This application claims the benefit of priority to Japanese Patent Application No. 2016-140742 filed 15 Jul. 2016, the disclosures of all of which are hereby incorporated by reference in their entireties.
The present invention relates to a cooling/heating switching unit used in a multi-system air conditioner for simultaneous cooling and heating, and an air conditioner that includes the cooling/heating switching unit, and more particularly, to detection of leaked refrigerant in the cooling/heating switching unit.
Because of the influence on global warming due to refrigerant used in air conditioners, using alternative refrigerant (R32, and HFO refrigerant such as R1234yf and R1234ze) having a small global warming coefficient has been examined instead of using conventional refrigerant (R404A and R410A). In addition, a technique of detecting leaked refrigerant has been examined so that, in an air conditioner, any leak of refrigerant can quickly be detected to take action even if it happens.
With respect to a technique of detecting leaked refrigerant, a technique described in Japanese Patent Application Publication No. 2015-42930 is known. Japanese Patent Application Publication No. 2015-42930 describes an air conditioning apparatus including: an outdoor unit that includes at least a compressor and an outdoor pipe; an indoor unit that includes at least an indoor heat exchanger, an indoor blower fan, and an indoor pipe; an extension pipe that connects the outdoor pipe with the indoor pipe; a first temperature sensor that is disposed below a joining section which connects the indoor heat exchanger with the indoor pipe; and a control section that uses variation in temperature detected by the first temperature sensor while the indoor blower fan is stopped, to determine whether refrigerant having specific gravity larger than that of the indoor air has leaked from the joining section.
In the technique described in Patent Literature 1, the leak of the refrigerant is detected by using temperature sensors set in the outdoor unit and the indoor unit (see, for example, FIGS. 3 and 4 of Patent Literature 1). However, depending on seasons and the time of day, temperatures around the temperature sensors may vary. Also, the temperature of the circulating refrigerant varies much, and then even if the refrigerant has not leaked, variation in temperature of the refrigerant could affect the temperature sensors. Therefore, it is likely that a temperature to be measured is affected by the refrigerant to indicate an inaccurate temperature. Consequently, detecting an accurate temperature may fail.
In recent years, a multi-system air conditioner for simultaneous cooling and heating attracts attention that includes an outdoor unit and two or more indoor units and allows each indoor units to independently operate cooling or heating. However, in such a multi-system air conditioner for simultaneous cooling and heating, installing a temperature sensor in each of the indoor units, as described in Patent Literature 1, causes a refrigerant leak detection flow to be complicated. That is, a flow, for example, shown in FIG. 7 of Patent Literature 1 needs to be done for each of the indoor units. Therefore, the technique described in Patent Literature 1 is not simple.
In particular, in the multi-system air conditioner for simultaneous cooling and heating, a cooling/heating switching unit (a refrigerant-channel switching unit) that controls flow directions of the refrigerant in the respective indoor units is provided between the outdoor unit and the two or more indoor units. In the cooling/heating switching unit, a large number of connections between pipes are present. Therefore, reliable detection of leak of refrigerant is desired in the vicinity of the cooling/heating switching unit.
The present invention has been devised in view of these circumstances and a problem to be solved by the present invention is to provide a cooling/heating switching unit capable of simply and reliably detecting leak of refrigerant, and an air conditioner including the cooling/heating switching unit.
As a result of earnest examinations in order to solve the problem, the inventors have reached following findings. That is, the gist of the present invention is a cooling/heating switching unit for connection with two or more use-side units and a heat-source-side unit to constitute an air conditioner capable of operating simultaneous cooling and heating, and the cooling/heating switching unit includes: a first-refrigerant-pipe fitting and a second-refrigerant-pipe fitting that have a first refrigerant pipe and a second refrigerant pipe connected thereto, respectively, wherein the first and second refrigerant pipes are linked to the heat-source-side unit; a third-refrigerant-pipe fitting that has a third refrigerant pipe connected thereto, wherein the third refrigerant pipe is linked to the use-side unit; a refrigerant-flow-direction control device that selectively connects the first-refrigerant-pipe fitting or the second-refrigerant-pipe fitting with the third-refrigerant-pipe fitting, via a refrigerant pipe, to control a flow direction of refrigerant; a housing that houses at least a part of the refrigerant pipe; a heat insulating material that fills inside of the housing to insulate the refrigerant pipe arranged inside of the housing from heat; and a refrigerant leak detection sensor that is installed outside of the housing to detect leaked refrigerant. Other aspects will be described later in Detailed Description of the Invention.
