This application claims the benefit of U.S. Provisional Application No. 60/015,731, filed Dec. 21, 2007, which is herein incorporated by reference in its entirety.
1. Field of the Invention
The present invention is related to apparatus for cooling samples and more particularly to cooling systems that use expendable evaporating coolants.
2. Background of the Invention
Sample measurements, such as those conducted for thermal analysis experiments, frequently involve performing measurements at temperatures that are below the ambient temperature of a measuring instrument used to conduct the experiment. This requires that at least a portion of the instrument be cooled, such as a sample stage region used to hold the sample. The sample stage region is cooled by providing a heat exchange means (heat exchanger) in a region adjacent and thermally coupled to it or as part of the region that holds the sample. Coolant is then provided to the heat exchanger to remove heat from the sample region.
Generally, cooling systems designed for such purposes may be divided into those that use expendable coolants like liquid nitrogen, and those that recirculate a coolant, such as those that use vapor-compression refrigeration. In cases in which liquid nitrogen is used as a coolant, there are broadly two different approaches, which may be divided into (1) those that cool a sample stage by using cold vapor to cool the apparatus by convective heat transfer and (2) those that use liquid nitrogen to cool the apparatus by boiling heat transfer. Systems using convection cooling are relatively inefficient because the latent heat of vaporization, which has by far the greater cooling effect per unit mass of coolant, is not used to cool the apparatus. Also, considerably lower temperatures may be achieved using boiling heat transfer as compared to convective cooling. Using convection cooling it is often difficult to reach −150° C., while systems that use boiling heat transfer cooling can readily achieve −180° C. without any particular difficulty.
Often, the choice of convection heat transfer using vapor rather than boiling heat transfer is made based on the method of temperature control of the instrument, and not based on considerations of maximizing cooling efficiency. This is due to differences in the nature of the two heat exchange processes. When using convection cooling, heat transfer between the vapor and a heat exchanger depends directly upon the flow rate of the vapor. At low flow rates, the temperature change experienced by the vapor is large and the cooling effect is low, while at high flow rates, the temperature change experienced by the vapor is lower, but the cooling effect is much greater; thus, one may regulate the cooling effect by changing the flow rate of the vapor. In the boiling heat transfer process, the liquid in a heat exchanger is always essentially at the boiling point of the saturated liquid and the vapor that is created from the liquid is also very close to the boiling point. Thus, increases in flow rate have very little effect on the magnitude of heat exchange, so that adjusting the flow rate of the liquid does not appreciably change the amount of heat removed, as long as the volume of boiling liquid in the heat exchanger remains constant.
Boiling heat exchange involves the formation of vapor bubbles on a surface of the heat exchanger, wherein the bubbles detach from the surface and carry away heat in the process. As the heat flux across the heat exchange surface increases, the rate of bubble formation increases. Eventually, if the rate of heat exchange continues to increase, the surface becomes almost completely covered with vapor bubbles and the rate of heat exchange reaches a maximum. At that point, the critical heat flux (also termed “critical heat flux point” or “critical heat flux level” hereinafter) is reached, and further increases in heat flux cause the temperature of the heat exchanger to rise rapidly, as the rate of heat flux across the surface drops. The critical heat flux is an unstable point, above which the heat flux across the surface drops as the surface temperature rises. To avoid the instability associated with reaching the critical heat flux, cooling systems that use boiling heat exchange are designed to always operate below the point of critical heat flux, which requires that a boiling heat exchange cooling system always operates with a constant level of liquid in the heat exchanger. It is therefore desirable that the heat exchanger is designed to have enough surface area such that the critical heat flux is not exceeded when maximum power is developed in the instrument being cooled. It is also desirable that a pump used to deliver liquid to the heat exchanger is designed to deliver more liquid than necessary to replenish liquid that boils during the heat exchange process, including transfer losses of liquid, i.e., liquid that boils in the transfer line between the pump and the heat exchanger. Thus, for an instrument that uses boiling heat transfer cooling, during an experiment it is paramount that the liquid level in the heat exchanger remains constant to maintain the heat exchanger in a stable boiling regime below the critical heat flux. Regulation of the flow rate of coolant is of lesser concern.
