1. Field of the Invention
The present invention relates to a cooling system of a battery which cools a battery, which supplies electric power to a drive-use electric motor, by utilizing a refrigerant of an air-conditioning system which is mounted in the vehicle. A vehicle which mounts a drive-use electric motor is either an electric vehicle or a hybrid vehicle. The present invention relates to a cooling system of a battery which is designed to not detract from the comfortable feeling of air-conditioning given to the passengers by the air-conditioning system.
2. Description of the Related Art
In recent years, electric vehicles (EV) and hybrid vehicles (HV) have been commercialized. Along with this, the capacity of the batteries which supply electricity to the drive-use motors which are mounted in these vehicles has become larger and the output voltage has become higher. Further, an HV or EV carries a large number of batteries for use as sources of drive power, so the battery performance is important. To enable the batteries to exhibit their performance in full, it is important to hold the battery temperature at a suitable level.
On the other hand, in an HV or an EV, heat is generated at the time of charging the battery. In such a case, sometimes the battery becomes high in temperature. To secure the battery performance, the battery has to be cooled. For cooling the battery of a vehicle powered by a conventional internal combustion engine, air cooling by the natural flow of air was sufficient, but for cooling a high voltage battery with a voltage of 12V or higher which is mounted in an HV or an EV, air cooling by the natural flow of air is not sufficient.
Therefore, a battery cooling system which uses a refrigeration cycle of a vehicular air-conditioning system in an HV or EV so as to efficiently cool the battery is disclosed in Japanese Patent Publication (A) No. 2001-105843. In the battery cooling system which is disclosed in Japanese Patent Publication (A) No. 2001-105843, a battery cooler which is comprised of a base and a plurality of heat conduction fins is prepared, the battery is placed between two heat conduction fins, and the refrigerant which is used in the refrigeration cycle of the air-conditioning system is branched off and run to a refrigerant passage which is provided inside of the base so as to thereby cool the battery.
However, in the battery cooling system which is disclosed in Japanese Patent Publication (A) No. 2001-105843, while the refrigerant which is used in the refrigeration cycle of the air-conditioning system is being run to the battery cooler, the refrigerant is not being run to the air-conditioning system side. For this reason, in the battery cooling system which is disclosed in Japanese Patent Publication (A) No. 2001-105843, there was the problem that the cooling capacity of the air-conditioning system ended up falling at the time of cooling the battery and the venting temperature of the cooling air to the passenger compartment from the air-conditioning system ended up rising.
An object of the present invention is to suppress fluctuations in the venting temperature of cooling air to the inside of the passenger compartment and maintain a comfortable feeling of air-conditioning to the passengers even when using a refrigerant of a refrigeration cycle of a vehicle air-conditioning system to cool a battery which is mounted in the vehicle.
To solve the above problem, the cooling system of a battery of a first aspect of the present invention is a cooling system of a battery (50) in a vehicle which mounts a battery (31) which supplies electric power to a drive-use electric motor, an air-conditioning system (1) which is provided with an electric compressor (10), an electric compressor (10), an outside heat exchanger (11), and an inside heat exchanger (13) which are connected by a refrigerant path (17) through which a first refrigerant flows, and a control device (4), which system is provided with a branch path (18) which connects a downstream side of the outside heat exchanger (11) and an upstream side of the electric compressor (10) in the refrigerant path (17), a heat exchanger (33) which is provided in the branch path (18), a medium path (38) which is connected to the heat exchanger (33) and through which a second refrigerant which cools the battery (31) runs, and a cooling control means (5) which adjusts the flow rates of the first refrigerant which flows through the refrigerant path (17) and the branch path (18), wherein when the cooling control means (5) runs the first refrigerant to both the refrigerant path (17) and the branch path (18), it makes the control means (4) increase a target speed of the electric compressor (10).
