al. Feb 2012 B2
8146694 Hamidi Apr 2012 B2
8163420 Okada et al. Apr 2012 B2
8167070 Takamura et al. May 2012 B2
8186468 Parrett et al. May 2012 B2
8187736 Park et al. May 2012 B2
8205702 Hoermandinger et al. Jun 2012 B2
8206846 Yang et al. Jun 2012 B2
8210301 Hashimoto et al. Jul 2012 B2
8211564 Choi et al. Jul 2012 B2
8256552 Okada Sep 2012 B2
8268469 Hermann et al. Sep 2012 B2
8268472 Ronning et al. Sep 2012 B2
8276697 Takasaki Oct 2012 B2
8286743 Rawlinson Oct 2012 B2
8298698 Chung et al. Oct 2012 B2
8304104 Lee et al. Nov 2012 B2
8307930 Sailor et al. Nov 2012 B2
8323819 Lee et al. Dec 2012 B2
8327962 Bergmeier et al. Dec 2012 B2
8343647 Ahn et al. Jan 2013 B2
8353374 Sugawara et al. Jan 2013 B2
8371401 Illustrato Feb 2013 B1
8397853 Stefani et al. Mar 2013 B2
8409743 Okada et al. Apr 2013 B2
8418795 Sasage et al. Apr 2013 B2
8420245 Im et al. Apr 2013 B2
8439144 Murase May 2013 B2
8453773 Hill et al. Jun 2013 B2
8453778 Bannier et al. Jun 2013 B2
8455122 Shin et al. Jun 2013 B2
8465866 Kim Jun 2013 B2
8481343 Hsin et al. Jul 2013 B2
8486557 Lee et al. Jul 2013 B2
8492016 Shin et al. Jul 2013 B2
8501344 Yang et al. Aug 2013 B2
8511412 Kawaguchi et al. Aug 2013 B2
8540282 Yoda et al. Sep 2013 B2
8551640 Hedrich et al. Oct 2013 B2
8557425 Ronning et al. Oct 2013 B2
8561743 Iwasa et al. Oct 2013 B2
8563155 Lee et al. Oct 2013 B2
8567543 Kubota et al. Oct 2013 B2
8584780 Yu et al. Nov 2013 B2
8587907 Gaben Nov 2013 B2
8592069 Anderson et al. Nov 2013 B1
8602139 Takamura et al. Dec 2013 B2
8609271 Yoon et al. Dec 2013 B2
8658303 Chung et al. Feb 2014 B2
8672077 Sand et al. Mar 2014 B2
8672354 Kim et al. Mar 2014 B2
8689918 Yu et al. Apr 2014 B2
8689919 Maeda et al. Apr 2014 B2
8691414 Kim Apr 2014 B2
8691421 Lee et al. Apr 2014 B2
8708080 Lee et al. Apr 2014 B2
8708402 Saeki Apr 2014 B2
8709628 Carignan et al. Apr 2014 B2
8722224 Lee et al. May 2014 B2
8728648 Choo et al. May 2014 B2
8733486 Nishiura et al. May 2014 B2
8733488 Umetani May 2014 B2
8739908 Taniguchi et al. Jun 2014 B2
8739909 Hashimoto et al. Jun 2014 B2
8741466 Youngs et al. Jun 2014 B2
8746391 Atsuchi et al. Jun 2014 B2
8757304 Amano et al. Jun 2014 B2
8789634 Nitawaki Jul 2014 B2
8794365 Matsuzawa et al. Aug 2014 B2
8802259 Lee et al. Aug 2014 B2
8803477 Kittell Aug 2014 B2
8808893 Choo et al. Aug 2014 B2
8818588 Ambrosio et al. Aug 2014 B2
8820444 Nguyen Sep 2014 B2
8820461 Shinde et al. Sep 2014 B2
8827023 Matsuda et al. Sep 2014 B2
8833495 Iwata et al. Sep 2014 B2
8833499 Rawlinson Sep 2014 B2
8835033 Choi et al. Sep 2014 B2
8841013 Choo et al. Sep 2014 B2
8846233 Lee et al. Sep 2014 B2
8846234 Lee et al. Sep 2014 B2
8852794 Laitinen Oct 2014 B2
8862296 Kurakawa et al. Oct 2014 B2
8865332 Yang et al. Oct 2014 B2
8875828 Rawlinson et al. Nov 2014 B2
8895173 Gandhi et al. Nov 2014 B2
8900736 Choi et al. Dec 2014 B2
8905170 Kyoden et al. Dec 2014 B2
