Ice cooled beverage dispensers incorporate cold plates for cooling beverage components as they flow through serpentine pathways therein. The cold plate normally has tubes or coils of a suitable material, such as stainless steel, imbedded in a heat conducting casting, such as an aluminum casting which can be several inches thick. Cold plates have been utilized to chill conventional carbonators. The cold plate cools the carbonator unit by conduction such that the water within the carbonator unit is also chilled as it flows therethrough. Dispensed carbonation levels decrease as the temperature in the carbonator tank increase. Up until now, carbonator tanks in contact with the cold plate are arranged in a horizontal lay out. There are a variety of disadvantages to this arrangement including inconsistent carbonation levels.
In general terms, this disclosure is directed to a cooling system for use in beverage dispenser. In one possible configuration and by non-limiting example, the beverage dispenser has a cold plate and a carbonator unit. The cold plate is positioned in thermal contact with the carbonator.
One aspect is a cooling system for use in a beverage dispenser, the cooling system including: a cold plate having a top surface and a side surface; a carbonator arranged in a non-horizontal orientation to the cold plate, the carbonator having a sidewall, a lower uninsulated portion of the sidewall of the carbonator being in thermal communication with the side surface of the cold plate; and a fastener coupling the carbonator to the cold plate, the fastener having a lower thermal conductivity as compared to a thermal conductivity of the carbonator.
Another aspect is a beverage dispenser including: a sweetener inlet; a still water inlet; a nozzle; a cold plate having a first surface and a second surface, the first surface defining a portion of an ice storage area, the cold plate defining a portion of a fluid pathway between the sweetener inlet and the nozzle and a portion of a fluid pathway between the still water inlet and a carbonator; and the carbonator arranged in a non-horizontal orientation relative to the cold plate, the carbonator comprising a gas inlet, a liquid inlet in fluid communication with the still water inlet, and a liquid outlet in fluid communication with the nozzle, wherein the carbonator is in thermal communication with the second surface of the cold plate.
A further aspect is a method for causing convection currents of a fluid within a carbonator, the method including: connecting a portion of the carbonator to a portion of a cold plate, the carbonator orientated at an angle relative to the cold plate; cooling the cold plate; causing, in response to the cooling of the cold plate, a temperature drop of the fluid proximate the portion of the carbonator connected to the portion of the cold plate; and causing, in response to the temperature drop, the fluid proximate the portion of the carbonator connected to the portion of the cold plate to change location within the carbonator, wherein the change in location causes convection currents of the fluid without external mechanical agitation.
Yet another aspect is a cooling system for use in a beverage dispenser, the cooling system including: a cold plate; a carbonator in thermal communication with the cold plate, the carbonator arranged in a non-horizontal orientation with respect to the cold plate and in contact with a portion of the cold plate, the contact providing heat exchange therebetween; and a fastener adapted to couple the carbonator to the cold plate.
Another aspect is a cooling system for use in a beverage dispenser, the cooling system including: a sweetener inlet; a still water inlet; a cold plate having a first surface and a second surface, the first surface defining a portion of an ice storage area; a nozzle; and a carbonator comprising a gas inlet, a liquid inlet, and a liquid outlet, wherein the carbonator is in thermal communication with the cold plate, the carbonator being oriented in a non-horizontal orientation relative to and on a portion of the first surface of the cold plate.
Yet another aspect is a method for constructing a cooling system, the method including: providing a cold plate; securing a carbonator to the cold plate such that the carbonator is in thermal communication with the cold plate; and configuring the carbonator in a non-horizontal orientation relative to a portion of the cold plate.
Various embodiments will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims.
During operation, a user selects a beverage using a user interface. Examples of such an interface are described in U.S. Patent Application Ser. No. 61/877,549 filed on Sep. 13, 2013, the entirety of which is hereby incorporated by reference. After the beverage is selected, the user actuates a mechanism (not shown) to dispense the beverage.
During dispensing, a diluent such as carbonated water 113 or still water flows from the carbonator 102 or the still water input 110 to a nozzle 116. In some embodiments, a macro ingredient 114, such as a nutritive sweetener like high fructose corn syrup, flows to the nozzle 116. Additionally, one or more micro-ingredients may be dispensed about the nozzle 116. The various ingredients may flow from the nozzle 116 to form a “post mix” beverage. In other words, the ingredients remain separate until they are mixed about or within the nozzle 116 and are dispensed into a cup 118.
Referring to
In certain examples, the cold plate 108 may be arranged and configured with embedded coils or tubes therein for which fluids travel through to be chilled to an appropriate temperature before being served from the beverage dispenser 100. In other examples, the cold plate 108 may include a heat exchanger having a plurality of fluidic channels integrated (e.g. monolithically formed) therein. The heat exchanger construction helps to increase the surface area to allow for more efficient heat transfer to occur.
The cold plate 108 may be positioned within or form a portion of an ice retaining bin (not shown) such that a layer of ice water contacts the first surface 122. The ice water causes heat exchange between the first surface 122 of the cold plate 108 and the ice water. Water can then flow through the cold plate 108 and be chilled prior to entering the carbonator 102.
Referring to
Still in other embodiments, the carbonator 102 may be arranged and configured to be oriented at an angle of about 40, 50, 60, 70, 80, or 90 degrees relative to the cold plate 108. It is acknowledged that the degree of tilt or angle for the carbonator 102 may vary in other embodiments.
In some embodiments, the carbonator 102 can be arranged and configured to be oriented in a non-horizontal orientation. Other orientations or positions may be possible in accordance with this disclosure.
In one embodiment, a lower portion 130 of a carbonator side wall 131 can be arranged and configured to mate to a portion of the first surface 122 of the cold plate 108 such that the lower portion 130 of the carbonator side wall 131 is cooled.