The present invention provides a cooling/heating switching unit capable of simply and reliably detecting leak of refrigerant, and an air conditioner including the cooling/heating switching unit.
Hereinafter, an embodiment (the present embodiment) for carrying out the present invention will be described with reference to the drawings as appropriate. Note that, in the drawings, for the purpose of illustration, members may sometimes be omitted partly or visualized within a range of not damaging the effects of the present invention markedly.
First, an air conditioner according to the present embodiment will be described with reference to
Note that
The indoor units 40 are in any one of four states of heating, cooling, stop with high-pressure during heating, and stop (stop with low-pressure). The two or more indoor units 40 can operate independently from one another, with the heating and the cooling being mixed at the same time. In addition, the indoor units 40 can operate with the heating or cooling, and the stop with high-pressure during heating and/or the stop being mixed. Incidentally,
The indoor units 40 and the cooling/heating switching units 30 are connected to the outdoor unit 10 via a liquid main pipe 21, a high/low-pressure gas main pipe 24, and a low-pressure gas main pipe 27. That is, the main liquid pipe 21, the high/low-pressure gas main pipe 24, and the low-pressure gas main pipe 27 respectively branch so as to be connected to the indoor units 40 and the cooling/heating switching units 30. For example, the high/low-pressure gas main pipe 24 branches to high/low-pressure gas branch pipes 35a, 35b, 35c, and 35d (hereinafter, in the case where no distinction is required, these pipes may collectively be referred to as “high/low-pressure gas branch pipes 35”) so as to be respectively connected to the cooling/heating switching units 30a, 30b, 30c, and 30d. The low-pressure gas main pipe 27 also branches halfway so as to be connected to the cooling/heating switching units 30a, 30b, 30c, and 30d. The liquid main pipe 21 also branches halfway so as to be connected to the indoor units 40a, 40b, 40c, and 40d.
The cooling/heating switching units 30 respectively include expansion valves for high/low-pressure gas pipe 31 (a collective term of the expansion valve for high/low-pressure gas pipe 31a, 31b, 31c, or 31d) and expansion valves for low-pressure gas pipe 32 (a collective term of the expansion valve for low-pressure gas pipe 32a, 32b, 32c, or 32d). The cooling/heating switching units 30 connect the indoor units 40 and the outdoor unit 10 via the high/low-pressure gas main pipe 24 and the low-pressure gas main pipe 27.
The cooling/heating switching units 30 change, through opening or closing the expansion valves for high/low-pressure gas pipe 31 and the expansion valves for low-pressure gas pipe 32, flow directions of refrigerant flowing through the indoor units 40. That is, opening or closing these valves is controlled for controlling the flow of the refrigerant flowing through refrigerant pipes constituting the cooling/heating switching units 30. Consequently, the flow directions of the refrigerant in the indoor units 40 are controlled. Specifically, opening or closing these valves allows a fitting 37 or a fitting 38 to be selectively connected with a fitting 39, via the refrigerant pipes. Consequently, the flow directions of the refrigerant are controlled. Further, controlling the flow directions of the refrigerant through the open-close operation is coordinated with decompression throttling of indoor-unit expansion valves 42 (a collective term of indoor-unit expansion valve 42a, 42b, 42c, or 42d) to switch between evaporator operation and condenser operation of indoor-unit heat exchangers 41 (a collective term of indoor-unit heat exchanger 41a, 41b, 41c, or 41d).
The indoor units 40 include the indoor-unit heat exchangers 41 (the collective term of the indoor-unit heat exchangers 41a, 41b, 41c, and 41d), the indoor-unit expansion valves 42 (the collective term of the indoor-unit expansion valve 42a, 42b, 42c, and 42d), and indoor unit fans 49 (a collective term of indoor unit fan 49a, 49b, 49c, and 49d). One end of the indoor-unit heat exchanger 41 is connected to the liquid main pipe 21 via the indoor-unit expansion valve 42. The other end of the indoor-unit heat exchanger 41 is connected to the cooling/heating switching unit 30 via an indoor-unit connection pipe 28 (a collective term of indoor-unit connection pipe 28a, 28b, 28c, or 28d).
