This invention relates, generally, to the use and structure of removable electronic circuit cards and, more specifically, to the interconnection and use together of non-volatile memory cards and input-output (“I/O”) cards.
Various commercially available non-volatile memory cards that are becoming popular are extremely small and have different mechanical and/or electrical interfaces. Examples include the related MultiMediaCard (“MMC”) and Secure Digital (“SD”) memory cards that are available from SanDisk Corporation of Sunnyvale, Calif., assignee of the present application. There are other cards that conform to standards of the International Organization for Standardization (“ISO”) and the International Electrotechnical Commission (“IEC”), an example that is widely implemented being known as the ISO/IEC 7816 standard.
The physical and electrical specifications for the MMC are given in “The MultiMediaCard System Specification” that is updated and published from time-to-time by the MultiMediaCard Association (“MMCA”) of Cupertino, Calif. Versions 2.11 and 2.2 of that Specification, dated June 1999 and January 2000, respectively, are expressly incorporated herein by this reference. MMC products having varying storage capacity up to 64 megabytes in a single card are currently available from SanDisk Corporation, and capacities of 128 megabytes are expected to be available in the near future. These products are described in a “MultiMediaCard Product Manual,” Revision 2, dated April 2000, published by SanDisk Corporation, which Manual is expressly incorporated herein by this reference. Certain aspects of the electrical operation of the MMC products are also described in patent applications of Thomas N. Toombs and Micky Holtzman, Ser. No. 09/185,649 now U.S. Pat. No 6,279,114 and Ser. No. 09/186,064 now U.S. Pat. No. 6,901,457, both filed Nov. 4, 1998, and assigned to SanDisk Corporation. The physical card structure and a method of manufacturing it are described in U.S. Pat. No. 6,040,622, assigned to SanDisk Corporation. Both of these applications and patent are also expressly incorporated herein by this reference.
The newer SD Card is similar to the MMC card, having the same size except for an increased thickness that accommodates an additional memory chip. A primary difference between them is that the SD Card includes additional data contacts in order to enable faster data transfer between the card and a host. The other contacts of the SD Card are the same as those of the MMC card in order that sockets designed to accept the SD Card will also accept the MMC card. The electrical interface with the SD card is further made to be, for the most part, backward compatible with the MMC product described in version 2.11 of its specification referenced above, in order that few changes to the operation of the host need be made in order to accommodate both types of card. Certain aspects of the SD card are described in U.S. patent application Ser. No. 09/641,023 now U.S. Pat. No. 6,820,148, filed Aug. 17, 2000, which application is incorporated herein by this reference.
Cards made according to the ISO/IEC 7816 standard are of a different shape, have surface contacts in different positions, and a different electrical interface than the MMC and SD Cards. The ISO/IEC 7816 standard has the general title of “Identification cards—Integrated Circuit(s) Cards with Contacts,” and consists of parts 1-10 that carry individual dates from 1994 through 2000. This standard, copies of which are available from the ISO/IEC in Geneva, Switzerland, is expressly incorporated herein by this reference. ISO/IEC 7816 cards are particularly useful in applications where data must be stored in a secure manner that makes it extremely difficult or impossible for the data to be read in an unauthorized manner. The small ISO/IEC 7816 cards are commonly used in cellular telephones, among other applications.
Currently, data is transferred between the memory card and some external device through the host system to which the memory card is connected. Not all host systems with which such memory cards are used are particularly adapted to so transfer certain types or large amounts of data in a fast, efficient and convenient manner.
Therefore, the present invention, briefly and generally, utilizes a separate input-output card that is electrically and mechanically attached to a memory card so that data transfers may be made through the input-output card directly to and from the memory when the memory card is inserted into the host system but without having to pass the data through the host system. The data transfer is preferably accomplished independently of the host system, except for the host supplying power, a clock signal, and possibly other like support, to both cards during such a data transfer directly with memory card. The controller of the memory card is modified so that is can also act as a controller to such direct data transfer between the memory card and the input-output card.
In a preferred form, connectors are formed on mating edges of the memory and input-output cards that are easily but firmly latched when laterally pushed together so that the two cards form a unit that may be handled as a single card. One of the card connectors, for example, contains resilient metal fingers between which mating metal pins or printed circuit board edge conductors of the other card connector are inserted when the connectors are pushed together. The connectors are prevented from inadvertently separating by a latch that automatically engages between them when the two connectors are initially pushed together. No separate rotation or other motion is required to attach the connectors, nor is a separate latching operation necessary.