Known systems that employ a dewar as a source of liquid nitrogen coolant (see, for example U.S. Pat. No. 6,578,367 to Schaefer, et al.; U.S. Pat. No. 5,117,639 to Take; U.S. Pat. No. 5,013,159 to Nakamura, et al.; U.S. Pat. No. 4,979,896 to Kinoshita; U.S. Pat. No. 4,783,174 to Gmelin, et al.; U.S. Pat. No. 4,031,740 to Achermann; U.S. Pat. No. 3,572,084 to May; U.S. Pat. No. 3,456,490 to Stone, which are all incorporated by reference herein in their entirety, and see J. G. Van-de Velde, J. D. Mitchell, Thermochimica Acta, 214 (1993) 163-170) are configured to pressurize the dewar to transfer the nitrogen coolant, in either liquid or gas form, to the heat exchanger during an experiment. In most cases, the dewar is pressurized by using nitrogen gas evolved during evaporation of the liquid in the dewar. Two variations are generally used: 1) a heater is immersed in the liquid nitrogen and is used to boil a portion of the liquid, such that the expansion of the generated vapor pressurizes the dewar; and 2) a tube connecting the bottom of the dewar to the gas space at the top of the dewar is passed between the inner and outer walls of the dewar, such that liquid flowing into the tube boils. The resulting vapor enters the top of the dewar, thereby pressurizing the dewar.
When a pressurized dewar is used to transfer liquid to a heat exchanger, the gas pressure in the dewar forces the liquid to enter a transfer tube that extends downward into the dewar, terminating just above the bottom of the dewar. The liquid flows upward through the transfer tube by which the liquid is conducted to the sample region thereby providing a cooling medium to cool the sample during an experiment. When the pressurized dewar is used to transfer gas, the transfer tube is connected to the gas space above the liquid in the dewar and the pressure in the dewar forces the cold gas to flow through the transfer tube to the experiment. In either case, refilling the dewar with liquid nitrogen is required periodically to replenish the liquid nitrogen lost to the gas phase during an experiment. Refilling the dewar requires that it be vented to atmosphere to allow vapor generated during filling and displaced by the liquid to be discharged to atmosphere. Thus, the pressure necessary for delivering coolant to a heat exchanger located near the sample during the experiment must be released each time the dewar is refilled.
When the pressure from the dewar is released, the desired cooling effect at the heat exchanger is disrupted. For example, in a boiling heat exchange system, as mentioned above, it is paramount that the level of liquid be maintained at a certain level to avoid heat exchange instability. Once the transfer line conducting liquid to the sample heat exchanger is depressurized due to depressurization of the dewar, the circulation of the liquid through the heat exchanger slows down or stops, and the liquid in the heat exchanger boils, reducing the liquid level, potentially causing the critical heat flux to be exceeded which destroys the ability to control the sample temperature as desired. Because of this problem, an experiment must generally be terminated for refilling of a pressurized dewar. This limits the maximum duration of experiments that may be performed using known pressurized dewar systems and/or requires that the experimental schedule allow for refilling the dewar.
In one embodiment of the present invention, a thermal analysis cooling system is configured to transfer the cryogenic liquid from a storage dewar without pressurization of the cryogenic liquid to a heat exchanger by using a positive displacement pump that is submerged within the cryogenic liquid. The system is configured to provide a cryogenic liquid that cools an experimental sample by vaporization of the cryogenic liquid within the heat exchanger. The pump is preferably configured with a low pressure drop suction check valve and is preferably configured to operate at constant speed, such that a relatively constant and continuous flow rate of liquid is provided to the heat exchanger. To prevent the point of critical heat flux from being reached, the constant flow rate is larger than the flow rate necessary to accommodate the maximum heat load of the instrument. The system is further configured to return vapor generated in the heat exchanger and excess liquid to the dewar, and configured to vent the returned vapor to the atmosphere as well as to collect the returned liquid in the dewar, wherein the returned liquid is available to be pumped back to the heat exchanger. Because pressure from vapor in the dewar is not used to transfer liquid to the heat exchanger, the thermal analysis cooling system of the present invention allows liquid to be added to the dewar at any time, including during an experiment when liquid is being actively circulated to the heat exchanger from the dewar, thereby providing a continuous source of sample cooling for any desired length of time.