8905171 Lee et al. Dec 2014 B2
8911899 Lim et al. Dec 2014 B2
8936125 Nakamori Jan 2015 B2
8939245 Jaffrezic Jan 2015 B2
8939246 Yamaguchi et al. Jan 2015 B2
8951655 Chung et al. Feb 2015 B2
8960346 Ogawa Feb 2015 B2
8970061 Nakagawa et al. Mar 2015 B2
8973697 Matsuda Mar 2015 B2
8975774 Kreutzer et al. Mar 2015 B2
8978800 Soma' et al. Mar 2015 B2
8980458 Honjo et al. Mar 2015 B2
8986864 Wiegmann et al. Mar 2015 B2
9004535 Wu Apr 2015 B2
9012051 Lee et al. Apr 2015 B2
9017846 Kawatani et al. Apr 2015 B2
9023502 Favaretto May 2015 B2
9023503 Seong et al. May 2015 B2
9024572 Nishihara et al. May 2015 B2
9033084 Joye May 2015 B2
9033085 Rawlinson May 2015 B1
9034502 Kano et al. May 2015 B2
9052168 Rawlinson Jun 2015 B1
9054402 Rawlinson Jun 2015 B1
9061714 Albery et al. Jun 2015 B1
9065103 Straubel et al. Jun 2015 B2
9070926 Seong et al. Jun 2015 B2
9073426 Tachikawa et al. Jul 2015 B2
9073498 Lee Jul 2015 B2
9077058 Yang et al. Jul 2015 B2
9090218 Karashima Jul 2015 B2
9093701 Kawatani et al. Jul 2015 B2
9101060 Yamanaka et al. Aug 2015 B2
9102362 Baccouche et al. Aug 2015 B2
9126637 Eberle et al. Sep 2015 B2
9136514 Kawatani et al. Sep 2015 B2
9156340 van den Akker Oct 2015 B2
9159968 Park et al. Oct 2015 B2
9159970 Watanabe et al. Oct 2015 B2
9160042 Fujii et al. Oct 2015 B2
9160214 Matsuda Oct 2015 B2
9172071 Yoshioka et al. Oct 2015 B2
9174520 Katayama et al. Nov 2015 B2
9184477 Jeong et al. Nov 2015 B2
9192450 Yamashita et al. Nov 2015 B2
9193316 McLaughlin et al. Nov 2015 B2
9196882 Seong et al. Nov 2015 B2
9203064 Lee et al. Dec 2015 B2
9203124 Chung et al. Dec 2015 B2
9205749 Sakamoto Dec 2015 B2
9205757 Matsuda Dec 2015 B2
9216638 Katayama et al. Dec 2015 B2
9227582 Katayama et al. Jan 2016 B2
9231285 Schmidt et al. Jan 2016 B2
9236587 Lee et al. Jan 2016 B2
9236589 Lee Jan 2016 B2
9238495 Matsuda Jan 2016 B2
9246148 Maguire Jan 2016 B2
9252409 Lee et al. Feb 2016 B2
9254871 Hotta et al. Feb 2016 B2
9263249 Tomohiro et al. Feb 2016 B2
9269934 Yang et al. Feb 2016 B2
9277674 Watanabe Mar 2016 B2
9281505 Hihara et al. Mar 2016 B2
9281546 Chung et al. Mar 2016 B2
9283837 Rawlinson Mar 2016 B1
9306201 Lu et al. Apr 2016 B2
9306247 Rawlinson Apr 2016 B2
9308829 Matsuda Apr 2016 B2
9308966 Kosuge et al. Apr 2016 B2
9312579 Jeong et al. Apr 2016 B2
9321357 Caldeira et al. Apr 2016 B2
9321433 Yin et al. Apr 2016 B2
9327586 Miyashiro May 2016 B2
9331321 Berger et al. May 2016 B2
9331366 Fuerstner et al. May 2016 B2
9333868 Uchida et al. May 2016 B2
9337455 Yang et al. May 2016 B2
9337457 Yajima et al. May 2016 B2
9337458 Kim May 2016 B2
9337516 Klausner et al. May 2016 B2
9346346 Murray May 2016 B2
9350003 Wen et al. May 2016 B2
9358869 Le Jaouen et al. Jun 2016 B2
9373828 Kawatani et al. Jun 2016 B2
9381798 Meyer-Ebeling Jul 2016 B2
9412984 Fritz et al. Aug 2016 B2
9413043 Kim et al. Aug 2016 B2