Additional details, features and advantages of the present invention will become apparent from the following description, which should be taken in conjunction with the accompanying drawings.
With reference to
In the examples described herein, the SD card is described but it will be understood that the invention is not limited to implementation with any specific type of memory card. In
The SD card 35 contains nine surface electrical contacts 10-18. Contacts 13, 14 and 16 are connected to power (VSS, VDD and VSS2) when inserted into the host system socket 33. Card contact 15 receives a clock signal (CLK) from the host. Contact 12 receives commands (CMD) from the host and sends responses and status signals back to the host. The remaining contacts 10, 11, 17 and 18 (DAT 2, DAT 3, DAT 0 and DAT 1, respectively) receive data in parallel for storage in its non-volatile memory and send data to the host in parallel from the memory. A fewer number of data contacts are selectable for use, such as a single data contact 17. The maximum rate of data transfer between the host and the card is limited by the number of parallel data paths that are used. The MMC card described in the Background above has a similar contact layout and interface but omits the data pins 10 and 18 and does not use the contact 11, which is provided as a spare. The MMC card has the same dimensions and operates similarly to the SD card except that the card is only 1.4 millimeters thick and has a single data contact 17. The contacts of the card 37 are connected through respective pins 20-28 of the socket 33 to its host system.
The present invention includes modifying a memory card, such as the memory card 35, by adding a connector, such as indicated at 36, the modified card being identified as 35′ in
One or more of a number of input-output functions may be included in the card 37. A modem is one example, where the communicating system 39 is a telephone system. A general data transfer function likely has a high degree of usefulness because of the wide variety of types of data that users want to transfer. This includes the transfer of audio and video data, large database files, games and various other computer programs. Such data is transferred directly between the remote system 39 and the memory card 35′ without having to go through the host system 31 of which the card 35′ is a part. This is a form of direct memory access (“DMA”), and has particular advantages when long streams of data are being transferred. The host 31 need not have the hardware or software to handle such data and the communications function. This is performed entirely by the peripheral input-output card 37 and memory card 35′. Any limitations of the host system 31 for handling high speed data transfers, a limited internal memory capacity, or the like, do not limit transfers of data directly with the memory card 35′. The host 31 does, however, provide power and a clock signal to the memory card 35′ which are also used by the input-output card 37.
The mechanical and electrical interconnection of the memory and input-output cards is illustrated, according to one embodiment, in
In the specific example shown, the connector 53 includes 9 metal contacts formed directly on an end of a printed circuit board 63 of the SD card 51. Each of these contacts, such as a contact 65 shown in
A second embodiment of the mechanical and electrical interconnection of an SD card 73 with an input-output card 75 is illustrated in
In this second embodiment, the connector 77 is added on to the end of the printed circuit board 81 that is internal to the SD card. Each electrical contact includes a pair of resilient elements 83 and 85 that are urged toward each other. The connector on the input-output card 75 includes a number of pins, such as a pin 87, that is positioned to be inserted between the pair of resilient elements 83 and 85 that are in the same position as the pin along the width of the cards' mating edges. These pins are supported by a connector block 91 that is attached to an end of a printed circuit board 91 within the input-output card 75. The extending pins are also mechanically protected by an extension 93 of the card 75 outer housing that surrounds the pins.
An advantage of the card connection mechanisms described above is that they firmly attach the memory and input-output cards together by a simple lateral motion pushing the connectors together. Once attached, they can be handled as a single card, such as being removed from or inserted into the memory card socket of the host system.
There are no particular restrictions on the size of the input-output cards 55 and 75 but it is preferable that they be made as small and light as possible. A size in plan view of less than 50 millimeters in length and 40 millimeters in width is quite convenient when being attached to memory cards that are also less that this size. The thickness of the input-output cards may need to be made more than that of the SD memory cards in order to accommodate an additional number of integrated circuit chips and/or an antenna for radio frequency communication. But the input-output card thickness can be made less than 6 millimeters, and often less than 4 millimeters. The width of the input-output card along its edge containing the connector is most conveniently made to be substantially the same as the width of the memory card along its edge containing the mating connector.