In the air conditioner 100, the liquid main pipe 21 is not directly connected to the cooling/heating switching units 30. Further, gas-liquid separation tanks are not disposed inside the cooling/heating switching units 30. Accordingly, even if refrigerant leaks inside the cooling/heating switching units 30 and/or fittings of the pipes, only gas refrigerant leaks. Therefore, a leak amount of the refrigerant is small to reduce sources of global warming as much as possible.
A description will be given of the flow of the refrigerant in the outdoor unit 10. The outdoor unit 10 includes a compressor 11, a four-way high/low-pressure-gas-pipe valve 12, a four-way heat-exchanger valve 13, an outdoor-unit heat exchanger 14, an outdoor-unit expansion valve 15, an outdoor unit fan 19, and an accumulator 18. Among these components, the accumulator 18 separates liquid refrigerant which may be mixed during transition to deliver gas refrigerant to the compressor 11. The compressor 11 connects to the accumulator 18 at a low-pressure. The compressor 11 connects to the four-way valves (the four-way high/low-pressure-gas-pipe valve 12 and the four-way heat-exchanger valve 13) at a high-pressure. This pressure difference of the compressor 11 causes the refrigerant to be conveyed.
A description will be given of the four-way high/low-pressure-gas-pipe valve 12 and the four-way heat-exchanger valve 13. The four-way high/low-pressure-gas-pipe valve 12 switches between connection of the high/low-pressure gas main pipe 24 to the compressor 11 on its discharge side and connection of the high/low-pressure gas main pipe 24 to the accumulator 18 on its suction side. For example, when any one of the indoor units 40 operates heating, the four-way high/low-pressure-gas-pipe valve 12 is switched to connect the high/low-pressure gas main pipe 24 to the compressor 11 on its discharge side. Consequently, gas refrigerant having high-temperature and high-pressure is supplied to the high/low-pressure gas main pipe 24.
The four-way heat exchanger valve 13 switches between connection of the outdoor-unit heat exchanger 14 to the compressor 11 on its discharge side and connection of the outdoor-unit heat exchanger 14 to the accumulator 18 on its suction side. For example, if the outdoor-unit heat exchanger 14 is used as a condenser, the four-way heat-exchanger valve 13 is switched to connect the outdoor-unit heat exchanger 14 to the compressor 11 on its discharge side. Alternatively, if the outdoor-unit heat exchanger 14 is used as an evaporator, the four-way heat-exchanger valve 13 is switched to connect the outdoor-unit heat exchanger 14 to the accumulator 18 on its suction side.
The connection is switched by the four-way heat-exchanger valve 13 according to a condition of a heating load and a cooling load of the air conditioner. Specifically, if the heating load of the air conditioner 100 is larger than the cooling load, the four-way heat-exchanger valve 13 is switched to connect the outdoor-unit heat exchanger 14 to the accumulator 18 on its suction side. At the same time, the outdoor-unit expansion valve 15 is throttled so as to be decompressed. According to these kinds of control, the outdoor-unit heat exchanger 14 acts as the evaporator to continue stable operation. On the contrary, if the cooling load of the air conditioner 100 is larger than the heating load, the four-way heat-exchanger valve 13 is switched to connect the outdoor-unit heat exchanger 14 to the compressor 11 on its discharge side. At the same time, the outdoor-unit expansion valve 15 is opened. According to these kinds of control, the outdoor-unit heat exchanger 14 acts as the condenser to continue stable operation.
A description will be given of the flow of refrigerant in the indoor unit 40. Here, the indoor unit 40a will be taken as the exemplary indoor unit 40 in heating operation. Gas refrigerant having high-temperature and high-pressure compressed by the compressor 11 is conveyed to the high/low-pressure gas main pipe 24 via the four-way high/low-pressure-gas-pipe valve 12. At this time, the expansion valve for low-pressure gas pipe 32a of the cooling/heating switching unit 30a is closed to inhibit communication between the low-pressure gas main pipe 27 and the indoor-unit heat exchanger 41a. The expansion valve for high/low-pressure gas pipe 31a is opened to flow refrigerant from the high/low-pressure gas main pipe 24 to the indoor-unit heat exchanger 41a. Consequently, gas refrigerant having high-temperature and high-pressure flowing through the high/low-pressure gas main pipe 24 is supplied to the indoor-unit heat exchanger 41a. Then, the indoor-unit heat exchanger 41a acts as the condenser for heating operation through heat of condensation of gas refrigerant having high-temperature and high-pressure. Condensed high-pressure liquid refrigerant or gas-liquid two-phase refrigerant flows through the indoor-unit expansion valve 42 in an open state to the liquid main pipe 21.