In another embodiment of the present invention, a cryogenic liquid cooling system comprises a dewar configured to store a cryogenic liquid, a positive displacement pump configured to pump the cryogenic liquid in the dewar through a transfer line as a continuous flow as long as the positive displacement pump is submerged within the cryogenic liquid, and a drive assembly that is mechanically coupled to the positive displacement pump. The drive assembly is configured to provide a reciprocating motion to the positive displacement pump, and is configured to attach to the dewar cover, whereby the drive assembly is disposed outside the dewar during operation of the positive displacement pump.
In a further embodiment of the present invention, a cryogenic liquid cooling system for providing continuous cooling to a sample stage comprises a positive displacement pump configured to pump the cryogenic liquid contained in a storage dewar through a discharge tube as a continuous flow as long as the positive displacement pump is submerged within the cryogenic liquid, and a heat exchanger thermally coupled to the sample stage. The heat exchanger is configured to receive the cryogenic liquid pumped from the transfer line, to transfer heat from a sample stage coupled to the heat exchanger which is cooled by vaporization of the cryogenic liquid, and to return unvaporized cryogenic liquid and vapor evolved from the cryogenic liquid to the dewar.
In yet another embodiment of the present invention, a cryogenic liquid cooling system for cooling a sample stage of an experimental apparatus comprises a dewar configured to store a cryogenic liquid, a positive displacement pump configured to pump the cryogenic liquid in the dewar through a transfer line as a continuous flow as long as the positive displacement pump is submerged within the cryogenic liquid, a drive assembly mechanically coupled to the positive displacement pump, configured to introduce a reciprocating motion into the positive displacement pump, and configured to mount to a cover on the outside of the storage dewar, and a heat exchanger configured to receive the cryogenic liquid from the transfer line and to maintain a predetermined level of cryogenic liquid in the heat exchanger during operation of the positive displacement pump.
Thus, unlike positively pressurized cryogenic cooling systems, no excess pressure above the cryogenic liquid is needed for the positive displacement pump of the present invention to operate so that vent portals need not remain sealed. This facilitates replenishing the dewar with cryogenic liquid without interrupting operation of the pump, since the pump can remain operational as long as the pump remains submerged in liquid. This allows refilling of liquid into the unpressurized dewar, by, for example, opening a portal in the dewar and transferring of liquid nitrogen from a source, such as a bulk storage dewar.
In accordance with an embodiment of the present invention,
Outlet head 101 is connected in a liquid tight manner to discharge tube 1 (not shown in
As depicted in
The low pressure drop configuration using a ball check valve promotes improved operation of the pump within the cryogenic liquid because the tendency to form vapor in liquid entering or leaving the pump is minimized. Cryogenic liquid in an unpressurized dewar has a temperature close to the boiling point of the liquid. Accordingly, slight increases in temperature inside the dewar tend to markedly increase vaporization. Similarly, significant pressure drops induced above the cryogenic liquid, such as those caused by a large pressure drop check valve, would induce a large increase in the rate of vaporization of the cryogenic liquid passing through the check valve. Thus, in accordance with the present invention, a low pressure drop check valve reduces the amount of vapor evolved during each cycle of the pump by minimizing the pressure drop experienced by the liquid flowing through the check valves.
Compression of the bellows forces liquid contained within the pump to leave the pump through discharge port 107, displacing check ball 108 against the force of gravity; check ball retainer 109 limits check ball motion so that during the extension stroke check ball 108 closes the discharge port 107 under the action of gravity and the tendency of liquid to flow backward through the discharge port, thereby preventing liquid from flowing back into the pump. Drive rods 3a and 3b pass through guide bushings 110a and 110b that are installed in the outlet head. The bushings allow free motion of the drive rods but constrain them to move parallel to the axis of the bellows, thereby stabilizing the bellows.