Referring to
A connector schematically indicated at 123 that is connected to the host interface 113 includes the surface contacts of the SD card that are inserted into the card socket 33 (
The electronic system within the input-output cards 55 and 75 is schematically shown in
Although various aspects of the present invention have been described with respect to specific embodiments, it will be understood that the invention is protected within the full scope of the appended claims.
This application is a continuation application Ser. No. 09/653,062, filed on Sep. 1, 2000, now U.S. Pat. No. 7,107,378 which application is incorporated herein in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4455620 | Watanabe et al. | Jun 1984 | A |
4458313 | Suzuki et al. | Jul 1984 | A |
4614144 | Sagara et al. | Sep 1986 | A |
4797113 | Lambert | Jan 1989 | A |
4882473 | Bergeron et al. | Nov 1989 | A |
4882476 | White | Nov 1989 | A |
5067075 | Sugano et al. | Nov 1991 | A |
5155663 | Harase | Oct 1992 | A |
5375037 | Le Roux | Dec 1994 | A |
5375084 | Begun et al. | Dec 1994 | A |
5434872 | Petersen et al. | Jul 1995 | A |
5438359 | Aoki | Aug 1995 | A |
5457601 | Georgopulos et al. | Oct 1995 | A |
5486687 | Le Roux | Jan 1996 | A |
5513074 | Ainsbury et al. | Apr 1996 | A |
5563400 | Le Roux | Oct 1996 | A |
5606559 | Badger et al. | Feb 1997 | A |
5655917 | Kaneshige et al. | Aug 1997 | A |
5677524 | Haghiri-Tehrani | Oct 1997 | A |
5727168 | Inoue et al. | Mar 1998 | A |
5733800 | Moden | Mar 1998 | A |
5742910 | Gallant et al. | Apr 1998 | A |
5752857 | Knights | May 1998 | A |
5764896 | Johnson | Jun 1998 | A |
5780837 | Garcia | Jul 1998 | A |
5780925 | Cipolla et al. | Jul 1998 | A |
5784259 | Asakura | Jul 1998 | A |
5784633 | Petty | Jul 1998 | A |
5802325 | Le Roux | Sep 1998 | A |
5809520 | Edwards et al. | Sep 1998 | A |
5822190 | Iwasaki | Oct 1998 | A |
5831256 | De Larminat et al. | Nov 1998 | A |
5831533 | Kanno | Nov 1998 | A |
5837984 | Bleier et al. | Nov 1998 | A |
5852290 | Chaney | Dec 1998 | A |
5877488 | Klatt et al. | Mar 1999 | A |
5887145 | Harari et al. | Mar 1999 | A |
5909596 | Mizuta | Jun 1999 | A |
5928347 | Jones | Jul 1999 | A |
5933328 | Wallace et al. | Aug 1999 | A |
5974496 | Miller | Oct 1999 | A |
5975584 | Vogt | Nov 1999 | A |
5987557 | Ebrahim | Nov 1999 | A |
6040622 | Wallace | Mar 2000 | A |
6062480 | Evoy | May 2000 | A |
6062887 | Schuster et al. | May 2000 | A |
6069795 | Klatt et al. | May 2000 | A |
6075706 | Learmonth et al. | Jun 2000 | A |
6097605 | Klatt et al. | Aug 2000 | A |
6125409 | Le Roux | Sep 2000 | A |
6137710 | Iwasaki et al. | Oct 2000 | A |
6140695 | Tandy | Oct 2000 | A |
6145046 | Jones | Nov 2000 | A |
6151511 | Cruciani | Nov 2000 | A |
6151652 | Kondo et al. | Nov 2000 | A |
6175517 | Jigour et al. | Jan 2001 | B1 |
6199756 | Kondo et al. | Mar 2001 | B1 |
6202109 | Salo et al. | Mar 2001 | B1 |
6209790 | Houdeau et al. | Apr 2001 | B1 |
6226202 | Kikuchi | May 2001 | B1 |
6240301 | Phillips | May 2001 | B1 |
6244894 | Miyashita | Jun 2001 | B1 |