Next, the indoor unit 40d will be taken as the exemplary indoor unit 40 in cooling operation to describe the flow of refrigerant in the indoor unit 40. Refrigerant is supplied from two supply sources to the indoor unit 40 in cooling operation. First refrigerant is high-pressure liquid refrigerant or gas-liquid two-phase refrigerant discharged from the outdoor-unit heat exchanger 14 operating as the condenser. Second refrigerant is condensed refrigerant from the indoor unit 40a in heating operation. Among these, the former refrigerant flows through the liquid main pipe 21 to the indoor unit 40d. As for the latter refrigerant, refrigerant discharged from the indoor-unit heat exchanger 41a operating as the condenser flows through the indoor-unit expansion valve 42a in an open state to the indoor unit 40d.
The indoor-unit expansion valve 42d of the indoor unit 40d in cooling operation has its opening adjusted to serve as a throttle valve for decompressing refrigerant. The refrigerant decompressed by the indoor-unit expansion valve 42d evaporates in the indoor-unit heat exchanger 41d operating as the evaporator, so as to be vaporized into low-pressure gas refrigerant. Heat of vaporization of refrigerant at this time is used for cooling operation. The vaporized low-pressure gas refrigerant is conveyed to the low-pressure-gas main pipe 27 through the opened expansion valve for low-pressure gas pipe 32d of the cooling/heating switching unit 30d. Since the low-pressure-gas main pipe 27 is connected to the outdoor unit 10, the gas refrigerant returns to the compressor 11 through the accumulator 18. Then, the gas refrigerant is compressed again by the compressor 11 for circulation.
Note that the operation of the air conditioner 100 is controlled by an arithmetic control section, not shown. The arithmetic control section includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and an I/F (interface), all of which are not shown in the figure. A predetermined control program stored in the ROM is executed by the CPU to embody the arithmetic control section.
A hooking section 51 is attached to the upper outer side surface of the housing 50. However, in
As shown in
As shown in
The housing 50 houses the cyclic cooling/heating-switching-unit part 36 that controls a refrigerant flow channel to switch between cooling and heating operation of the indoor unit 40 (not shown in
Specifically, in
The cyclic cooling/heating-switching-unit part 36 includes the expansion valve for high/low-pressure gas pipe 31 and the expansion valve for low-pressure gas pipe 32 as illustrated in
The cyclic cooling/heating-switching-unit part 36 is connected with the high/low-pressure gas main pipe 24, the low-pressure gas main pipe 27, and the indoor-unit connection pipe 28 (see
The refrigerant leak detection sensors 81 for detecting leaked refrigerant are connected to the circuit board 73 via wires 82. The cooling/heating switching unit 30 of the present embodiment includes two refrigerant leak detection sensors 81. Both of the wires 82 connected to the refrigerant leak detection sensors 81 have a length of allowing the refrigerant leak detection sensors 81 to be freely moved to some extent (in the present embodiment, a length of allowing the refrigerant leak detection sensors 81 to be moved to a point below the housing 50). Therefore, during transportation of the cooling/heating switching unit 30, the refrigerant leak detection sensors 81 are fixed to the surface of the electrical box 71 such as by magnets or housed inside of the electrical box 71 by bundling the wires 82. After fixing the cooling/heating switching unit 30, the refrigerant leak detection sensors 81 are detached from a main body of the housing 50 so as to be separated from the housing 50 for arrangement at designated points.
As shown in
The buzzer 74 buzzes to notify people around the cooling/heating switching unit 30 of leak of refrigerant. In addition, the LED 75 flashes to allow an administrator to visually recognize, at the time of visiting onsite to check the cooling/heating switching unit 30 and seeing inside of the electrical box 71, that the cooling/heating switching unit 30 being checked is the one having leak of refrigerant.