9425628 Pham et al. Aug 2016 B2
9434243 Nakao Sep 2016 B2
9434270 Penilla et al. Sep 2016 B1
9434333 Sloan et al. Sep 2016 B2
9437903 DeKeuster Sep 2016 B2
9444082 Tsujimura et al. Sep 2016 B2
9446643 Vollmer Sep 2016 B1
9450228 Sakai et al. Sep 2016 B2
9452686 Yang et al. Sep 2016 B2
9457666 Caldeira et al. Oct 2016 B2
9461284 Power et al. Oct 2016 B2
9461454 Auguet et al. Oct 2016 B2
9463695 Matsuda et al. Oct 2016 B2
9478778 Im et al. Oct 2016 B2
9481249 Yamazaki Nov 2016 B2
9484564 Stuetz et al. Nov 2016 B2
9484592 Roh et al. Nov 2016 B2
9487237 Vollmer Nov 2016 B1
9502700 Haussman Nov 2016 B2
9520624 Lee et al. Dec 2016 B2
9530994 Pierre Dec 2016 B2
9531041 Hwang Dec 2016 B2
9533546 Cheng Jan 2017 B2
9533600 Schwab et al. Jan 2017 B1
9537186 Chung et al. Jan 2017 B2
9537187 Chung et al. Jan 2017 B2
9540055 Berger et al. Jan 2017 B2
9545962 Pang Jan 2017 B2
9545968 Miyashiro et al. Jan 2017 B2
9561735 Nozaki Feb 2017 B2
9564663 Kim et al. Feb 2017 B2
9564664 Tanigaki et al. Feb 2017 B2
9579963 Landgraf Feb 2017 B2
9579983 Inoue Feb 2017 B2
9579986 Bachir Feb 2017 B2
9590216 Maguire et al. Mar 2017 B2
9597973 Penilla et al. Mar 2017 B2
9597976 Dickinson et al. Mar 2017 B2
9608244 Shin et al. Mar 2017 B2
9614206 Choi et al. Apr 2017 B2
9614260 Kim et al. Apr 2017 B2
9616766 Fujii Apr 2017 B2
9620826 Yang et al. Apr 2017 B2
9623742 Ikeda et al. Apr 2017 B2
9623911 Kano et al. Apr 2017 B2
9627664 Choo et al. Apr 2017 B2
9627666 Baldwin Apr 2017 B2
9630483 Yamada et al. Apr 2017 B2
9636984 Baccouche et al. May 2017 B1
9643660 Vollmer May 2017 B2
9647251 Prinz et al. May 2017 B2
9653712 Seong et al. May 2017 B2
9660236 Kondo et al. May 2017 B2
9660288 Gendlin et al. May 2017 B2
9660304 Choi et al. May 2017 B2
9673433 Pullalarevu et al. Jun 2017 B1
9673495 Lee et al. Jun 2017 B2
9692095 Harris Jun 2017 B2
9694772 Ikeda et al. Jul 2017 B2
9718340 Berger et al. Aug 2017 B2
9789908 Tsukada et al. Oct 2017 B2
9796293 Ito Oct 2017 B2
9796424 Sakaguchi et al. Oct 2017 B2
9802650 Nishida et al. Oct 2017 B2
9862427 Berger Jan 2018 B2
9912023 Mastrandrea Mar 2018 B1
9969295 Mastrandrea May 2018 B2
10020470 Ito Jul 2018 B2
10059382 Nusier et al. Aug 2018 B2
10166883 Brendecke Jan 2019 B2
10186737 Iqbal Jan 2019 B2
10468645 Jackson Nov 2019 B2
10720680 Shen Jul 2020 B2
10886513 Stephens Jan 2021 B2
10933726 Handing Mar 2021 B2
10950904 Motoyoshi Mar 2021 B2
10985414 Kuboki Apr 2021 B2
10991996 Huang Apr 2021 B2
11009294 Robillon May 2021 B2
20010046624 Goto et al. Nov 2001 A1
20010052433 Harris et al. Dec 2001 A1
20020066608 Guenard et al. Jun 2002 A1
20030089540 Koike et al. May 2003 A1
20030188417 McGlinchy et al. Oct 2003 A1
20030209375 Suzuki et al. Nov 2003 A1
20030230443 Cramer et al. Dec 2003 A1
20040142232 Risca et al. Jul 2004 A1
20040261377 Sung Dec 2004 A1
20050095500 Corless et al. May 2005 A1