6250944 | Jones | Jun 2001 | B1 |
6266724 | Harari et al. | Jul 2001 | B1 |
6279114 | Toombs et al. | Aug 2001 | B1 |
6311296 | Congdon | Oct 2001 | B1 |
6353870 | Mills et al. | Mar 2002 | B1 |
6381662 | Harari et al. | Apr 2002 | B1 |
6385677 | Yao | May 2002 | B1 |
6405278 | Liepe | Jun 2002 | B1 |
6421246 | Schremmer | Jul 2002 | B1 |
6434648 | Assour et al. | Aug 2002 | B1 |
6438638 | Jones et al. | Aug 2002 | B1 |
6446177 | Tanaka et al. | Sep 2002 | B1 |
6457647 | Kurihashi et al. | Oct 2002 | B1 |
6496381 | Groeger | Dec 2002 | B1 |
6499016 | Anderson | Dec 2002 | B1 |
6524137 | Liu et al. | Feb 2003 | B1 |
6554646 | Casey | Apr 2003 | B1 |
6612498 | Lipponen et al. | Sep 2003 | B1 |
6651131 | Chong, Jr. et al. | Nov 2003 | B1 |
6665190 | Clayton et al. | Dec 2003 | B2 |
6669487 | Nishizawa et al. | Dec 2003 | B1 |
6676420 | Liu et al. | Jan 2004 | B1 |
6687778 | Ito et al. | Feb 2004 | B2 |
6745247 | Kawan et al. | Jun 2004 | B1 |
6748457 | Fallon et al. | Jun 2004 | B2 |
6764017 | Chen et al. | Jul 2004 | B2 |
6816933 | Andreas | Nov 2004 | B1 |
6832281 | Jones et al. | Dec 2004 | B2 |
6842652 | Yeung | Jan 2005 | B2 |
6842818 | Okamoto et al. | Jan 2005 | B2 |
6845421 | Hwang et al. | Jan 2005 | B2 |
6862604 | Spencer et al. | Mar 2005 | B1 |
6886083 | Murakami | Apr 2005 | B2 |
6945461 | Hien et al. | Sep 2005 | B1 |
20010001507 | Fukuda et al. | May 2001 | A1 |
20010021956 | Okamoto et al. | Sep 2001 | A1 |
20010042149 | Ito et al. | Nov 2001 | A1 |
20020032059 | Sugimura | Mar 2002 | A1 |
20020103988 | Dornier | Aug 2002 | A1 |
20020154543 | Conley et al. | Oct 2002 | A1 |
20030056050 | Moro | Mar 2003 | A1 |
20030074529 | Crohas | Apr 2003 | A1 |
20030084221 | Jones et al. | May 2003 | A1 |
20030163623 | Yeung | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
4416583 | Dec 1995 | DE |
19855596 | Jun 2000 | DE |
0495216 | Jul 1992 | EP |
0657834 | Jun 1995 | EP |
0891047 | Jan 1999 | EP |
1001348 | May 2000 | EP |
1037159 | Sep 2000 | EP |
1074906 | Feb 2001 | EP |
1 085 516 | Mar 2001 | EP |
1085516 | Mar 2001 | EP |
1278154 | Jan 2003 | EP |
2771199 | May 1999 | FR |
2374204 | Oct 2002 | GB |
60234286 | Nov 1985 | JP |
3195052 | Aug 1991 | JP |
5089304 | Apr 1993 | JP |
6103429 | Apr 1994 | JP |
6223241 | Aug 1994 | JP |
6231318 | Aug 1994 | JP |
7094658 | Apr 1995 | JP |
2001282712 | Oct 2001 | JP |
2001307801 | Nov 2001 | JP |
2002245428 | Aug 2002 | JP |
2003076611 | Mar 2003 | JP |
2003196624 | Jul 2003 | JP |
9301540 | Apr 1995 | NL |
471729 | Jan 2002 | TW |
483547 | Apr 2002 | TW |
486120 | May 2002 | TW |
490889 | Jun 2002 | TW |
499002 | Aug 2002 | TW |
WO0070553 | Nov 2000 | WO |
WO0070554 | Nov 2000 | WO |
WO0184490 | Aug 2001 | WO |
WO0213021 | Feb 2002 | WO |
WO0215020 | Feb 2002 | WO |
WO0219266 | Mar 2002 | WO |
WO2004044755 | May 2004 | WO |
WO2004049177 | Jun 2004 | WO |
WO2004095365 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060264109 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09653062 | Sep 2000 | US |
Child | 11461063 | US |