Emergency vehicles such as police cars, fire trucks, and ambulances often have emergency signaling systems mounted on them. Typically, these systems include emergency signaling lights (“emergency lights”) that may flash in various colors and patterns, as well as sirens or public address loudspeakers. These devices enable emergency services personnel such as police officers, firefighters, emergency medical technicians (EMTs), and other first responders to warn people in the vicinity of the emergency vehicles that the responding vehicles are approaching and/or that there is a dangerous situation which is being handled by the emergency services personnel.
The National Fire Protection Association (NFPA) has established standards for emergency lights on fire trucks. As shown in
Fire trucks and other emergency vehicles often respond in groups when responding to an emergency. When an emergency vehicle is closely following another emergency vehicle, the high-powered lights from the back of the lead vehicle can shine directly in the eyes of the operator of the following vehicle. Similarly, the lights from the front of the following vehicle can shine in the mirrors of the front vehicle, which causes excessive glare in the eyes of the driver of the lead vehicle. Emergency vehicle drivers need to be able to see and take in as much data as possible when responding, so improving visibility for responding emergency vehicles following closely is of particular importance.
When running code, emergency responders often drive in close proximity to each other (like a pack) in order to move seamlessly through traffic, particularly when traffic is heavy. Because the emergency vehicles are effectively operating as a single unit, the individual emergency vehicles tend to travel in closer proximity to each other than typical traffic. However, this can cause problems when it is dark outside. In such situations, the driver of an emergency vehicle is typically following the vehicle immediately in front so closely that visibility around the lead truck is limited, and the rear lights of the lead truck are creating an undesirable glare in the following vehicle.
When traveling in close proximity, the usefulness of the rear lights of the lead vehicle and the front lights of the following vehicle is limited to both the vehicle operators and the surrounding drivers and pedestrians. Accordingly, embodiments of the presently disclosed lighting system coordinates the lighting of several vehicles to reduce the intensity of the forward-facing lights in all but the lead vehicle and to reduce the intensity of the rear facing lights in all but the last vehicle. As a result, the emergency vehicles act in a manner similar to a single vehicle, which reduces the glare experienced by operators that is caused by adjacent vehicles.
According to aspects of the present disclosure, embodiments of a coordinated multi-vehicle lighting system includes a remote coordination system and at least two vehicles. Each vehicle has a light installation that includes a front light, a rear light, a navigation module, and a controller in operable communication with the front light, the rear light, and the navigation module. Location data from the navigation module is provided to the remote coordination system, and the remote coordination system determines a status for each vehicle by comparing the location data from the vehicle to the location data from each of the other vehicles. The remote coordination system transmits the status of each vehicle to the controller of that vehicle. For each vehicle, the controller is programmed to selectively reduce an illumination of the front light and of the rear light according to the status of the vehicle.
In any embodiment, for each vehicle, the controller is programmed to reduce the illumination of the front light when the status indicates that the vehicle is following another of the vehicles.
In any embodiment, for each vehicle, the controller is programmed to reduce the illumination of the rear light when the status indicates that the vehicle is being followed by another of the vehicles.
In any embodiment, for each vehicle, the controller is programmed to reduce the illumination of the rear light when the status indicates that the vehicle is being followed by another of the vehicles.
In any embodiment, for each vehicle, the controller is programmed to turn off the rear light when the status indicates that the vehicle is being followed by another of the vehicles at a distance less than a predetermined threshold.
In any embodiment, for each vehicle, the location data includes a speed and direction of the vehicle.
In any embodiment, the status of each vehicle is one of first, middle, last, and out of range.
In any embodiment, for each vehicle, the controller reduces the illumination of the front light when the status is middle or rear.
In any embodiment, for each vehicle, the controller reduces the illumination of the rear light when the status is middle or front.
In any embodiment, for each vehicle, the controller reduces the illumination of the rear light when the status is middle or front.
In any embodiment, the remote coordination system includes a cloud device that includes a remote CPU, and for each vehicle, the light installation is in operative communication with the remote CPU via a cellular network.
