The invention relates to a system for sensing and automatically controlling the orientation of a work tool with respect to the earth.
A variety of work machines can be equipped with tools for performing a work function. Examples of such machines include a wide variety of loaders, excavators, tele-handlers, and aerial lifts. A work vehicle such as backhoe loader may be equipped with a first tool, such as a backhoe bucket or other structure, for excavating and material handling functions. A swing frame pivotally attaches to the vehicle frame at a rear portion of the vehicle, a backhoe boom pivotally attaches to the swing frame, a dipperstick pivotally attaches to the backhoe boom, and the work tool pivotally attaches to the dipperstick about a backhoe bucket pivot. A vehicle operator controls the orientation of the first tool relative to the dipperstick by a first tool actuator. The operator also controls the rotational position of the boom relative to the vehicle frame, and the dipperstick relative to the boom, by corresponding actuators. The aforementioned actuators are typically comprised of one or more double acting hydraulic cylinders and a corresponding hydraulic circuit.
During a work operation with a backhoe bucket, such as lifting or excavating material, it is desirable to maintain an initial orientation relative to gravity to prevent premature dumping of material, or to obtain a constant excavation shear angle. To maintain the initial backhoe bucket orientation relative to gravity, the operator is required to continually manipulate the backhoe bucket command input device to adjust the backhoe bucket orientation as the backhoe boom and dipperstick are moved during the work operation. The continual adjustment of the backhoe bucket orientation, combined with the simultaneous manipulation of a backhoe boom command input device and a dipperstick command input device inherent in movement of the backhoe boom and dipperstick, requires a degree of operator attention and manual effort that diminishes overall work efficiency and increases operator fatigue.
A loader boom is pivotally attached to the vehicle frame at a front portion of the backhoe loader and a second tool, such as a loader bucket, is pivotally attached to the loader boom at a loader bucket pivot. Work operation with a loader bucket entails similar problems to those encountered in work operations with the backhoe bucket.
A number of mechanisms and systems have been used to automatically control the orientation of work tools such as backhoe and loader buckets. Various examples of electronic sensing and control systems are disclosed in U.S. Pat. Nos. 4,923,326, 4,844,685, 5,356,260, 6,233,511, and 6,609,315. Control systems of the prior art typically utilize position sensors attached at various locations on the work vehicle to sense and control tool orientation relative to the vehicle frame. Additionally, the inventors' patent, U.S. Pat. No. 6,609,315, makes use of an angular velocity sensor attached to the tool to sense and maintain a fixed work tool orientation relative to an initial tool orientation, independent of vehicle frame orientation. The invention, described and claimed herein, makes use of a tilt sensor that, when attached to an object, such as the tool, detects the object's inclination with respect to the earth. The inclination of the tool is detected independently of the vehicle frame orientation and independently of the initial orientation of the tool. The result is a simpler control system and improved tool orientation control relative to gravity.
The particular type of tilt sensor utilized in the invention makes use of a new micro-electromechanical structures (MEMS) technology and is commercially available from Crossbow International, Inc. A number of other tilt sensors, including those utilizing capacitive technology, would be suitable for use in the invention and are also commercially available.
An object of the present invention is to provide an improved system for sensing and automatically controlling the orientation of a tool for a work vehicle.
The system automatically controls tool orientation by making use of a tilt sensor attached to the tool to detect an angle of the tool with respect to the earth. A controller maintains the tool at a selected angle.
The illustrated invention comprises a backhoe loader which includes a backhoe assembly, and a loader assembly. The backhoe assembly includes a swing frame pivotally attached to the frame of the backhoe loader, a backhoe boom pivotally attached to the swing frame, a backhoe boom actuator for controllably pivoting the boom relative to the swing frame, a dipperstick pivotally attached to the boom, a dipperstick actuator for controllably pivoting the dipperstick relative to the boom, a backhoe tool pivotally attached to the dipperstick, a backhoe tool actuator for controllably moving the backhoe tool about its pivot, and the aforementioned tilt sensor. The swing frame, the backhoe boom and the dipperstick shall be referenced herein as the backhoe linkage. A controller processes data from the tilt sensor and commands movement of the tool actuator in response thereto. The illustrated embodiment of the backhoe also includes a backhoe tool command input device to effect operation of the backhoe tool actuator, and a tool auto-hold command input device to enable a tool auto-hold function for maintaining the tool in a set orientation.