Identification information to be notified to the centralized management device may be, for example, positional information such as a floor number, a location on a floor having the floor number, and a location of a living room closest to the cooling/heating switching unit 30, or alternatively, a specific number or the like given in advance to each cooling/heating switching unit 30. Among these kinds of information, if the specific number is notified, the location of the cooling/heating switching unit 30 having leak of refrigerant is identified, on the basis of a mapping table preliminarily stored in the centralized management device in which specific numbers are associated with locations of the cooling/heating switching units 30, respectively. Note that these kinds of identification information is preferably input and stored in the circuit board 73 included in the cooling/heating switching unit 30 or the centralized management device AFTER actual installation of the cooling/heating switching units 30 by a constructor. However, the identification information may be given in advance BEFORE installation on the basis of a blueprint.
Referring back to
In the cyclic cooling/heating-switching-unit part 36 during cooling operation, a piping temperature drops because low-temperature gas refrigerant coolant passes therein. Therefore, depending on air conditions in a ceiling space, moisture condensation may occur on the pipe surfaces if humidity is high, to have drops of water. In order to avoid this condition, the pipes (including the cyclic cooling/heating-switching-unit part 36) constituting the air conditioner 100 are insulated from heat. However, connections of the pipes constituting the cyclic cooling/heating-switching-unit part 36 are complicated to make heat insulation by a normal heat insulation material difficult. Therefore, in the cooling/heating switching unit 30 of the present embodiment, a foaming agent is used to fill inside of the housing 50 and then hardened to arrange a heat insulation material, by taking work efficiency and heat insulation efficiency into account. This allows for finishing work earlier than individually winding the heat insulating material on the pipes. In addition, voids are less likely formed in the arranged heating insulating material, to improve heat insulation efficiency. Note that the foaming agent is injected into the housing 50 through a foaming-agent injection hole 65 formed on the upper surface of the upper sheet metal 61.
As noted above while describing the cyclic cooling/heating-switching-unit part 36, the fittings 37, 38, and 39 are all flare-connected, which are the ends of the pipes constituting the cyclic cooling/heating-switching-unit part 36. The flare connection is a technique of forging a connection pipe (e.g., made of copper) at an end so as to flare out and then cramping the end between a nut and a tapered fitting for sealing. With this technique, pipes are easily connected by cold working. However, if a forged portion is too short or has scratches on the surface thereof, refrigerant may likely leak. Therefore, in the cooling/heating switching unit 30, those portions of the cyclic cooling/heating switching unit part 36 particularly having possible leak of refrigeration may be the fittings 37, 38, and 39 which are flare-connected. Incidentally, since all of the fittings 37, 38, and 39 are located outside of the housing 50, refrigerant leaking from the fittings 37, 38, and 39 directly flows downward below the housing 50.
Besides these portions, other portions of the cyclic cooling/heating-switching unit part 36 having possible leak of refrigerant may be pipe joining sections such as bent portions, for example. As shown in
Specifically, in
Among these regions, refrigerant may more likely flow out from the regions 76 and 77 and the region on the right side-surface (not shown in
Here, since refrigerant is heavier than the air, refrigerant leaked outside of the housing 50 flows downward. Therefore, the refrigerant leak detection sensors 81 may be installed outside of the cooling/heating switching unit 30, preferably below the above-described regions, for more reliable detection. In addition, as described above, refrigerant may particularly leak at the fittings 37, 38, and 39. Therefore, the refrigerant leak detection sensors 81 may as well be installed below the fittings 37, 38, and 39. In view of these points, a description will be given of detailed installation points of the refrigerant leak detection sensors 81 with reference to
The refrigerant leak detection sensors 81 are respectively installed on the lower left and on the lower right to reliably detect either refrigerant leaked from the fittings 37 and 38 or refrigerant leaked from the fitting 39. Additionally, the regions 76, 77, and 79 as described with reference to
Further, refrigerant leaked from the region 78 located higher as shown in
Since the refrigerant is heavier than the air as described above, leaked refrigerant flows downward. Accordingly, the leaked refrigerant reaches the surface of the ceiling plate 47, and then spreads in the right-left direction in the figure to accumulate. Therefore, installing one refrigerant leak detection sensor 81 below the vicinity of the center of the cooling/heating switching unit 30 on the surface of the ceiling plate 47 allows for quickly detecting refrigerant which has flown from above.
