The present application claims priority to Japanese Patent Applications number 2021-037325, filed on Mar. 9, 2021. The contents of this applications are incorporated herein by reference in their entirety.
The present disclosure relates to a coordinate measuring apparatus for determining spatial coordinates of a workpiece.
A laser tracker is used to determine three-dimensional coordinates of a workpiece. A laser tracker disclosed in PTL 1 below determines three-dimensional coordinates of a target (for example, a reflector on a workpiece) by irradiating the target with a laser beam and receiving the laser beam reflected by the target.
Incidentally, there is a case where a barrier such as a wall exists between a laser tracker and a target in a space where the workpiece is installed. In this case, since the laser beam does not pass through the barrier, the laser tracker cannot receive the radiated laser beam and cannot properly determine the three-dimensional coordinates of the target.
The present disclosure focuses on these points, and an object of the present disclosure is to properly determine spatial coordinates of a workpiece by using a laser tracker.
A first aspect of the present disclosure provides a coordinate measuring apparatus including a measuring part that measures a workpiece, three or more access points that are provided at positions away from the measuring part and perform wireless communication with the measuring part using radio waves, a laser tracker that irradiates a reflection part provided to each access point with a laser beam and receives the laser beam reflected by the reflection part, and a control part that determines a first coordinate of the each access point by the laser tracker receiving the laser beam reflected by the reflection part, determines a second coordinate of the measuring part on the basis of the wireless communication between the access point and the measuring part, causes the measuring part to measure a third coordinate of the workpiece, and determines spatial coordinates of the workpiece on the basis of the first coordinate, the second coordinate, and the third coordinate.
A configuration of a coordinate measuring apparatus according to an embodiment will be described with reference to
The coordinate measuring apparatus 1 measures spatial coordinates of a workpiece W provided in a measuring space of the measuring chamber 90. As shown in
The measuring chamber 90 is a room in a building, for example. As shown in
The floor 92 of the measuring chamber 90 is a wall separating the first space R1 and the second space R2. The floor 92 is made of a material that blocks laser beams of the laser tracker 30 while not blocking radio waves of wireless communication. This allows for wireless communication between the measuring part 10 in the first space R1 and the access point 20 in the second space R2. The floor 92 may be made of concrete or wood, for example.
As shown in
The measuring part 10 is provided in the first space R1, and measures the workpiece W. The measuring part 10 can be moved relative to the workpiece W, and measures the entire workpiece W while moving. The measuring part 10 may be provided on an arm of a movable robot. As shown in
The measuring sensor 12 is a non-contact type of sensor, and measures the workpiece W while separated from the workpiece W. However, the measuring sensor 12 is not limited to the above, and may be a contact-type sensor that measures the workpiece W while following a shape of the workpiece W, for example.
Here, the communication part 14 performs wireless communication with the access point 20 using radio waves. That is, the communication part 14 located in the first space R1 performs the wireless communication with the access point 20 located in the second space R2.
Although not shown in
As shown in
There are actually a plurality of access points 20, but only one access point 20 is shown in
It should be noted that, although not shown in
As shown in
As described above, the plurality of access points 20 are provided in the second space R2, and the laser tracker 30 radiates the laser beam to the reflection parts 22 (reflection parts 22a to 22f shown in
The controller 50 controls operations of the measuring part 10, the access point 20, and the laser tracker 30 to determine the spatial coordinates of the workpiece W in the first space R1. As shown in
The storage 52 includes a Read Only Memory (ROM) and a Random Access Memory (RAM), for example. The storage 52 stores a program to be executed by the control part 54 and various data.
The control part 54 is, for example, a Central Processing Unit (CPU). The control part 54 executes the program stored in the storage 52 to perform the following process for determining the spatial coordinates of the workpiece W.
The control part 54 determines a first coordinate of the access point 20 (specifically, the reflection part 22) by causing the laser tracker 30 to irradiate the reflection part 22 of the access point 20 with the laser beam. Specifically, the control part 54 determines the first coordinate of the reflection parts 22a to 22f by irradiating the reflection parts 22a to 22f of the plurality of access points 20a to 20f provided in the second space R2 with the laser beams and receiving the laser beams reflected by the reflection parts 22a to 22f.
