Cooling systems

Information

  • Patent Grant
  • 8291870
  • Patent Number
    8,291,870
  • Date Filed
    Tuesday, August 24, 2010
    14 years ago
  • Date Issued
    Tuesday, October 23, 2012
    12 years ago
Abstract
A cooling system for a vehicle having an internal combustion engine permits rapid warm-up of the engine by the use of two electrically-operated valves in addition to a conventional thermostat. A bypass valve and a heater valve both remain closed at low coolant temperatures and engine speeds, thereby inhibiting coolant flow through the engine. A control unit opens the bypass valve to prevent cavitation in the water pump if engine speed and/or load exceeds a certain value. The heater valve is opened when a threshold engine coolant temperature is reached permitting warming of the heater matrix.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims foreign priority benefits under 35 U.S.C. ยง119(a)-(d) to GB 0919393.9 filed Nov. 5, 2009, which is hereby incorporated by reference in its entirety.


BACKGROUND

1. Technical Field


This disclosure relates to cooling systems for a motor vehicle having an internal combustion engine.


2. Background Art


As internal combustion engines become more fuel efficient, less waste heat is produced and consequently, the time taken to reach an optimum running temperature increases. This protracted time has a deleterious effect on fuel economy and engine wear.


Hence, a cooling system which reduces the time taken for a cold engine to reach its optimum running temperature would be desirable.


SUMMARY

Accordingly, in a first embodiment, the present disclosure comprises a cooling system for a motor vehicle having an internal combustion engine, said cooling system including a pump for supplying coolant to the engine, an outflow conduit for connecting the pump outlet to the engine, and a return circuit for connecting the engine to the pump inlet, wherein the return circuit comprises three branches, a first branch including a first valve, a second branch including a radiator and thermostat, and a third branch including a heater matrix, a degas tank and a second valve.


The second branch of the return circuit may further include an engine oil cooler.


The first and second valves may be controlled electronically and the cooling system includes a control unit for controlling the valves in response to an input from at least one of the following onboard vehicle devices; an engine coolant temperature sensor, an ambient air temperature sensor, a timer, a cabin heating demand sensor, an engine operating condition sensor.


The engine operating condition sensor may be, for example, a sensor which detects engine speed, engine load, throttle position or mass air flow into the engine.


To prevent damage to the pump if malfunction of the control unit were to occur, the first valve has its default position set to the closed position and the second valve to has its default position set to the open position.


In accordance with a second embodiment, the present disclosure includes a method of operating a cooling system for a motor vehicle having an internal combustion engine, wherein the cooling system includes a pump for supplying coolant to the engine, an outflow conduit for connecting the pump outlet to the engine, and a return circuit for connecting the engine to the pump inlet, the return circuit comprising three branches, a first branch including a first valve, a second branch including a radiator and thermostat, and a third branch including a heater matrix, a degas tank and a second valve. The method includes: opening both first and second valves for a period long enough to flush air from the system when the engine is started cold. Then, both valves are closed. At least one engine operating condition and engine coolant temperature are monitored. The first valve is closed if one engine operating condition exceeds a pre-set level; and the second valve is opened if engine coolant temperature exceeds a threshold value.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic block diagram of a cooling system in accordance with a preferred embodiment of the disclosure,



FIG. 2 is a chart illustrating an operating regime of a first valve which is included in the system of FIG. 1, and



FIG. 3 is a chart illustrating an operating regime of a second value which is included in the system of FIG. 1.





DETAILED DESCRIPTION

As those of ordinary skill in the art will understand, various features of the embodiments illustrated and described with reference to any one of the Figures may be combined with features illustrated in one or more other Figures to produce alternative embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. However, various combinations and modifications of the features consistent with the teachings of the present disclosure may be desired for particular applications or implementations. Those of ordinary skill in the art may recognize similar applications or implementations consistent with the present disclosure, e.g., ones in which components are arranged in a slightly different order than shown in the embodiments in the Figures. Those of ordinary skill in the art will recognize that the teachings of the present disclosure may be applied to other applications or implementations.


With reference to FIG. 1, a water pump 1 supplies coolant to an internal combustion engine 2 via a conduit 3 which connects the pump outlet to the engine 2.


Coolant returns to the inlet side of the pump 2 via a return circuit which comprises three branches. A first branch 4 includes an electronically controllable bypass valve 5. A second branch 6 includes a radiator 7 and thermostat 8. A third branch 9 includes a heater matrix 10, an engine oil cooler 11 and electronically-controllable heater/degas valve 12 and a degas tank 13 connected via a side branch 14 upstream of the heater/degas valve 12 and downstream of the oil cooler 11 and heater matrix 10.