20060001399 Salasoo et al. Jan 2006 A1
20060024566 Plummer Feb 2006 A1
20080179040 Rosenbaum Jul 2008 A1
20080199771 Chiu Aug 2008 A1
20080238152 Konishi et al. Oct 2008 A1
20080280192 Drozdz et al. Nov 2008 A1
20080311468 Hermann et al. Dec 2008 A1
20090014221 Kim et al. Jan 2009 A1
20090058355 Meyer Mar 2009 A1
20100025131 Gloceri et al. Feb 2010 A1
20100112419 Jang et al. May 2010 A1
20100159317 Taghikhani et al. Jun 2010 A1
20100173191 Meintschel et al. Jul 2010 A1
20100307848 Hashimoto et al. Dec 2010 A1
20110036657 Bland et al. Feb 2011 A1
20110070474 Lee et al. Mar 2011 A1
20110104530 Muller et al. May 2011 A1
20110123309 Berdelle-Hilge et al. May 2011 A1
20110132580 Herrmann et al. Jun 2011 A1
20110143179 Nakamori Jun 2011 A1
20110168461 Meyer-Ebeling Jul 2011 A1
20110240385 Farmer Oct 2011 A1
20120091955 Gao Apr 2012 A1
20120103714 Choi et al. May 2012 A1
20120118653 Ogihara et al. May 2012 A1
20120125702 Bergfjord May 2012 A1
20120129031 Kim May 2012 A1
20120160583 Rawlinson Jun 2012 A1
20120223113 Gaisne et al. Sep 2012 A1
20120298433 Ohkura Nov 2012 A1
20120301765 Loo et al. Nov 2012 A1
20120312610 Kim et al. Dec 2012 A1
20130020139 Kim et al. Jan 2013 A1
20130122337 Katayama et al. May 2013 A1
20130122338 Katayama et al. May 2013 A1
20130143081 Watanabe et al. Jun 2013 A1
20130164580 Au Jun 2013 A1
20130192908 Schlagheck Aug 2013 A1
20130230759 Jeong et al. Sep 2013 A1
20130270863 Young et al. Oct 2013 A1
20130273829 Obasih et al. Oct 2013 A1
20130284531 Oonuma et al. Oct 2013 A1
20130337297 Lee et al. Dec 2013 A1
20140017546 Yanagi Jan 2014 A1
20140045026 Fritz et al. Feb 2014 A1
20140072845 Oh et al. Mar 2014 A1
20140072856 Chung et al. Mar 2014 A1
20140087228 Fabian et al. Mar 2014 A1
20140120406 Kim May 2014 A1
20140141298 Michelitsch May 2014 A1
20140178721 Chung et al. Jun 2014 A1
20140193683 Mardall et al. Jul 2014 A1
20140202671 Yan Jul 2014 A1
20140212723 Lee et al. Jul 2014 A1
20140242429 Lee et al. Aug 2014 A1
20140246259 Yamamura et al. Sep 2014 A1
20140262573 Ito et al. Sep 2014 A1
20140272501 O'Brien et al. Sep 2014 A1
20140284125 Katayama et al. Sep 2014 A1
20140302360 Klammler et al. Oct 2014 A1
20140322583 Choi et al. Oct 2014 A1
20140338999 Fujii et al. Nov 2014 A1
20150004458 Lee Jan 2015 A1
20150010795 Tanigaki et al. Jan 2015 A1
20150053493 Kees et al. Feb 2015 A1
20150056481 Cohen et al. Feb 2015 A1
20150060164 Wang et al. Mar 2015 A1
20150061381 Biskup Mar 2015 A1
20150061413 Janarthanam et al. Mar 2015 A1
20150064535 Seong et al. Mar 2015 A1
20150104686 Brommer et al. Apr 2015 A1
20150136506 Quinn et al. May 2015 A1
20150188207 Son et al. Jul 2015 A1
20150204583 Stephan et al. Jul 2015 A1
20150207115 Wondraczek Jul 2015 A1
20150236326 Kim et al. Aug 2015 A1
20150243956 Loo et al. Aug 2015 A1
20150255764 Loo et al. Sep 2015 A1
20150259011 Deckard et al. Sep 2015 A1
20150280188 Nozaki et al. Oct 2015 A1