Note that the wire 82, which connects the refrigerant leak detection sensor 81 installed on the ceiling plate 47 with the circuit board 73 (see
As described above, refrigerant leaked outside of the cooling/heating switching unit 30 flows thereunder. Then, installing the refrigerant leak detection sensor 81 at this point also allows for detecting leaked refrigerant. Note that the refrigerant leak detection sensor 81 may be supported by and fixed to the housing 50 and the like via supporting members, not shown, or may be suspended from the electrical box 71 via only the wire 82 without being particularly supported and fixed.
Hereinabove, the present embodiment has been described with reference to the drawings as appropriate, but the present embodiment is not limited thereto. For example, above-referenced examples may optionally be combined with one another.
In addition, in the above-described examples, those configurations have mainly been described in which the refrigerant leak detection sensors 81 are installed below the fittings 37, 38, and 39 and below the housing 50. However, the refrigerant leak detection sensors 81 may be installed anywhere outside of the housing 50. That is, since the refrigerant is heavier than the air as explained above, the refrigerant leak detection sensors 81 are preferably installed below the fittings 37, 38, and 39 and below the housing 50. However, since the refrigerant indicates characteristics completely different from those of the air, even if leak amount of the refrigerant is very little, the refrigerant leak detection sensors 81 can detect leaked refrigerant. Therefore, for example, even if the refrigerant leak detection sensors 81 are installed above the housing 50 or even if the refrigerant leak detection sensors 81 are installed above the fittings 37, 38, and 39, the refrigerant leak detection sensors 81 can detect leaked refrigerant.
Further, for example, the number of the installed refrigerant leak detection sensors 81 is not limited to the above-described examples either, and can be increased or decreased as appropriate.
Furthermore, for example, specific configuration of the refrigerant leak detection sensor 81 is not particularly limited either, and any refrigerant leak detection sensor, such as a commercially available sensor, can be used as long as the sensor is capable of detecting refrigerant.
Moreover, for example, in the embodiment shown in above-referenced
Still moreover, for example, all of the fittings 37, 38, and 39 are eligible for flare connection. However, all of the fittings 37, 38, and 39 need not always be eligible for flare connection, and the fittings 37, 38, and 39 may be changed as appropriate according to such as construction conditions. If the fittings 37, 38, and 39 are changed in this way, the refrigerant leak detection sensors 81 are preferably installed in the vicinities of the fittings eligible for flare connection.
Still moreover, for example, concerning the term “below” such as “below the fittings 37, 38, and 39” and “below the housing 50,” the term “below” herein does not need to be strictly “right under” and the refrigerant leak detection sensor 81 may be installed anywhere as long as “lower than” the subject matter. Specifically, taking installation in
Still moreover, taking the configuration in above-referenced
Number | Date | Country | Kind |
---|---|---|---|
2016-140742 | Jul 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5927093 | Noguchi et al. | Jul 1999 | A |
6147613 | Doumit | Nov 2000 | A |
9523518 | Kitamura | Dec 2016 | B2 |
20050028547 | Hatakeyama | Feb 2005 | A1 |
20100244863 | Sasaki et al. | Sep 2010 | A1 |
20100293982 | Favier | Nov 2010 | A1 |
20120292006 | Yamashita | Nov 2012 | A1 |
20130227977 | Morimoto | Sep 2013 | A1 |
20150292780 | Kitamura | Oct 2015 | A1 |
20160109162 | Suzuki | Apr 2016 | A1 |
20170227262 | Suzuki | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
102015114309 | Mar 2017 | DE |
0 862 023 | Sep 1998 | EP |
2 213 965 | Aug 2010 | EP |
2 535 651 | Dec 2012 | EP |
2015-042930 | Mar 2015 | JP |
2017015999 | Jan 2017 | JP |
2013038703 | Mar 2013 | WO |
2015041166 | Mar 2015 | WO |
Entry |
---|
Uchiyama Shinji JP-2017015999-A Refrigeration Equipment (Year: 2017). |
Frank Schmitz, Bi-directional Electronic Expansion Device (Priority: Aug. 28, 2015) (Year: 2017). |
Extended European Search Report received in corresponding European Application No. 17180421.4 dated Apr. 19, 2018. |
Communication Pursuant to Article 94(3) EPC received in corresponding European Application No. 17 180 421.4 dated May 27, 2019. |
Number | Date | Country | |
---|---|---|---|
20180017293 A1 | Jan 2018 | US |