In any embodiment, for each vehicle, the light installation includes a telematic control unit configured to determine a location of the vehicle.
In any embodiment, the telematic control unit further includes a navigation module configured for wireless 2-way communication with the remote coordination system.
In any embodiment, at least one of the vehicles is an emergency response vehicle, and the first and second lights are emergency lights.
According to aspects of the present disclosure, embodiments of a method controls a multi-vehicle lighting system. The lighting system includes a remote coordination system and at least two vehicles, each of the least two vehicles having a light installation with a front light, a rear light, a navigation module, and a controller in operable communication with the front light, the rear light, and the navigation module. The method comprises the steps of determining a location for each vehicle; and transmitting the location for each vehicle to the remote coordination system. The method further comprises the steps of determining, by the remote coordination system, a status for each vehicle according to the location of the vehicle relative to the other vehicles; transmitting the status for each vehicle to that vehicle; and selectively reducing an illumination of each of the front and rear lights according to the status of the vehicle.
In any embodiment, the step of determining a status for each vehicle includes assigning a status of first when the vehicle is followed by another vehicle and is not following another vehicle.
In any embodiment, the step of determining a status for each vehicle includes assigning a status of last when the vehicle is not followed by another vehicle and is following another vehicle.
In any embodiment, the step of determining a status for each vehicle includes assigning a status of middle when the vehicle is followed by another vehicle and is following another vehicle.
In any embodiment, for each vehicle, the controller is programmed to selectively reduce the illumination of each of the front and rear lights according to the vehicle status.
In any embodiment, the method further includes continuously providing updated locations of each vehicle to the remote coordination system; and providing an updated status to each vehicle according to the updated locations.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The foregoing aspects and many of the attendant advantages of the disclosed subject matter will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The detailed description set forth herein in connection with the appended drawings, where like numerals reference like elements, are intended as a description of various embodiments of the present disclosure and are not intended to represent the only embodiments. Each embodiment described in this disclosure is provided merely as an example or illustration and should not be construed as preferred or advantageous over other embodiments. The illustrative examples provided herein are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Similarly, any steps described herein may be interchangeable with other steps, or combinations of steps, in order to achieve the same or substantially similar result.
Various embodiment implementations of the present disclosure provide a coordinated multi-vehicle lighting system. As will be described in further detail, each vehicle includes an onboard lighting system in communication with a remote coordination system. Each onboard lighting system transmits operational information to the remote coordination system, including the position of the vehicle. The remote coordination system analyzes the operational information sent from the individual vehicles and communicates a status for each vehicle to the corresponding onboard lighting system so that the operation of the onboard lighting systems is coordinated. While embodiments of the multi-vehicle lighting systems are generally described herein as being used in conjunction with fire trucks, the system can also be used in conjunction with ambulances, police cars, or any suitable emergency vehicles or combinations thereof in addition to or in lieu of fire trucks.
Referring to
Each light fixture group 110, 112, 114, and 116 includes one or more lights. As shown in
Each light within a light fixture group 110, 112, 114, and 116 includes a controller. In
In some embodiments, the controller 120 includes a processor and memory. The memory may include computer readable storage media in read-only memory (ROM), random-access memory (RAM), and keep-alive memory (KAM), for example. The KAM may be used to store various operating variables or program instructions while the processor is powered down. The computer-readable storage media may be implemented using any of a number of known memory devices such as PROMs (programmable read-only memory), EPROMs (electrically PROM), EEPROMs (electrically erasable PROM), flash memory, or any other electric, magnetic, optical, or combination memory devices capable of storing data, instructions, programs, modules, etc.
As used herein, the term processor is not limited to integrated circuits referred to in the art as a computer, but broadly refers to a microcontroller, a microcomputer, a microprocessor, a programmable logic controller, an application specific integrated circuit, other programmable circuits, combinations of the above, among others. Therefore, as used herein, the term “processor” can be used to generally describe these aforementioned components, and can be either hardware or software, or combinations thereof, that implement logic for carrying out various aspects of the present disclosure. Similarly, the terms “module” and “unit” can include logic that may be implemented in either hardware or software, or combinations thereof.