20150291046 Kawabata Oct 2015 A1
20150298661 Zhang Oct 2015 A1
20150314830 Inoue Nov 2015 A1
20150329174 Inoue Nov 2015 A1
20150329175 Inoue Nov 2015 A1
20150329176 Inoue Nov 2015 A1
20150344081 Kor et al. Dec 2015 A1
20160023689 Berger et al. Jan 2016 A1
20160028056 Lee et al. Jan 2016 A1
20160068195 Hentrich et al. Mar 2016 A1
20160072108 Keller et al. Mar 2016 A1
20160087319 Roh et al. Mar 2016 A1
20160093856 DeKeuster et al. Mar 2016 A1
20160133899 Qiao et al. May 2016 A1
20160137046 Song May 2016 A1
20160141738 Kwag May 2016 A1
20160149177 Sugeno et al. May 2016 A1
20160156005 Elliot et al. Jun 2016 A1
20160159221 Chen et al. Jun 2016 A1
20160164053 Lee et al. Jun 2016 A1
20160167544 Barbat et al. Jun 2016 A1
20160176312 Duhaime et al. Jun 2016 A1
20160197332 Lee et al. Jul 2016 A1
20160197386 Moon et al. Jul 2016 A1
20160197387 Lee et al. Jul 2016 A1
20160204398 Moon et al. Jul 2016 A1
20160207418 Bergstrom et al. Jul 2016 A1
20160218335 Baek Jul 2016 A1
20160222631 Kohno et al. Aug 2016 A1
20160226040 Mongeau et al. Aug 2016 A1
20160226108 Kim et al. Aug 2016 A1
20160229309 Mitsutani Aug 2016 A1
20160233468 Nusier et al. Aug 2016 A1
20160236713 Sakaguchi et al. Aug 2016 A1
20160248060 Brambrink et al. Aug 2016 A1
20160248061 Brambrink et al. Aug 2016 A1
20160257219 Miller et al. Sep 2016 A1
20160280306 Miyashiro et al. Sep 2016 A1
20160308180 Kohda Oct 2016 A1
20160318579 Miyashiro Nov 2016 A1
20160339855 Chinavare et al. Nov 2016 A1
20160347161 Kusumi et al. Dec 2016 A1
20160361984 Manganaro Dec 2016 A1
20160368358 Nagaosa Dec 2016 A1
20160375750 Hokazono et al. Dec 2016 A1
20170001507 Ashraf et al. Jan 2017 A1
20170005303 Harris et al. Jan 2017 A1
20170005371 Chidester et al. Jan 2017 A1
20170005375 Walker Jan 2017 A1
20170029034 Faruque et al. Feb 2017 A1
20170047563 Lee et al. Feb 2017 A1
20170050533 Wei et al. Feb 2017 A1
20170054120 Templeman et al. Feb 2017 A1
20170062782 Cho et al. Mar 2017 A1
20170084890 Subramanian et al. Mar 2017 A1
20170088013 Shimizu et al. Mar 2017 A1
20170088178 Tsukada et al. Mar 2017 A1
20170106907 Gong et al. Apr 2017 A1
20170106908 Song Apr 2017 A1
20170144566 Aschwer et al. May 2017 A1
20170190243 Duan et al. Jul 2017 A1
20170194681 Kim et al. Jul 2017 A1
20170200925 Seo et al. Jul 2017 A1
20170214018 Sun et al. Jul 2017 A1
20170222199 Idikurt et al. Aug 2017 A1
20170232859 Li Aug 2017 A1
20170288185 Maguire Oct 2017 A1
20170331086 Frehn et al. Nov 2017 A1
20180050607 Matecki et al. Feb 2018 A1
20180062224 Drabon et al. Mar 2018 A1
20180154754 Rowley et al. Jun 2018 A1
20180186227 Stephens et al. Jul 2018 A1
20180229593 Hitz et al. Aug 2018 A1
20180233789 Iqbal et al. Aug 2018 A1
20180236863 Kawabe et al. Aug 2018 A1
20180237075 Kawabe et al. Aug 2018 A1
20180251102 Han Sep 2018 A1
20180323409 Maier Nov 2018 A1
20180334022 Rawlinson et al. Nov 2018 A1