Thus, during operation of pump assembly 10, drive system 200 is located external to the dewar, while bellows pump assembly 100 is immersed in the liquid in the dewar and is driven by system 200 via rods 3a and 3b, which are free to move with respect to cover 208.
In accordance with the present invention, the overall distance between plate 208 and bellows pump assembly 100 is tailored according to the size of the dewar to be used. In one embodiment of the present invention, separate liquid nitrogen pump assemblies 10 can be provided, wherein in each assembly 10, the lengths of drive rods 3a, 3b and discharge tube 1 are configured to locate bellows pump assembly 100 near the bottom of a dewar into which the bellows pump is to be immersed when cover 208 is clamped to the top of the dewar. Accordingly, the lengths of drive rods 3a, 3b and discharge tube 1 could be for example one foot for use with a small dewar, or could be several feet for use with a larger dewar, or any other suitable length.
In the embodiment illustrated in
In accordance with a preferred embodiment of the present invention, a pump system and heat exchanger, such as those described with respect to
Advantageously, with the use of a positive displacement pump having low pressure drop suction and discharge check valves immersed in an unpressurized dewar, continuous flow of liquid can be supplied to a heat exchanger for any desired length of time, since the dewar can be refilled without stopping the pump. In accordance with embodiments of the present invention, in order to assure that the continuous cryogenic liquid flow is sufficient to prevent the critical heat flux point from being reached, the overall size and shape of the heat exchanger can be tailored according to the expected or measured heat load applied to a sample stage. For example, a heat exchanger can be configured such that the critical heat flux point is not reached so long as the exchanger remains full of liquid (say, up to the weir height).
In particular, referring again to
Accordingly, assuming the design of heat exchanger 400 provides sufficient heat exchange area when annular cavity 402 is full to height H, during an experiment, the positive displacement pump of the present invention need thereby only operate to provide sufficient liquid flow rate such that some liquid is continuously returned to the dewar, thus ensuring that liquid remains in the heat exchange cavity up to the height of the weir. This requires no active control system that may be complicated to operate, and allows for variations in flow rate, so long as the flow rate is sufficient to maintain some liquid return to the dewar at all times.
Thus, although the flow rate of cryogenic liquid through the heat exchanger may vary as the bellows pump cycles from an expanded state to a compressed state, in accordance with embodiments of the present invention, the stroke (back and forth distance traveled by the bellows) and diameter of the bellows, the diameter and length of lines conducting the cryogenic liquid, and the depth of the heat exchange cavity containing the liquid, among other factors, can be tailored to ensure that the heat exchange cavity remains full of liquid, such that liquid is returned to the dewar at all points of the pump cycle and under all heat flux conditions anticipated for the sample stage.
In this regard, an advantage afforded by the heat exchanger 400 of the present invention is that cryogenic liquid used to cool heat exchanger 400 is recirculated from heat exchanger 400 back to a dewar from which the liquid is obtained. Accordingly, unlike a heat exchange using cryogenic liquid that vents to atmosphere after heat exchange, a pump, such as pump assembly 100, can be conveniently operated to supply an excessive flow rate of liquid, such that a substantial flow of cryogenic liquid is returned to the dewar after passing through heat exchanger 400. Accordingly, the return of liquid to the dewar in systems designed according to the present invention need not be closely monitored, since moderate fluctuations in pumping speed, for example, would be unlikely to reduce the cryogenic liquid flow rate to the point that no liquid is returned and the liquid in the heat exchange cavity begins to deplete. In contrast, in systems venting to atmosphere after liquid passes through the heat exchanger, operation of pumps at flow rates that create an excessive return of cryogenic liquid would result in a substantial waste of cryogenic liquid. However, for such systems, operation of pumps at flow rates that minimize cryogenic liquid return in order to avoid liquid waste could risk decreasing heat exchange area if the rate of delivery of liquid to the heat exchanger fluctuates such that no liquid is returned and the level of liquid in a heat exchange cavity begins to drop.