A temperature sensor 15 is provided on the engine 2 for monitoring the temperature of the coolant at the point at which it leaves the engine 2.


An electronic control unit (ECU) 16 is electrically connected with the bypass valve 5 and the heater/degas valve 12 and controls opening and closing of each valve 5, 12. The ECU 16 receives inputs from a timer 17, an ambient air temperature sensor 18, an engine speed sensor 19 and a cabin heater demand sensor 20. A conduit 21 links the engine 2 directly with the degas tank 13. Alternatively engine speed sensor 19 may be an engine load sensor, a throttle position sensor, or a mass airflow sensor.


Operation of the system of FIG. 1 is described with particular reference to FIGS. 2 and 3 in which FIG. 2 shows operation of valve 5, a first valve, and FIG. 3 shows operation of valve 12, a second valve, according to one example embodiment. The specific ranges in speed and temperature shown in the table and the numbers provided herein are non-limiting and merely serve to provide one example.


During operation, the ECU 16 constantly monitors engine coolant temperature, engine speed, ambient air temperature and cabin heat demand (as requested by the occupants of the vehicle) and is also responsive to a signal from the timer 17. In response to these various inputs, the ECU 16 opens or closes each of the valves 5, 12 in accordance with a pre-set operating regime.


For a few seconds immediately following a cold start of the engine 2, both valves 5, 12 are opened. This measure serves to flush out air that might be in the system. After ten seconds (in this example) have elapsed, as measured by the timer 17, both valves are closed. Provided that engine speed remains relatively low, both valves 5, 12 remain closed. With both valves 5, 12 closed and the thermostat 8 also closed, there is virtually no circulation of coolant through the engine 2 and so the engine warms up quickly. However, if engine speed reaches a threshold value, say 2300 rpm in this example, then the bypass valve 5 is opened to prevent cavitation occurring in the pump 1. If the engine speed continues to increase, say beyond 3000 rpm them the heater/degas valve 12 is also opened to ensure that no pump damage can occur.


If engine rpm remains within the lower limit, then both valves 5, 12 remain closed until the engine coolant temperature reaches an intermediate (medium) value, say 60 degrees Celsius, whereupon the bypass valve 5 is opened. This allows some coolant flow through the engine while the thermostat 8 remains shut.


The heater/degas valve remains closed until engine coolant temperature rises further to around 80 degrees Celsius, say, unless ambient air temperature is very low or the occupants demand some cabin heating in which case it is opened sooner.


Throughout the engine coolant temperature range from around 80 degrees Celsius to the point at which the thermostat opens, say 103 degrees Celsius, both valves 5, 12 are open, irrespective of engine speed. Hence (warm) coolant is supplied to the heater matrix and to the oil cooler for warming the cabin of the vehicle and for maintaining engine oil at an optimum temperature.


Once this threshold temperature of 103 degrees Celsius is exceeded and the thermostat 8 is open, the bypass valve 5 is closed allowing full flow of coolant through the radiator 7.


If the engine 2 is switched off and the restarted when still hot, the bypass valve 5 is closed and the heater/degas valve is opened.


The default (unpowered) position of the bypass valve 5 is closed and the default (unpowered) position of the heater/degas valve 12 is open. Hence if the ECU 16 fails, the valves 5, 12 allow coolant to flow such that no damage to the pump 1 or a hot engine 2 can occur.


While the best mode has been described in detail, those familiar with the art will recognize various alternative designs and embodiments within the scope of the following claims. Where one or more embodiments have been described as providing advantages or being preferred over other embodiments and/or over prior art in regard to one or more desired characteristics, one of ordinary skill in the art will recognize that compromises may be made among various features to achieve desired system attributes, which may depend on the specific application or implementation. These attributes include, but are not limited to: cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. The embodiments described as being less desirable relative to other embodiments with respect to one or more characteristics are not outside the scope of the disclosure as claimed.