20180337374 Matecki et al. Nov 2018 A1
20180337377 Stephens et al. Nov 2018 A1
20180337378 Stephens et al. Nov 2018 A1
20190081298 Matecki et al. Mar 2019 A1
20190100090 Matecki et al. Apr 2019 A1
Foreign Referenced Citations (308)
Number Date Country
511428 Nov 2012 AT
511670 Jan 2013 AT
2008200543 Aug 2009 AU
100429805 Oct 2008 CN
100429806 Oct 2008 CN
102452293 May 2012 CN
102802983 Nov 2012 CN
103568820 Feb 2014 CN
104010884 Aug 2014 CN
106029407 Oct 2016 CN
205645923 Oct 2016 CN
106207029 Dec 2016 CN
106410077 Feb 2017 CN
4105246 Aug 1992 DE
4129351 May 1993 DE
4427322 Feb 1996 DE
19534427 Mar 1996 DE
4446257 Jun 1996 DE
202005018897 Feb 2006 DE
102004062932 Aug 2006 DE
102007012893 Mar 2008 DE
102007017019 Mar 2008 DE
102007030542 Mar 2008 DE
102006049269 Jun 2008 DE
202008006698 Jul 2008 DE
102007011026 Sep 2008 DE
102007021293 Nov 2008 DE
102007044526 Mar 2009 DE
102007050103 Apr 2009 DE
102007063187 Apr 2009 DE
102008051786 Apr 2009 DE
102007063194 Jun 2009 DE
102008034880 Jun 2009 DE
102007061562 Jul 2009 DE
102008010813 Aug 2009 DE
102008024007 Dec 2009 DE
102008034695 Jan 2010 DE
102008034700 Jan 2010 DE
102008034856 Jan 2010 DE
102008034860 Jan 2010 DE
102008034863 Jan 2010 DE
102008034873 Jan 2010 DE
102008034889 Jan 2010 DE
102008052284 Apr 2010 DE
102008059953 Jun 2010 DE
102008059964 Jun 2010 DE
102008059966 Jun 2010 DE
102008059967 Jun 2010 DE
102008059969 Jun 2010 DE
102008059971 Jun 2010 DE
102008054968 Jul 2010 DE
102010006514 Sep 2010 DE
102009019384 Nov 2010 DE
102009035488 Feb 2011 DE
102009040598 Mar 2011 DE
102010014484 Mar 2011 DE
102009043635 Apr 2011 DE
102010007414 Aug 2011 DE
102010009063 Aug 2011 DE
102010012992 Sep 2011 DE
102010012996 Sep 2011 DE
102010013025 Sep 2011 DE
102010028728 Nov 2011 DE
102011011698 Aug 2012 DE
102011013182 Sep 2012 DE
102011016526 Oct 2012 DE
102011017459 Oct 2012 DE
102011075820 Nov 2012 DE
102011103990 Dec 2012 DE
102011080053 Jan 2013 DE
102011107007 Jan 2013 DE
102011109309 Feb 2013 DE
102011111537 Feb 2013 DE
102011112598 Mar 2013 DE
102011086049 May 2013 DE
102011109011 May 2013 DE
102011120010 Jun 2013 DE
102012000622 Jul 2013 DE
102012001596 Aug 2013 DE
102012102657 Oct 2013 DE
102012103149 Oct 2013 DE
102013205215 Oct 2013 DE
102013205323 Oct 2013 DE
202013104224 Oct 2013 DE
102012012897 Jan 2014 DE
102012107548 Feb 2014 DE
102012219301 Feb 2014 DE
202012104339 Feb 2014 DE
102012018057 Mar 2014 DE
102013200562 Jul 2014 DE
102013200726 Jul 2014 DE
102013200786 Jul 2014 DE
102013203102 Aug 2014 DE
102013102501 Sep 2014 DE
102013208996 Nov 2014 DE
102013215082 Feb 2015 DE
102013218674 Mar 2015 DE
102014011609 Mar 2015 DE
102014217188 Mar 2015 DE
102013016797 Apr 2015 DE
102013223357 May 2015 DE
102014100334 Jul 2015 DE
202015005208 Aug 2015 DE
102014203715 Sep 2015 DE
102014106949 Nov 2015 DE
202014008335 Jan 2016 DE
202014008336 Jan 2016 DE