It will be appreciated that embodiments of the disclosed light installation 102 can include a distributed control system, as shown in
The light installation 102 includes a telematic control unit (TCU) 130 in operative communication with the controller 120. The TCU 130 is configured to provide wireless two-way communication between the controller 120 and a remote coordination system 104. In addition, the TCU 130 collects additional operational data and provides the data to the remote coordination system 104.
The TCU includes a mobile communication unit configured to send and receive data via GMS, GPRE, WiFi, LTE, 5G, or any suitable wireless communication protocol or standard. An antenna 136 is operably connected to the TCU 130 and is configured to facilitate and/or improve transmission of data between the mobile communication unit 134 and the remote coordination system 104.
In some embodiments, the controller 120 is in operative communication with at least one input device 122. In some embodiments the one or more input device 122 enables a driver or other person to manually turn the lights on/off and/or set a status of the vehicle, e.g., normal driving, running code, parked on scene, or any other suitable status. In some embodiments, the one or more input devices 122 enable a person to manually control any suitable operational aspect of one or more lights within any of the light fixture groups 110, 112, 114, 116 or combinations thereof.
The TCU 130 further includes a navigation module 132 configured to determine the position of the vehicle 20. In some embodiments, the navigation module 132 is a global navigation satellite system (GNSS) that utilizes satellites to determine the vehicle location in real time with minimal lag. In some embodiments, the GNSS also determines a current time as well as the speed, and direction of travel of the vehicle. In some embodiments, the GNSS is a Global Positioning System (GPS).
Still referring to
When the controller 120 is a distributed control system, as shown in
The remote coordination system 104 includes a plurality of towers 150 that form part of a cellular network 152. The cellular network 152 is in turn in communication with the internet 154. At any given time, the TCU 130 of the light installation 102 is in communication with the one or more towers 150 by a wireless connection 106 to communicatively connect the controller 120 to the internet 154.
The remote coordination system 104 further includes a cloud device 156 (“cloud”) in communication with the internet 154. The cloud 156 includes a remote CPU 158 configured to transmit data to and receive data from the internet 154. In this manner, the remote CPU 158 is in communication with the controller 120 of the light installation 102 of each vehicle 20. In some embodiments, a remote storage device 160 is in communication with the remote CPU 158 and is configured to store data received from the light installation 102 of each vehicle 20 as well as a history of the status assigned to each vehicle 20 and any other information that may be considered useful.
Embodiments of the disclosed lighting system 100 control the light installations 102 of different vehicles according to information received from the controller 120 of each vehicle 20. More specifically, the lighting system 100 provides active glare control for each vehicle 20 when two or more vehicles 20 are running code. As will be described in further detail below, when vehicles 20 are running code in proximity to each other, the intensity of the lights in zone C (rear) is reduced for any of the vehicles 20 that have another vehicle 20 following in close proximity. Similarly, for any vehicle 20 following another vehicle 20 in close proximity, the intensity of the lights in zone A (front) is reduced.
When the distance d1-2 between first and middle vehicles 20.1, 20.2 is less than a predetermined distance, the intensity of the lights in zone C (rear) of the first vehicle 20.1 is reduced to lessen the glare experienced by the occupants of the middle vehicle 20.2. At the same time, the intensity of the lights in zone A (front) of the middle vehicle 20.2 is reduced to lessen the glare experienced by the occupants of the first vehicle 20.1.
Still referring to
Because the vehicles are in close proximity to each other, it is not necessary for the zone A (front) lights of any vehicle to be at normal intensity for running code except for the first (lead) vehicle 20.1. In this regard, the line of vehicles will be visible from the front by virtue of the zone A (front) lights of the first vehicle. Similarly, it is not necessary for the zone C (rear) lights of any vehicle to be at normal intensity for running code except for the last vehicle 20.3 because the line of vehicles will be visible from the rear by virtue of the zone C (rear) lights of the last vehicle. Thus, for the middle vehicle, the illumination of both the zone A (front) and zone C (rear) lights is dimmed.