In accordance with an embodiment of the present invention, pump system 10 is also fitted with a system (not shown) to detect the level of liquid nitrogen in the storage dewar. Such a system for liquid level detection can be of known designs. For example, one embodiment of the present invention comprises a liquid level detection system that contains a pair of self-heated thermal switches that close when immersed in liquid nitrogen and open when surrounded by vapor. One of the switches is mounted in the dewar at an elevation corresponding to the full level of liquid and closes to indicate that the dewar is full. The other switch is located at an elevation corresponding to the level at which the dewar should be refilled and opens to indicate that it should be refilled. The switches may simply provide a level indication, for example, by illuminating indicating lamps, or may be used to operate a valve by which liquid may be automatically added to the dewar to refill it. Alternatively, a continuous level measuring system, such as a capacitive level detection (see Guy K. White, “Experimental Techniques in Low-Temperature Physics” 3rd Ed., 1979, Oxford Science Publications, pp 50-54) system may be used. The capacitive level detection system may simply provide level indication via a meter or other suitable indicating device. Alternatively, the detection system may be used to supply a level indication to a logical circuit that actuates a valve by which liquid may be automatically added to the dewar when the liquid level falls to a preset value.
The foregoing disclosure of the preferred embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the above disclosure. For example, the present invention may be used in conjunction with any system that requires a sample stage or other apparatus or device to be cooled using a cryogenic liquid. The scope of the invention is to be defined only by the claims appended hereto, and by their equivalents.
Further, in describing representative embodiments of the present invention, the specification may have presented the method and/or process of the present invention as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3456490 | Stone | Jul 1969 | A |
3572084 | May | Mar 1971 | A |
3938347 | Riedel et al. | Feb 1976 | A |
4031740 | Achermann | Jun 1977 | A |
4783174 | Gmelin et al. | Nov 1988 | A |
4902206 | Nakazawa et al. | Feb 1990 | A |
4979896 | Kinoshita | Dec 1990 | A |
5013159 | Nakamura et al. | May 1991 | A |
5117639 | Take | Jun 1992 | A |
5308230 | Moore | May 1994 | A |
5419140 | Germain | May 1995 | A |
5876118 | Vogel | Mar 1999 | A |
6523998 | Danley et al. | Feb 2003 | B1 |
6578367 | Schaefer et al. | Jun 2003 | B1 |
20020092357 | Theriault et al. | Jul 2002 | A1 |
20030110937 | Lang et al. | Jun 2003 | A1 |
20030115894 | Podtchereniaev et al. | Jun 2003 | A1 |
20040223669 | Vicars | Nov 2004 | A1 |
20050005626 | McMahon | Jan 2005 | A1 |
20050031475 | Taniguchi | Feb 2005 | A1 |
20050145562 | Allen et al. | Jul 2005 | A1 |
20050203415 | Garlick et al. | Sep 2005 | A1 |
20050245841 | Turturro et al. | Nov 2005 | A1 |
20070213699 | Baust et al. | Sep 2007 | A1 |
20070237658 | Burns et al. | Oct 2007 | A1 |
Entry |
---|
Article by J. G. Van-de-Velde, J.D. Mitchell/Thermochimica, Acta 214 (1993), pp. 163-170. |
Article by Guy K. White, “Experimental Techniques in Low-Temperature Physics” 3rd Ed., 1979, Oxford Science Publications, pp. 50-54. |
Ebisu, Takeo et al.; “Small pump for liquid nitrogen”; Rev. Sci. Instrum. 59(4), Apr. 1988, pp. 658-659. |
Simane, C. et al.; “A Small Transfer and Distribution System for Liquid Nitrogen”; Acta Polytechnica vol. 41, No. 1/2001, pp. 29-30. |
Number | Date | Country | |
---|---|---|---|
20100154439 A1 | Jun 2010 | US |