The cooling system of a battery of a second aspect of the present invention provides a cooling system of a battery of the first aspect, wherein the cooling control means (5) is provided with flow regulators (15, 16) which regulate the flow rates of the first refrigerant which flows through the refrigerant path (17) and the branch path (18) and wherein when control of the air-conditioning system (1) by the control means (4) is given priority, the cooling control means (5) adjusts the flow regulators (15, 16) to run the entire amount of the first refrigerant to the refrigerant path (17), while when cooling of the battery (31) by the cooling control means (5) is given priority over control of the air-conditioning system (1) by the control means (4), the cooling control means (5) adjusts the flow regulators (15, 16) to make the amount of the first refrigerant which flows to the branch path (18) increase the higher the cooling priority of the battery (31) and runs the entire amount of the first refrigerant to the branch path (18) when the cooling priority of the battery (31) is higher than a predetermined level.
The cooling system of a battery of a third aspect of the present invention provides a cooling system of a battery of the second aspect, wherein the cooling control means (5) determines the cooling priority of the battery (31) in accordance with the temperature of the second refrigerant or the temperature of the battery (31) and makes the target speed of the electric compressor (10) increase the higher the cooling priority of the battery (31).
The cooling system of a battery of a fourth aspect of the present invention provides a battery cooling system of the first or third aspects, wherein the cooling control means (5) makes a target speed of the electric compressor (10) increase if the outside air temperature becomes higher than a predetermined temperature.
The cooling system of a battery of a fifth aspect of the present invention provides a cooling system of a battery of the first to fourth aspects, wherein the cooling control means (5) makes a target speed of the electric compressor (10) increase in accordance with the vehicle speed if the vehicle speed becomes higher than a predetermined speed.
The cooling system of a battery of a sixth aspect of the present invention provides a cooling system of a battery of the first or second aspect, wherein the cooling control means (5) determines an extent of making a target speed of the electric compressor (10) increase in accordance with a combination of a temperature of the second refrigerant, a temperature of the battery (31), an outside air temperature, and the vehicle speed.
The cooling system of a battery of a seventh aspect of the present invention provides a cooling system of a battery of either of the first or sixth aspect, wherein when the cooling control means (5) adjusts the flow regulators (15, 16) to run the first refrigerant to the branch path (18) and, furthermore, make the target speed of the electric compressor (10) increase, it first increases the target speed of the electric compressor (10), then, after a predetermined time elapses, adjusts the flow regulators (15, 16) to run the first refrigerant to the branch path (18).
The cooling system of a battery of an eighth aspect of the present invention provides a cooling system of a battery of the seventh aspect, wherein the cooling control means increases the flow rate of the second refrigerant after running the first refrigerant to the branch path (18).
Note that the parenthesized reference numerals given above are examples showing the correspondence with specific embodiments described later.
The present invention may be more fully understood from the description of preferred embodiments of the invention, as set forth below, together with the accompanying drawings.
Below, referring to the figures, embodiments of the present invention will be explained. In the embodiments, parts of the same configuration are assigned the same reference numerals for explanation. Further, an actual vehicular air-conditioner includes inside an air/outside air switching damper, a blower, an air mix damper, vent switching dampers, etc., but these are not directly relevant to the present invention, so their illustrations are omitted.
The air-conditioning system 1 is provided with a target venting temperature correction system 2 and a refrigeration cycle 6. The target venting temperature correction system 2 has a heater core 21, an electric water pump 22 and water pump 23, and a PTC heater 24 which are all connected by a medium path 20. Further, the refrigeration cycle 6 has an electric compressor 10, outside heat exchanger 11, expansion valve 12, and inside heat exchanger 13 which are all connected by a refrigerant path 17 through which a refrigerant (first refrigerant) runs. The electric compressor 10 is controlled in operation by an inverter 14 which is controlled by the air-conditioner ECU 4. Further, the configurations of the electric compressor 10 and inverter 14 are known, so explanations will be omitted.
The battery cooling system 3 is for cooling the high voltage battery 31. The high voltage battery 31 is provided with a cooling-use pipe (not depicted). This pipe is supplied with for example circulating water as a refrigerant (second refrigerant) and cools the high voltage battery 31. A circulation path (water path) 37 which is connected to the cooling-use pipe of the high voltage battery 31 is provided with a water pump 32 and a heat exchanger 35. The water which emerges from the cooling-use pipe of the high voltage battery 31 is made to flow through the circulation path 37 by the water pump 32, is cooled by the heat exchanger 35, and returns to the cooling-use pipe of the high voltage battery 31 whereupon it cools the high voltage battery 31. In the circulation path 37, a parallel water path 39 for cooling a DC/DC converter 36 is provided branched from the circulation path 37.