It will be appreciated that the lighting system 100 can control the light installations of any number of vehicles. For each vehicle 20, the corresponding light installation 102 sends operational data to the cloud device 156. The cloud device compares the data from all of the vehicles 20 to determine whether and how the lights of each vehicle should be dimmed. The cloud device 156 sends a status to each vehicle 20 indicating if the vehicle is first, middle, last, or out of range. The controller 120 of each vehicle 20 controls the light fixture groups 110, 112, 114, 116 of that vehicle according to the status assigned by the cloud device 156 and stored locally by the light installation 102. The controller 120 continues to control the corresponding light fixture groups 110, 112, 114, 116 until the vehicle 20 stops running code or the cloud device 156 sends a different status to the vehicle, indicating that there has been a change with respect whether the vehicle is leading and/or following another vehicle. Thus, no direct communication between vehicles 20 is needed to coordinate the light fixture groups 110, 112, 114, 116 of the different vehicles. Further, the processing to determine how the light fixture groups 110, 112, 114, 116 will be controlled is performed by the cloud device 156, not the individual light installations 102.
In an exemplary embodiment, the cloud device 156 assigns one of four statuses to each vehicle with which the could device is in communication. For a vehicle 20 that is followed by but not following another vehicle, the status “first” is assigned. Conversely, for a vehicle 20 that is following but not followed by another vehicle, the status “last” is assigned to the vehicle. When three or more vehicles are part of the lighting system 100, any vehicle that is both following and followed by other vehicles i.e., between the first and last vehicles, has a status of “middle” assigned to the vehicle. For example, when there are three vehicles, the only second vehicle is assigned the “middle” status. For more vehicles, each of the two or more vehicles between the first and last vehicles is assigned the “middle” status. If a vehicle 20 is neither following or followed by another vehicle, a status of “out of range” is assigned to the vehicle, and the controller 120 controls the light fixture groups 110, 112, 114, 116 to operate at standard illumination for running code.
The method 200 includes a number of processes performed in parallel, wherein each process relates to a particular vehicle 20. In the illustrated embodiment, the steps of method 200 are described for controlling the light fixture groups 110, 112, 114, 116 for a number N of vehicles, wherein the processes for a first, second, and Nth vehicles are shown, and the steps of each process are identified with a reference number that indicates the vehicle to which the step applies. For example, block 204.Y indicates block 204 as applied to the Yth vehicle, wherein Y is a number from 1 to N. To avoid repetition, the steps related to the first vehicle will be described using reference numbers 2XX.1 with the understanding that corresponding steps are carried out for each of the other vehicles.
The method 200 starts at block 202 and proceeds to block 202.1. In block 202.1, response lights of the light fixture groups 110, 112, 114, 116 of vehicle 1 are activated and the vehicle begins running code. The method then proceeds to block 204.1.
In block 204.1, vehicle 1 transmits data regarding the location and movement (direction and speed) of vehicle 1. More specifically, the light installation 102 of vehicle 1 sends data collected by the TCU 130 to the cloud device 156 via a cellular network 152 connected to the internet 154. The method 200 then proceeds to block 206.1.
In block 206.1, the cloud device 156 has received data regarding operational parameters of vehicle 1. Based on the received data, the remote CPU 158 determines a status for vehicle 1. More specifically, the remote CPU 158 determines whether vehicle 1 is the first vehicle, the last vehicle, a middle vehicle, or out of range of any other vehicles. The cloud device 156 sends the status of vehicle 1 to the controller 120 of vehicle 1 via the cellular network 152. The method 200 then proceeds to block 208.1.