102014011727 Feb 2016 DE
102014215164 Feb 2016 DE
102014112596 Mar 2016 DE
102014219644 Mar 2016 DE
102014115051 Apr 2016 DE
102014221167 Apr 2016 DE
102014019696 Jun 2016 DE
102014224545 Jun 2016 DE
102015015504 Jun 2016 DE
102015014337 Jul 2016 DE
102015200636 Jul 2016 DE
102015204216 Sep 2016 DE
202016005333 Sep 2016 DE
102015219558 Apr 2017 DE
102015222171 May 2017 DE
0705724 Apr 1996 EP
0779668 Jun 1997 EP
0780915 Jun 1997 EP
1939028 Jul 2008 EP
2298690 Mar 2011 EP
2374646 Oct 2011 EP
2388851 Nov 2011 EP
2456003 May 2012 EP
2467276 Jun 2012 EP
2554420 Feb 2013 EP
2562065 Feb 2013 EP
2565958 Mar 2013 EP
2581249 Apr 2013 EP
2620997 Jul 2013 EP
2626231 Aug 2013 EP
2626232 Aug 2013 EP
2626233 Aug 2013 EP
2741343 Jun 2014 EP
2758262 Jul 2014 EP
2833436 Feb 2015 EP
2913863 Sep 2015 EP
2944493 Nov 2015 EP
2990247 Mar 2016 EP
3379598 Sep 2018 EP
3382774 Oct 2018 EP
2661281 Oct 1991 FR
2705926 Dec 1994 FR
2774044 Jul 1999 FR
2782399 Feb 2000 FR
2861441 Apr 2005 FR
2948072 Jan 2011 FR
2949096 Feb 2011 FR
2959454 Nov 2011 FR
2961960 Dec 2011 FR
2962076 Jan 2012 FR
2975230 Nov 2012 FR
2976731 Dec 2012 FR
2982566 May 2013 FR
2986374 Aug 2013 FR
2986744 Aug 2013 FR
2986910 Aug 2013 FR
2986911 Aug 2013 FR
2987000 Aug 2013 FR
2987001 Aug 2013 FR
2988039 Sep 2013 FR
2990386 Nov 2013 FR
2993511 Jan 2014 FR
2994340 Feb 2014 FR
2996193 Apr 2014 FR
2998715 May 2014 FR
2999809 Jun 2014 FR
3000002 Jun 2014 FR
3002910 Sep 2014 FR
3007209 Dec 2014 FR
3014035 Jun 2015 FR
3019688 Oct 2015 FR
3022402 Dec 2015 FR
3028456 May 2016 FR
2081495 Feb 1982 GB
2353151 Feb 2001 GB
2443272 Apr 2008 GB
2483272 Mar 2012 GB
2516120 Jan 2015 GB
05193370 Mar 1993 JP
H05193366 Aug 1993 JP
H05201356 Aug 1993 JP
H08268083 Oct 1996 JP
H08276752 Oct 1996 JP
H1075504 Mar 1998 JP
H10109548 Apr 1998 JP
H10149805 Jun 1998 JP
2819927 Nov 1998 JP
H11178115 Jul 1999 JP
2967711 Oct 1999 JP
2000041303 Feb 2000 JP
3085346 Sep 2000 JP
3199296 Aug 2001 JP
3284850 May 2002 JP
3284878 May 2002 JP
3286634 May 2002 JP
3489186 Jan 2004 JP
2004142524 May 2004 JP
2007331669 Dec 2007 JP
2011006050 Jan 2011 JP
2011049151 Mar 2011 JP
2011152906 Aug 2011 JP
2013133044 Jul 2013 JP
20120030014 Mar 2012 KR
20140007063 Jan 2014 KR
101565980 Nov 2015 KR
101565981 Nov 2015 KR
20160001976 Jan 2016 KR
20160055712 May 2016 KR
20160087077 Jul 2016 KR
101647825 Aug 2016 KR
20160092902 Aug 2016 KR
20160104867 Sep 2016 KR
20160111231 Sep 2016 KR
20160116383 Oct 2016 KR
20170000325 Jan 2017 KR
101704496 Feb 2017 KR
20170052831 May 2017 KR
20170062845 Jun 2017 KR
20170065764 Jun 2017 KR
20170065771 Jun 2017 KR
20170065854 Jun 2017 KR
20170070080 Jun 2017 KR
1020170067240 Jun 2017 KR
507909 Jul 1998 SE
201425112 Jul 2014 TW
I467830 Jan 2015 TW
I482718 May 2015 TW
0074964 Dec 2000 WO
2006100005 Sep 2006 WO
2006100006 Sep 2006 WO
2008104356 Sep 2008 WO
2008104358 Sep 2008 WO
2008104376 Sep 2008 WO