The loader includes a loader boom pivotally attached to the vehicle frame, a loader boom actuator for controllably pivoting the loader boom relative to the vehicle frame, a loader tool pivotally attached to the loader boom, and a loader tool actuator for controllably pivoting the loader tool relative to the loader boom. The loader also includes a loader tool command device to effect operation of the loader tool actuator and a loader tool auto-hold command input device to enable a loader tool auto-hold function for maintaining the loader tool in a set orientation.
When an tool auto-hold function is enabled, the controller maintains a tool orientation by commanding the tool actuator to move the tool such that the detected angle, i.e., the output voltage of the tilt sensor remains about the same. The controller is adapted to discontinue the tool auto-hold function when the operator manipulates the tool command input device to effect tool movement. The controller resumes tool auto-hold function once the operator discontinues manipulation of the tool command input device, reestablishing the initial tool orientation at the new orientation affected by the operator. Additionally, the operator may manipulate an auto-hold command input device to selectively enable and disable the tool auto-hold function.
The loader assembly 16 comprises a loader boom 22 and a tool such as a loader bucket or other structure 24. The loader boom 22 has a first end 26 pivotally attached to the frame 12 about a horizontal loader boom pivot 28, and a second end 30 to which the loader bucket 24 pivotally attaches about a horizontal loader bucket pivot 32.
A loader boom actuator, having a loader boom hydraulic cylinder 36 extending between the vehicle frame 12 and the loader boom 22, controllably moves the loader boom 22 about the loader boom pivot 28. A loader bucket actuator 38, having a loader bucket hydraulic cylinder 40 extending between the loader boom 22 and the loader bucket 24, controllably moves the loader bucket 24 about the loader bucket pivot 32. In the illustrated embodiment, the loader bucket actuator 38 comprises a loader bucket electro-hydraulic circuit 42 hydraulically coupled to the loader bucket hydraulic cylinder 40. The loader bucket electro-hydraulic circuit 42 supplies and controls the flow of hydraulic fluid to the loader bucket hydraulic cylinder 40.
The operator commands movement of the loader assembly 16 by manipulating a loader bucket command input device 44 and a loader boom command input device 46. The loader bucket command input device 44 is adapted to generate a loader bucket command signal 48 in response to manipulation by the operator, proportional to a desired loader bucket movement. A controller 50, in communication with the loader bucket command input device 44 and loader bucket actuator 38, receives the loader bucket command signal 48 and responds by generating a loader bucket control signal 52, which is received by the loader bucket electro-hydraulic circuit 42. The loader bucket electro-hydraulic circuit 42 responds to the loader bucket control signal 52 by directing hydraulic fluid to the loader bucket hydraulic cylinder 40, causing the hydraulic cylinder 40 to move the loader bucket 24 accordingly.
During a work operation with the loader bucket 24, such as lifting or transporting material, it is desirable to maintain an initial loader bucket orientation relative to gravity to prevent premature dumping of material. To maintain the initial loader bucket orientation as the loader boom 22 is moved relative to the frame 12 during a lifting operation, and as the vehicle frame 12 changes pitch when moving over uneven terrain during a transport operation, the operator is required to continually manipulate the loader bucket command input device 44 to adjust the loader bucket orientation. The continual adjustment of the loader bucket orientation requires a degree of operator attention and manual effort that diminishes overall work efficiency and increases operator fatigue.
In the illustrated embodiment, the present invention also utilizes a loader auto-hold command switch 58 in communication with the controller 50. The loader auto-hold command switch 58 is adapted to generate a loader auto-hold command signal 60 corresponding to a manipulation of the loader auto-hold command switch 58 by the operator to enable operation of the auto-hold function for the loader bucket 24. The controller 50 is adapted to ignore the loader bucket angle signal 56 until the controller 50 receives the loader auto-hold command signal 60 from the loader auto-hold command switch 58.
In the illustrated embodiment, a loader boom tilt angle sensor 57, for detecting the angle of the loader boom 22 relative to the earth and automatically generating loader boom angle signals, is attached to the loader boom 22. The controller 50 is also capable of receiving the loader boom angle signals generated by the boom tilt angle sensor 57 and automatically generating the loader bucket control signals based on the loader boom angle signals.
The backhoe assembly 18 comprises a swing frame 62, a backhoe boom 64, a dipperstick 66, and a backhoe tool such as a backhoe bucket or other structure 68. The swing frame 62 has a first swing frame end 70 pivotally attached to the frame 12 about a vertical pivot 72, and a second swing frame end 74. The backhoe boom 64 has a first backhoe boom end 76 pivotally attached to the second swing frame end 74 about a horizontal backhoe boom pivot 78, and a second backhoe boom end 80. The dipperstick 66 has a first dipperstick end 82 pivotally attached to the second backhoe boom end 80 about a horizontal dipperstick pivot 84, and a second end 86 to which the backhoe bucket 68 pivotally attaches via a backhoe bucket pivot 88.