In block 208.1, the controller 120 (distributed control system, central controller, or combination thereof) controls lights of at least some of the light fixture groups 110, 112, 114, 116 of vehicle 1 according to the status received from the cloud device 156. The method 200 then proceeds to block 210.1. In block 210.1, the controller 120 determines if vehicle 1 is still running code, i.e., the response lights have not been deactivated. If the response lights have not been deactivated, the method 200 returns to block 204.1, wherein updated vehicle 1 data is sent to the cloud device 156. Thus, the method continues to send updated vehicle 1 data to the cloud device 156, and the cloud device continues to assign an updated status based on the updated data until the vehicle response lights are deactivated in block 210.1, i.e., vehicle 1 is no longer running code. Once vehicle 1 is no longer running code, the method 200 proceeds to block 212.
In block 212, the method 200 determine if all vehicles 20 have stopped running code. If one or more of the vehicles is still running code, the method 200 remains at block 212. Once all of the vehicles have stopped running code, the method 200 proceeds to block 214 and ends.
In block 302.X, the remote CPU 158 determines if vehicle X is being followed by one of the other vehicles at less than a predetermined distance. If vehicle X is being followed by one of the other vehicles at less than a predetermined distance, the method proceeds to block 304.X, and the “VEHICLE X FOLLOWED” value is set to “TRUE.” If vehicle X is not being followed by one of the other vehicles at less than a predetermined distance, the method proceeds to block 306.X, and the “VEHICLE X FOLLOWED” value is set to “FALSE.” From block 304.X and block 306.X, the method 200 proceeds to block 308.X.
In block 308.X, the remote CPU 158 determines if vehicle X is following one of the other vehicles at less than a predetermined distance. If vehicle X is following one of the other vehicles at less than a predetermined distance, the method proceeds to block 310.X, and the “VEHICLE X FOLLOWING” value is set to “TRUE.” If vehicle X is not following one of the other vehicles at less than a predetermined distance, the method proceeds to block 312.X, and the “VEHICLE X FOLLOWING” value is set to “FALSE.” From block 310.X and block 312.X, the method 200 proceeds to block 314.X.
In block 314.X the “VEHICLE X FOLLOWED” value is considered. If VEHICLE X FOLLOWED=TRUE, the method 200 proceeds to block 316.X. In block 316.X, the “VEHICLE X FOLLOWING” value is considered. If VEHICLE X FOLLOWING=TRUE, the method 200 continues to block 318.X. In block 318.X, vehicle X is assigned a status of “MIDDLE,” i.e., vehicle X is both following and followed. The method 200 then proceeds to block 328.X.
Referring back to block 316.X, if VEHICLE X FOLLOWING=FALSE, the method 200 continues to block 320.X. In block 320.X, vehicle X is assigned a status of “FIRST,” i.e., vehicle X is followed but not following. The method 200 then proceeds to block 328.X.
Referring back to block 314.X if VEHICLE X FOLLOWED=FALSE, the method 200 proceeds to block 322.X. In block 322.X, the “VEHICLE X FOLLOWING” value is considered. If VEHICLE X FOLLOWING=TRUE, the method 200 continues to block 324.X. In block 324.X, vehicle X is assigned a status of “LAST,” i.e., vehicle X is following but not followed. The method 200 then proceeds to block 328.X.
Referring back to block 322.X, if VEHICLE X FOLLOWING=FALSE, the method 200 continues to block 326.X. In block 326.X, vehicle X is assigned a status of “OUT OF RANGE,” i.e., vehicle X is neither followed nor following. The method 200 then proceeds to block 328.X.
In block 328.X, the remote CPU 158 transmits the vehicle X status to the controller 120 of vehicle X. The method 200 then proceeds to block 208.X.
In block 404.X, the controller 120 of vehicle X checks if VEHICLE X STATUS=MIDDLE. If VEHICLE X STATUS=MIDDLE, then the method 200 continues to block 406.X, and the controller 120 reduces the intensity of the light fixture groups 112, 114 of zone A (font) and zone C (rear), respectively. The method 200 then proceeds to block 210.X. If VEHICLE X STATUS≠MIDDLE, then the method 200 continues to block 408.X.