2008131935 Nov 2008 WO
2009080151 Jul 2009 WO
2009080166 Jul 2009 WO
2009103462 Aug 2009 WO
2010004192 Jan 2010 WO
2010012337 Feb 2010 WO
2010012338 Feb 2010 WO
2010012342 Feb 2010 WO
2010040520 Apr 2010 WO
2010063365 Jun 2010 WO
2010069713 Jun 2010 WO
2010076053 Jul 2010 WO
2010076055 Jul 2010 WO
2010076452 Jul 2010 WO
2011030041 Mar 2011 WO
2011083980 Jul 2011 WO
2011106851 Sep 2011 WO
2011116801 Sep 2011 WO
2011116959 Sep 2011 WO
2011121757 Oct 2011 WO
2011134815 Nov 2011 WO
2011134828 Nov 2011 WO
2012025710 Mar 2012 WO
2012063025 May 2012 WO
2012065853 May 2012 WO
2012065855 May 2012 WO
2012069349 May 2012 WO
2012084132 Jun 2012 WO
2012093233 Jul 2012 WO
2012097514 Jul 2012 WO
2012114040 Aug 2012 WO
2012116608 Sep 2012 WO
2012119424 Sep 2012 WO
2012163504 Dec 2012 WO
2013020707 Feb 2013 WO
2013027982 Feb 2013 WO
2013042628 Mar 2013 WO
2013080008 Jun 2013 WO
2013188680 Dec 2013 WO
2014114511 Jul 2014 WO
2014140412 Sep 2014 WO
2014140463 Sep 2014 WO
2014183995 Nov 2014 WO
2014191651 Dec 2014 WO
2015018658 Feb 2015 WO
2015043869 Apr 2015 WO
2015149660 Oct 2015 WO
2016029084 Feb 2016 WO
2016046144 Mar 2016 WO
2016046145 Mar 2016 WO
2016046146 Mar 2016 WO
2016046147 Mar 2016 WO
2016072822 May 2016 WO
2016086274 Jun 2016 WO
2016106658 Jul 2016 WO
2016132280 Aug 2016 WO
2016203130 Dec 2016 WO
2017025592 Feb 2017 WO
2017032571 Mar 2017 WO
2017060608 Apr 2017 WO
2017084938 May 2017 WO
2017103449 Jun 2017 WO
2018033880 Feb 2018 WO
2018065554 Apr 2018 WO
2018149762 Aug 2018 WO
2018213475 Nov 2018 WO
2019055658 Mar 2019 WO
2019-071013 Apr 2019 WO
Non-Patent Literature Citations (8)
Entry
International Searching Authority (KR), International Search Report and Written Opinion for International Application No. PCT/IB2017/055002, dated Jul. 19, 2018.
International Searhcing Authority, International Search Report and Written Opinion for Application No. PCT/IB2018/050066, dated Apr. 26, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/033009, dated Sep. 11, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/032760, dated Sep. 11, 2018.
Korean Intellectual Property Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/050889, dated Mar. 21, 2019.
Korean Intellectual Propery Office (ISA), International Search Report and Written Opinion for International Application No. PCT/US2018/054423, dated Jan. 28, 2019.
HybridCars “2017 Chevy Bolt Battery Cooling and Gearbox Details”, George S. Bower and Keith Ritter, 15 pages, Jan. 18, 2016.
Chevrolet Pressroom, “Drive Unit and Battery at the Heart of Chevrolet Bolt EV, Engineers focus on careful balance of range and performance”, 9 pages, Jan. 11, 2016.
Related Publications (1)
Number Date Country
20200398652 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62637155 Mar 2018 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2019/019964 Feb 2020 US
Child 17009237 US