The above configured battery cooling system 3 in the present embodiment is provided with a branch water path 38 which bypasses the heat exchanger 35 through a three-way switching valve 34. In the middle of the branch water path 38, a water heat exchanger 33 is attached. The water heat exchanger 33 is configured so as to cool the water (second refrigerant) which flows through the branch water path 38 and flows into the water heat exchanger 33 by another refrigerant (first refrigerant) which flows through the same water heat exchanger 33. Therefore, in the present embodiment, the water which is discharged from the water pump 32 and flows through the circulation path 37 is cooled, by switching of the three-way switching valve 34, by either the heat exchanger 35 or the water heat exchanger 33 to cool the high voltage battery 31.
Further, in the present embodiment, a branch path 18 which branches off from the refrigerant path 17 is provided between the outside heat exchanger 11 and expansion valve 12 of air-conditioning system 1. This branch path 18 is connected to the inlet side of the refrigerant of the water heat exchanger 33. The other end of the branch path 18 which connects to the refrigerant outlet side of the water heat exchanger 33 is connected to the refrigerant path 17 between the inside heat exchanger 13 and the electric compressor 10. Furthermore, a valve 16 is provided in the branch path 18 at the upstream side of the water heat exchanger 33, while a valve 15 is provided in the refrigerant path 17 at the downstream side of the branching point of the branch path 18 and the upstream side of the expansion valve 12. The valves 15 and 16 are flow regulators which regulate the flow rates of the refrigerant which flows to the refrigerant path 17 and the branch path 18. The valves 15 and 16 are operated by the battery cooling ECU 5.
Further, the high voltage battery 31 is provided with a battery temperature sensor 41 which monitors the temperature of the high voltage battery 31. The circulation path 37 is provided with a cooling water temperature sensor 42 which monitors the temperature of the cooling water which flows through the circulation path 37. The battery temperature sensor 41 and the cooling water temperature sensor 42 are connected to the battery cooling ECU 5. Furthermore, the battery cooling ECU 5 has an outside air temperature sensor 43 and a vehicle speed sensor 44 connected to it. The battery cooling ECU 5 can therefore monitor the outside air temperature and the vehicle speed.
Here, the control routine of the air-conditioning system 1 and the battery cooling system 3 by the air-conditioner ECU and the battery cooling ECU 5 in the battery cooling system 50 which is configured as depicted in
At step 201, the battery cooling ECU 5 communicates with the air-conditioner ECU 4 (AC is used for air-conditioner in the drawings).
At step 202, it is judged if there is a battery cooling request. A battery cooling request is issued when giving priority to cooling of the battery 31 by the battery cooling ECU 5 over-riding the control of the air-conditioning system 1. When the judgment at step 202 is there is no battery cooling request (NO), the routine proceeds to step 204 where the air-conditioner priority control is performed and this routine is ended. On the other hand, when the judgment of step 202 is that there is a battery cooling request (YES), the routine proceeds to step 203 where whether the battery cooling priority is high is judged. A “high battery cooling priority” is the case where the cooling priority of the battery 31 is higher than a predetermined level.
On the other hand, in this embodiment, the case where the battery cooling priority is not high is deemed a low battery cooling priority, but in this case, the cooling priority of the battery 31 is lower than a predetermined level. Further, when the judgment of step 203 is that the battery cooling priority is low (NO), the routine proceeds to step 205 where low battery cooling priority control is performed, while when the battery cooling priority is high (YES), the routine proceeds to step 206 where the high battery cooling priority control is performed and this routine is ended. Low battery cooling priority control and high battery cooling priority control will be explained in detail later.