The control part 54 determines the second coordinate of the measuring part 10 on the basis of the wireless communication between the access point 20 and the measuring part 10. Specifically, first, the control part 54 determines the distance between the measuring part 10 and the access point 20 from the time required for the measuring part 10 to transmit and receive communication between the access point 20. In this case, the control part 54 determines the distance by integrating (a) half of the time required for transmitting and receiving the communication and (b) the light velocity. Then, the control part 54 determines the second coordinate of the measuring part 10 from the determined distance and the coordinates of the access point 20 (that is, the first coordinate).
Therefore, the coordinates of the measuring part 10 can be identified by determining the distances between the three access points and the measuring part 10. However, the present disclosure is not limited to the above, and the control part 54 may determine the distances between four access points 20 and the measuring part 10, and determine the second coordinate from the determined distances and the first coordinate. There is only one candidate point in this case, and so the second coordinate of the measuring part 10 can be easily determined.
When the measuring part 10 moves relative to the workpiece W as described above, the control part 54 determines the second coordinate of the measuring part 10 from the communication between the measuring part 10 and the access point 20 after the movement. Thus, the coordinates of the measuring part 10 while measuring the workpiece W can be determined.
The control part 54 operates the measuring part 10 to measure the coordinates of the workpiece W (third coordinate). That is, the control part 54 determines the third coordinate of the workpiece W by causing the measuring part 10 to measure the workpiece W while moving relative to the workpiece W.
The control part 54 determines the spatial coordinates of the workpiece W in the first space R1 on the basis of the determined first coordinate, second coordinate, and third coordinate. That is, the control part 54 determines the spatial coordinates of the workpiece W measured by the measuring part 10 in the first space R1 using the laser tracker 30 and the access point 20.
In the above explanation, the first space R1 is the space above the floor 92 of the measuring chamber 90, and the second space R2 is the space under the floor 92, but they are not limited thereto. For example, the second space R2 may be a space above a ceiling of the measuring chamber 90, and the first space R1 may be a space under the ceiling.
Further, in the above description, the laser tracker 30 and the access point 20 are provided in a space different from the space where the measuring part 10 is provided, but they are not limited thereto. For example, the laser tracker 30 and the access point 20 may be provided at positions separated from each other in the same space as the measuring part 10 (that is, the space R1).
As an example, the plurality of access points 20 may be fixed to the ceiling or wall of the first space R1, and the laser tracker 30 may be disposed on the floor of the first space R1. In this case, before the workpiece W is brought into the first space R1, the laser tracker 30 measures the reflection parts 22 of the access points 20 to determine the first coordinate. Thereafter, the space coordinates of the workpiece W can be determined by determining the second coordinate and the third coordinate after the workpiece W is brought into the first space R1.
It should be noted that the laser tracker 30 may be fixed to the ceiling or the wall of the first space R1 in the same manner as the access point 20. In this case, the laser tracker 30 can measure the reflection parts 22 of the access points 20 even after the workpiece W is brought in. Thus, the spatial coordinates of the workpiece W can be determined by determining the first coordinate, the second coordinate, and the third coordinate after the workpiece W is brought in.
The coordinate measuring apparatus 1 of the above-mentioned embodiment determines the first coordinate of each access point 20 by having the laser tracker 30 receive the laser beam reflected by the reflection parts 22 of the plurality of access points 20. Further, the coordinate measuring apparatus 1 determines the second coordinate of the measuring part 10 on the basis of the wireless communication between the measuring part 10 and the plurality of access points 20 provided at positions away from the measuring part 10. Furthermore, the coordinate measuring apparatus 1 determines the third coordinate of the workpiece measured by the measuring part 10. Then, the coordinate measuring apparatus 1 determines the spatial coordinates of the workpiece W on the basis of the determined first coordinate, second coordinate, and third coordinate.
Thus, even if there is a barrier (for example, a pillar or a wall) that blocks the laser beam of the laser tracker 30 in the space where the workpiece W is placed, the spatial coordinates of the workpiece W can be properly determined by placing the access point 20 that performs wireless communication using radio waves that are not blocked by said barrier.
The present invention is explained on the basis of the exemplary embodiments. The technical scope of the present invention is not limited to the scope explained in the above embodiments and it is possible to make various changes and modifications within the scope of the invention. For example, the specific embodiments of the distribution and integration of the apparatus are not limited to the above embodiments, all or part thereof, can be configured with any unit which is functionally or physically dispersed or integrated. Further, new exemplary embodiments generated by arbitrary combinations of them are included in the exemplary embodiments of the present invention. Further, effects of the new exemplary embodiments brought by the combinations also have the effects of the original exemplary embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2021-037325 | Mar 2021 | JP | national |