A swing frame actuator, including a swing frame hydraulic cylinder 90 extending between the vehicle frame 12 and the swing frame 62, controllably moves the swing frame 62 about the vertical pivot 72. A backhoe boom actuator, including a backhoe boom hydraulic cylinder 92 extending between the swing frame 62 and the backhoe boom 64, controllably moves the backhoe boom 64 about the backhoe boom pivot 78. A dipperstick actuator, including a dipperstick hydraulic cylinder 94 extending between the backhoe boom 64 and the dipperstick 66, controllably moves the dipperstick 66 about the dipperstick pivot 84. A backhoe bucket actuator 96, including a backhoe bucket hydraulic cylinder 98 extending between the dipperstick 66 and the backhoe bucket 68, controllably moves the backhoe bucket 68 about the backhoe bucket pivot 88. In the illustrated embodiment, the backhoe bucket actuator 96 comprises a backhoe bucket electro-hydraulic circuit 100, in connection the backhoe bucket hydraulic cylinder 98, which supplies and controls the flow of hydraulic fluid to the backhoe bucket hydraulic cylinder 98.
The operator commands movement of the backhoe assembly 18 by manipulating a backhoe bucket command input device 102, a dipperstick command input device 104, a backhoe boom command input device 106, and a swing frame command input device. The backhoe bucket command input device 102 is adapted to generate a backhoe bucket command signal 108 in response to manipulation by the operator, proportional to a desired backhoe bucket movement. The controller 50, in communication with the backhoe bucket command input device 102, dipperstick command input device 104, backhoe boom command input device 106, and the backhoe bucket actuator 96, receives the backhoe bucket command signal 108 and responds by generating a backhoe bucket control signal 110, which is received by the backhoe bucket electro-hydraulic circuit 100. The backhoe bucket electro-hydraulic circuit 100 responds to the backhoe bucket control signal 110 by directing hydraulic fluid to the backhoe bucket hydraulic cylinder 98, causing the hydraulic cylinder 98 to move the backhoe bucket 68 accordingly.
During a work operation with the backhoe bucket 68, such as lifting or excavating material, it is, at times, desirable to maintain an initial backhoe bucket orientation relative to the earth to prevent premature dumping of material or to obtain a constant excavation shear angle. To maintain the initial backhoe bucket orientation relative to gravity, the operator is required to continually manipulate the backhoe bucket command input device 102 to adjust the backhoe bucket orientation as the backhoe boom 64 and dipperstick 66 are moved during the work operation. The continual adjustment of the backhoe bucket orientation, combined with the simultaneous manipulation of the backhoe boom command input device 106 and the dipperstick command input device 104 inherent in movement of the backhoe boom 64 and dipperstick 66, requires a degree of operator attention and manual effort that diminishes overall work efficiency and increases operator fatigue.
The invention also utilizes a backhoe auto-hold command switch 116 in communication with the controller 50. The backhoe auto-hold command switch 116 is adapted to generate a backhoe auto-hold command signal 118 corresponding to a manipulation of the backhoe auto-hold command switch 116 by the operator to enable operation of the auto-hold function for the backhoe bucket 68. The controller 50 is adapted to ignore the backhoe bucket angle signal 114 until the controller 50 receives the backhoe auto-hold command signal 118 from the backhoe auto-hold command switch 116.
In the alternate embodiment, where a backhoe work operation is typically performed only when the vehicle is stationary, adjustments to maintain the initial backhoe bucket orientation normally result only from a corresponding movement of the backhoe boom 64 or the dipperstick 66. To minimize the period of auto-hold function for the backhoe bucket 68, the controller 50 may be adapted to ignore the backhoe bucket angle signal 114 unless receiving a backhoe boom command signal 122 from the backhoe boom command input device 106, or a dipperstick command signal 120 from the dipperstick command input device 104.
In the illustrated embodiment, a backhoe boom tilt angle sensor 63 is attached to the backhoe boom 66 and a dipperstick tilt angle sensor 67 is attached to the dipperstick 64. The controller 50 is also capable of receiving backhoe boom angle signals and dipperstick angle signals relative to the earth generated by the boom tilt angle sensor and the dipperstick tilt angle sensor, respectively and automatically generating backhoe bucket control signals based on at least one of the backhoe boom angle signals an the diperstick angle signals.
Having described the illustrated embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.