At step 404, the air-conditioner ECU 4 to which the information of the battery cooling-use solenoid valve 16 being controlled from OFF to ON is transmitted performs target speed correction control of the electric compressor 10. The target speed correction control adds to the electric compressor target speed final output IVout an electric compressor target value correction amount f1 (IVObc) in the battery cooling request so as to correct (make up for) insufficient cooling capacity in the battery cooling and thereby prevent a drop in cooling capacity (a rise in venting temperature).
If the battery cooling request level is “1” or more, as the battery cooling request level becomes higher, the electric compressor target value correction amount f1 (IVObc) becomes larger. The thus calculated electric compressor target speed final output IVout is larger than the target speed IVon of the electric compressor in usual air-conditioner control. If making the speed of the electric compressor 10 increase, the cooling capacity of the air-conditioning system 1 increases.
Step 405 judges if a predetermined time of α seconds has elapsed from when the target speed correction control of the electric compressor 10 was performed at step 404. When a seconds have not elapsed (NO), the target speed correction control of the electric compressor 10 at step 404 continues to be performed. When it is judged at step 405 that α seconds have elapsed (YES), the routine proceeds to step 406 where the battery cooling-use solenoid valve (
In this way, when the refrigerant (first refrigerant) flows through both the refrigerant path 17 and the branch path 18, due to the control of step 404, the target speed correction control of the electric compressor 10 is performed, the speed of the electric compressor 10 increases in accordance with the level of the battery cooling request, and the cooling capacity of the air-conditioning system 1 increases. For this reason, even if part of the refrigerant flows branched to the branch path 18, the cooling capacity of the air-conditioning system 1 (venting temperature of cooling air) will no longer greatly fall from normal times, there will be no fear of discomfort to the passengers of the vehicle due to insufficient cooling capacity, and the comfortable feeling of air-conditioning given to the passengers will not be detracted from.
In the control at step 406, if the valve 16 of
Step 408 judges if the amount of discharge of the water pump 32 has reached the target cooling water amount. If the amount of discharge of the water pump 32 has not reached the target cooling water amount (NO), the routine returns to step 407 where control is continued to gradually make the amount of discharge of the water pump 32 increase. When the amount of discharge of the water pump 32 reaches the target cooling water amount (YES), the routine proceeds to step 409 where the increase in the amount of discharge of the water pump 32 is stopped and this routine is ended. Due to this control, the cooling time of the high voltage battery 31 can be shortened.
In the control at step 502, the valve 15 of
Step 505 judges if the amount of discharge of the water pump 32 has reached the target cooling water amount. When, at step 505, the amount of discharge of the water pump 32 has not reached the target cooling water amount (NO), the routine returns to step 504 where control is continued for making the amount of discharge of the water pump 32 gradually increase. Further, when, at step 505, the amount of discharge of the water pump 32 has reached the target cooling water amount (YES), the routine proceeds to step 506 where the increase in the amount of discharge of the water pump 32 is stopped and this routine is ended. Due to this control, the cooling time of the high voltage battery 31 can be shortened.
Note that, in the control routine which is depicted in
Further, at the next step 605, control is performed to increase the speed of the electric compressor 10 in accordance with the target speed of the electric compressor 10 which was calculated at step 604. Further, at step 605, it is judged if the speed of the electric compressor 10 has reached the target increased speed. When it has not reached the target increased speed (NO), the control to increase the speed of the electric compressor 10 of step 604 continues to be performed. Further, when, at step 605, the speed has reached the target increased speed (YES), the routine proceeds to step 606 where the control for increasing the speed of the electric compressor 10 is stopped and this routine is ended.
On the other hand, in the other embodiment which is depicted in
The present invention can also be applied to such a configured battery cooling system 3. By performing control similar to the control which was explained above, it is possible to prevent a drop in the cooling capacity of the air-conditioning system 1 even when cooling the high voltage battery 31. That is, even when running the first refrigerant to both of the refrigerant path 17 and the branch path 18, by increasing the target speed of the electric compressor 10, it is possible to prevent a drop in the cooling capacity of the air-conditioning system 1 even when cooling the high voltage battery 31.