In block 408.X, the controller 120 of vehicle X checks if VEHICLE X STATUS=LAST. If VEHICLE X STATUS=LAST, then the method 200 continues to block 410.X, and the controller 120 reduces the intensity of the light fixture group 112 of zone A (front). The method 200 then proceeds to block 210.X. If VEHICLE X STATUS≠LAST, then the method 200 continues to block 412.X.
In block 412.X, the controller 120 of vehicle X checks if VEHICLE X STATUS=OUT OF RANGE. If VEHICLE X STATUS=OUT OF RANGE, then the method 200 continues to block 414.X, and the controller 120 controls the light fixture groups 112, 114 of zone A (font) and zone C (rear), respectively, to maintain a standard intensity. The method 200 then proceeds to block 210.X. If VEHICLE X STATUS≠OUT OF RANGE, then the method 200 continues to block 416.X.
In block 416.X, the controller 120 generates an error code because none of the four available vehicles statuses (first, middle, last, out of range) has been received. In some embodiments, the error code creates an alert to the operator that the controller has not received a vehicle status. In some embodiments, the error code causes a system reset in an attempt to clear the error. In some embodiments, the error code triggers execution of any suitable operation or process to address the error. From block 416.X, the method 200 proceeds to block 414.X. In block 414.X, the controller 120 controls the lights fixture groups at their default settings. That is, the controller controls the light fixture groups 112, 114 of zone A (font) and zone C (rear), respectively, to maintain a standard intensity. The method 200 then proceeds to block 210.X.
When operating in the daylight conditions of
In some embodiments, the lighting system 100 controlling operates as a hybrid of the embodiments shown in
Different features, variations and multiple different embodiments have been shown and described with various details. What has been described in this application at times in terms of specific embodiments is done for illustrative purposes only and without the intent to limit or suggest that what has been conceived is only one particular embodiment or specific embodiments. It is to be understood that this disclosure is not limited to any single or specific embodiments or enumerated variations. Many modifications, variations and other embodiments will come to mind of those skilled in the art, and which are intended to be and are in fact covered by this disclosure. It is indeed intended that the scope of this disclosure should be determined by a proper legal interpretation and construction of the disclosure, including equivalents, as understood by those of skill in the art relying upon the complete disclosure present at the time of filing.
In the foregoing description, specific details are set forth to provide a thorough understanding of representative embodiments of the present disclosure. It will be apparent to one skilled in the art, however, that the embodiments disclosed herein may be practiced without embodying all of the specific details. In some instances, well-known process steps have not been described in detail in order not to unnecessarily obscure various aspects of the present disclosure. Further, it will be appreciated that embodiments of the present disclosure may employ any combination of features described herein.
The present application may reference quantities and numbers. Unless specifically stated, such quantities and numbers are not to be considered restrictive, but exemplary of the possible quantities or numbers associated with the present application. Also, in this regard, the present application may use the term “plurality” to reference a quantity or number. In this regard, the term “plurality” is meant to be any number that is more than one, for example, two, three, four, five, etc. The term “about,” “approximately,” etc., means plus or minus 5% of the stated value.
It should be noted that for purposes of this disclosure, terminology such as “upper,” “lower,” “vertical,” “horizontal,” “fore,” “aft,” “inner,” “outer,” “front,” “rear,” etc., should be construed as descriptive and not limiting the scope of the claimed subject matter. Further, the use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings.
Throughout this specification, terms of art may be used. These terms are to take on their ordinary meaning in the art from which they come, unless specifically defined herein or the context of their use would clearly suggest otherwise.
The principles, representative embodiments, and modes of operation of the present disclosure have been described in the foregoing description. However, aspects of the present disclosure, which are intended to be protected, are not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. It will be appreciated that variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present disclosure. Accordingly, it is expressly intended that all such variations, changes, and equivalents fall within the spirit and scope of the present disclosure as claimed.
This application claims the benefit of Provisional Application No. 63/333,706 filed Apr. 22, 2022, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63333706 | Apr 2022 | US |