Claims
  • 1. A cooling system for a motor vehicle having an engine, comprising: a coolant pump;an outflow conduit connecting a coolant pump outlet to the engine;a return circuit connecting the engine to a coolant pump inlet, wherein the return circuit comprises three branches: a first branch including a first valve having a closed position when unpowered, a second branch including a radiator and a thermostat, and a third branch including a heater matrix, a degas tank, and a second valve having an open position when unpowered; andan electronic control unit in communication with the first and second valves, the electronic control unit having instructions to open the first and second valves for a period to flush air from the system after a cold start and instructions to close the first and second valves after the period.
  • 2. The cooling system of claim 1 wherein the third branch of the return circuit further includes an engine oil cooler.
  • 3. The cooling system of claim 1 wherein the electronic control unit includes instructions to control the valves in response to an input from at least one of the following onboard vehicle devices: an engine coolant temperature sensor, an ambient air temperature sensor, a timer, a cabin heating demand sensor, and an engine operating condition sensor.
  • 4. The cooling system of claim 3 wherein the engine operating condition sensor is an engine speed sensor.
  • 5. The cooling system of claim 3 wherein the engine operating condition sensor is one of an engine load sensor, a throttle position sensor, and a mass airflow sensor.
  • 6. The cooling system of claim 1, further comprising: an engine coolant temperature sensor electronically coupled to the electronic control unit wherein the first and second valves are electrically actuated, the first and second valves are electronically coupled to the electronic control unit, and the electronic control unit includes instructions to control the first and second valves based on a signal from the engine coolant temperature sensor.
  • 7. The cooling system of claim 1 wherein the electronic control unit includes instructions to open the second valve when engine coolant temperature exceeds a threshold temperature.
  • 8. The cooling system of claim 1 wherein the electronic control unit includes instructions to close the first valve when engine coolant temperature exceeds a threshold temperature.
  • 9. The cooling system of claim 1, further comprising: an engine speed sensor electronically coupled to the electronic control unit wherein the first and second valves are electrically actuated, the first and second valves are electronically coupled to the electronic control unit, and the electronic control unit includes instructions to control the first and second valves based on a signal from the engine speed sensor.
  • 10. The cooling system of claim 9 wherein the electronic control unit includes instructions that open the second valve when the engine speed exceeds a threshold speed.
  • 11. A cooling system for a motor vehicle having an engine, comprising: a cooling circuit connected to the engine and comprising three branches:a first branch including a first valve,a second branch including a radiator and a thermostat,a third branch including a heater matrix, a degas tank, and a second valve, andan electronic control unit electronically coupled to the first valve and the second valve, the electronic control unit including instructions that open the first and second valves for a predetermined period after the engine is started and then close the first and second valves.
  • 12. The system of claim 11 wherein the cooling system further comprises: a pump for supplying coolant to the engine wherein the pump is located upstream of the engine and the three branches are located downstream of the engine.
  • 13. The system of claim 12, further comprising: an engine speed sensor electronically coupled to the electronic control unit; anda temperature sensor disposed in the engine and electronically coupled to the electronic control unit wherein the electronic unit includes instructions that close the first valve when engine coolant temperature exceeds a threshold temperature.
  • 14. A cooling system for a motor vehicle having an engine, comprising: a cooling circuit connected to the engine and having a first branch including a first valve,a second branch including a radiator and a thermostat, and a third branch including a heater matrix, a degas tank, and a second valve; anda controller configured to open the first and second valves for a predetermined period after the engine is started.
  • 15. The cooling system of claim 14 further comprising: a temperature sensor coupled to the controller, wherein the controller is configured to close the first valve when engine coolant temperature exceeds an associated threshold.
  • 16. The cooling system of claim 15 wherein the controller is configured to open the second valve when engine coolant temperature exceeds an associated threshold.
Priority Claims (1)
Number Date Country Kind
0919393.9 Nov 2009 GB national
US Referenced Citations (11)
Number Name Date Kind
4930455 Creed et al. Jun 1990 A
5215044 Banzhaf et al. Jun 1993 A
5619957 Michels Apr 1997 A
5701852 Suzuki et al. Dec 1997 A
6273033 Enander et al. Aug 2001 B1
6539899 Piccirilli et al. Apr 2003 B1
6601545 Hohl Aug 2003 B1
6668764 Henderson et al. Dec 2003 B1
6758172 Morgan et al. Jul 2004 B2
6776126 Le Lievre et al. Aug 2004 B2
7237513 Pfeffinger et al. Jul 2007 B2
Foreign Referenced Citations (10)
Number Date Country
10316017 Oct 2004 DE
102004058865 Jun 2006 DE
102005056717 May 2007 DE
0670414 Sep 1995 EP
1529937 May 2005 EP
2905737 Mar 2008 FR
2366365 Mar 2002 GB
2401167 Nov 2004 GB
2420846 Jun 2006 GB
2420847 Jun 2006 GB
Related Publications (1)
Number Date Country
20110100307 A1 May 2011 US