In this way, in a hybrid vehicle or electric vehicle which mounts a cooling system of a battery of the present invention, it is possible to utilize the refrigerant which flows through the refrigeration cycle to cool the high voltage battery and maintain the performance of the high voltage battery.
Further, above, cooling systems of a battery the first aspect to the eighth aspect of the present invention were explained, but according to the cooling systems of a battery of the above aspects, the following are possible.
According to the cooling system of a battery of the first aspect, when the first refrigerant flows to both the refrigerant path and the branch path, the target speed of the electric compressor increases, so even if cooling the battery by using the first refrigerant of air-conditioning system, the air-conditioning of the passenger compartment is not detracted from.
According to the cooling system of a battery the second aspect, when control of the air-conditioning system is given priority, the entire amount of the first refrigerant flows through the refrigerant path, while when cooling of the battery is given priority over the air-conditioning system, the higher the cooling priority of the battery, the more the amount of the first refrigerant which flows to the branch path is increased. When the cooling priority of the battery is higher than a predetermined level, the entire amount of the first refrigerant flows to the branch path, so both when the battery cooling priority is high and when the battery cooling priority is low, battery cooling and air-conditioning can be performed well.
According to the cooling system of a battery of the third aspect, the target speed of the electric compressor changes depending on the second refrigerant temperature or the temperature of the battery, so battery cooling is efficiently performed in accordance with the second refrigerant temperature or the temperature of the battery.
According to the cooling system of a battery of the fourth aspect, the target speed of the electric compressor changes depending on the temperature of the outside air, so battery cooling is efficiently performed in accordance with the temperature of the outside air.
According to the cooling system of a battery the fifth aspect, the target speed of the electric compressor changes depending on the vehicle speed, so battery cooling is efficiently performed in accordance with the vehicle speed.
According to the cooling system of a battery of the sixth aspect, the target speed of the electric compressor is determined in accordance with the combination of the second refrigerant temperature, battery temperature, outside air temperature, and vehicle speed, so the battery cooling is efficiently performed in accordance with the combination of the second refrigerant temperature, battery temperature, outside air temperature, and vehicle speed.
According to the cooling system of a battery of the seventh aspect, after the target speed of the electric compressor increases and the electric compressor becomes higher in speed, the first refrigerant is branched to the branch path whereby the battery is cooled, so even if the flow rate of the first refrigerant at the air-conditioning system side is reduced, a drop in the air-conditioning operation of the air-conditioning system is suppressed.
According to the cooling system of a battery of the eighth aspect, at the time of battery cooling, the flow rate of the second refrigerant increases, so the battery cooling can be quickly and efficiently performed.
While the invention has been described by reference to specific embodiments chosen for purposes of illustration, it should be apparent that numerous modifications could be made thereto by those skilled in the art without departing from the basic concept and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-119022 | May 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6073456 | Kawai et al. | Jun 2000 | A |
6330909 | Takahashi et al. | Dec 2001 | B1 |
6394210 | Matsuda et al. | May 2002 | B2 |
6530426 | Kishita et al. | Mar 2003 | B1 |
6834510 | Pfister et al. | Dec 2004 | B1 |
20040172959 | Oomura et al. | Sep 2004 | A1 |
20070227168 | Simmons | Oct 2007 | A1 |
20080295535 | Robinet et al. | Dec 2008 | A1 |
20090249802 | Nemesh et al. | Oct 2009 | A1 |
20090249807 | Nemesh et al. | Oct 2009 | A1 |
20110048671 | Nishikawa et al. | Mar 2011 | A1 |
20110088421 | Wakamoto et al. | Apr 2011 | A1 |
20130213631 | Ichishi et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
H10-162867 | Jun 1998 | JP |
H11-40212 | Feb 1999 | JP |
2001-105843 | Apr 2001 | JP |
2002-354608 | Dec 2002 | JP |
2010-226894 | Oct 2010 | JP |
2011-49139 | Mar 2011 | JP |
Entry |
---|
Office Action issued Jul. 2, 2013 in corresponding Japanese Application No. 2011-119022 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20120297805 A1 | Nov 2012 | US |