The carbonator 102 can include insulated walls 132 to help minimize warming of the contents within the carbonator 102. In other examples, fillers with high thermal conductivity may be sandwiched between the first surface 122 of the cold plate 108 and the lower portion 130 of the carbonator side wall 131 to help improve heat transfer between the cold plate 108 and the carbonator 102.
Typically during start up times, beverages may be less carbonated because of the overnight temperature rise in the carbonator 102. Because a carbonator 102 that is warmed is not able to dissolve as much CO2, a lower quality (i.e., less carbonated) beverage can be dispensed. Chilling the carbonator 102 by using a portion of the cold plate 108 can increase the ability to dissolve CO2 in the carbonator tank 120. The more CO2 dissolved can result in an increased beverage quality and consistency even during times of high demand because the carbonator 102 can produce and maintain soda with a higher CO2 concentration. Providing cold water to the carbonator 102 can increase the carbonation level in the carbonator 102. The carbonator 102 can be maintained at temperatures at or below 40° F. to make carbonated drinks with water.
In one example, the top of the carbonator 102 can be in close proximity to the nozzle 116 such that the length of tubing L1 between the carbonator 102 and the nozzle 116 can be significantly reduced. The reduction in length of tubing L1 can reduce the amount of dead space or volume in the tubing and improve the quality of beverage being dispensed. The reduction of length of tubing L1 can also help improve the beverage quality after the dispenser has been idle for some time. When the dispenser becomes idle without dispensing beverages, the ambient soda in the tubing can increase the average temperature of the dispensed beverage. Having the top of the carbonator 102 close to the nozzle 116 can help address this issue because the shorter tubing lengths under ambient conditions can lower the dispensed beverage temperature and increase the carbonation level of the dispensed beverage. Minimizing the length of tubing L1 can help dispense colder beverages.
Referring again to
Referring to
In one example, fluid 135 next to the cold plate 108 can cool to about 34° F. such that its density decreases. This cooling can cause the fluid 135 next to the cold plate 108 to rise. The rising fluid 135 inside the carbonator 102 can be replaced by fluid 137 with a temperature of about 40° F., which can cause convection currents 140 to occur inside the carbonator 102. The convection currents 140 help to churn the contents inside the carbonator 102 to achieve a more uniform temperature distribution within the carbonator 102 as the colder water rises to the top and the warmer water sinks to the bottom.
Referring again to
As shown in
In other examples, a thermal paste may be used as a sealant around the cap 134. The thermal paste may have a high thermal conductivity to conduct heat well. In certain examples, the thermal paste may be applied between the mating surfaces 122, 130 of the cold plate 108 and the carbonator 102 to help improve the heat transfer between the cold plate 108 and the carbonator 102.
In this example, the cold plate 306 is located adjacent a bottom of an ice bin (not shown) to enable heat transfer between the ice and beverage fluids. The still water input 308 and the CO2 input 312 supply still water and CO2 to the carbonator 302 to produce the carbonated water 310. In this example, an external CO2 tank is used to pump CO2 to the carbonator 302 through input 312.
In one embodiment, during dispensing, a diluent such as carbonated water 310 or still water flows from the carbonator 302 or the still water input 308 across the cold plate 306 to a nozzle 316. Cold still water is provided via local plumbing and sometimes in conjunction with a water booster to maintain consistent water pressure. The still water input 308 provides water to the pre-chiller circuit 314.
In the present example embodiment, there is a separate nozzle 316 for each beverage ingredient 304. In one example, the beverage dispenser 300 may have one or more multi-flavor nozzles for dispensing more than one flavor of beverage. In other examples, the beverage dispenser 300 may have a combination of single flavor and multi-flavor nozzles.
In some examples, the beverage ingredient 304, may include a nutritive sweetener like high fructose corn syrup. The beverage ingredient 304 can be provided in a bag-in-box type configuration. The various ingredients remain separate until they are mixed about or within the nozzle 316 with cold water or carbonated water and are dispensed into a cup 318. The beverage ingredient 304 is mixed with a diluent to produce a finished beverage. The beverage typically has a reconstitution ratio from about 3:1 to 6:1.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the claims attached hereto. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the following claims.
The present application is a continuation of U.S. application Ser. No. 15/108,504, entitled COOLING SYSTEMS FOR BEVERAGE DISPENSERS AND METHODS OF MAINTAINING A COOLING SYSTEM, filed 27 June, 2016, which is a U.S. National stage application of International Application PCT/US2014/071277, filed Dec. 18, 2014, which claims the benefit of U.S. Provisional Patent Application 61/920,867, filed Dec. 26, 2013, the disclosures of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5490614 | Sardynski | Feb 1996 | A |
6155069 | Quartarone | Dec 2000 | A |
20020162350 | Haskayne | Nov 2002 | A1 |
20030056524 | Schroeder | Mar 2003 | A1 |
20030111745 | Ziesel | Jun 2003 | A1 |
20070228075 | Edwards | Oct 2007 | A1 |
20110204229 | Schamber | Aug 2011 | A1 |
20130206792 | Schroeder | Aug 2013 | A1 |
20140361043 | Jablonski | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
S49144897 | Dec 1974 | JP |
2003508315 | Mar 2003 | JP |
2013112895 | Aug 2013 | WO |
Entry |
---|
Yuichi Ishiguro, Japanese Office Action, dated Apr. 25, 2019, pp. 1-4, Japanese Patent Office, Tokyo, Japan. |
CNIPA, Chinese Office Action, dated Jun. 5, 2019, pp. 1-4, Chinese National Intellectual Property Administration, Beijing, China. |
Number | Date | Country | |
---|---|---|---|
20190263651 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
61920867 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15108504 | US | |
Child | 16408026 | US |