Coordination of aerial vehicles through a central server

Information

  • Patent Grant
  • 9022324
  • Patent Number
    9,022,324
  • Date Filed
    Monday, May 5, 2014
    10 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
A system and method of coordination of aerial vehicles through a central server are disclosed. In one embodiment, a system includes a central server and an Internet protocol network. A first aerial vehicle is communicatively coupled with the central server through the Internet protocol network and a second aerial vehicle is communicatively coupled with the first aerial vehicle when a command is transferred through the central server using the Internet protocol network. A first computing device of a first user of the first aerial vehicle operatively controls the first aerial vehicle and a second computing device of a second user of the second aerial vehicle operatively controls the second aerial vehicle. At least one of the first computing device of the first user and the second computing device of the second user communicate the command to the first aerial vehicle through the central server.
Description
CLAIMS OF PRIORITY

This patent application is a continuation in part, claims priority from, and hereby incorporates by reference and claims priority from the entirety of the disclosures of the following cases and each of the cases on which they depend and further claim priority or incorporate by reference:

    • (1) U.S. Continuation-in-Part patent application Ser. No. 14/321,817, titled ‘NEXTDOOR NEIGHBORHOOD SOCIAL NETWORK METHOD, APPARATUS, AND SYSTEM’ filed on Jul. 2, 2014 and which itself is a Continuation-in-Part application of:
      • U.S. Continuation-in-Part patent application Ser. No. 14/203,531, titled ‘GEO-SPATIALLY CONSTRAINED PRIVATE NEIGHBORHOOD SOCIAL NETWORK’ filed on Mar. 10, 2014, and now issued as U.S. Pat. No. 8,775,328 on Jul. 8, 2014, and which further depends on:
        • a. U.S. Continuation-in-Part patent application Ser. No. 11/653,194 titled ‘LODGING AND REAL PROPERTY IN A GEO-SPATIAL MAPPING ENVIRONMENT’ filed on Jan. 12, 2007,
        • b. U.S. Utility patent application Ser. No. 11/603,442 titled ‘MAP BASED NEIGHBORHOOD SEARCH AND COMMUNITY CONTRIBUTION’ filed on Nov. 22, 2006,
        • c. U.S. Provisional patent application 60/853,499 filed on Oct. 19, 2006, and 60/854,230 filed on Oct. 25, 2006.
    • (2) U.S. Utility patent application Ser. No. 14/142,763 titled ‘AUTOMOBILE SHARING BY USERS OF A NEIGHBORHOOD SOCIAL NETWORK USING A RADIAL ALGORITHM’, filed on Dec. 28, 2013.
    • 3) U.S. Utility patent application Ser. No. 14/207,679 titled ‘PEER-TO-PEER NEIGHBORHOOD DELIVERY MULTI-COPTER AND METHOD’, filed on Mar. 13, 2014.
    • 4) U.S. Utility patent application Ser. No. 14/261,405 titled ‘SKYTEBOARD QUADCOPTER AND METHOD’, filed on Apr. 24, 2014.


FIELD OF TECHNOLOGY

This disclosure relates generally to the technical fields of communications, more particularly, to the coordination of aerial vehicles through a central server.


BACKGROUND

Aerial vehicles may be limited in what they are able to accomplish independently. It may be difficult and/or impractical to operate multiple independent aerial vehicles in the same air space and/or to attempt to have independent aerial vehicles accomplish a single task. As a result, the application of aerial vehicles may be limited and/or opportunities for advancement and/or gain may be foregone.


SUMMARY

Disclosed are a method, a device and/or a system of coordination of aerial vehicles through a central server. In one aspect, a system includes a central server and an Internet protocol network. A first aerial vehicle is communicatively coupled with the central server through the Internet protocol network. A second aerial vehicle is communicatively coupled with the first aerial vehicle when a command is transferred through the central server using the Internet protocol network. A first computing device of a first user of the first aerial vehicle operatively controls the first aerial vehicle through the first computing device through the Internet protocol network. A second computing device of a second user of the second aerial vehicle operatively controls the second aerial vehicle through the second computing device through the Internet protocol network. The first computing device of the first user and/or the second computing device of the second user communicate the command to the first aerial vehicle through the central server.


A communication logic block may communicate a current geo-spatial location and/or an altitude data of the first aerial vehicle to the central server when the first aerial vehicle is hovering at the current geo-spatial location for at least a threshold amount of time. The threshold amount of time may be approximately two seconds of time. The command communicated by the second computing device of the second user to the first aerial vehicle through the central server may be a set of instructions that instruct any of the first computing device, the first aerial vehicle, and/or the second aerial vehicle that the second aerial vehicle is to position itself in an adjacent manner in relation to the first aerial vehicle at a threshold distance away that is to a left to the first aerial vehicle, to a right of the first aerial vehicle, to a front of the first aerial vehicle, and/or to a rear of the first aerial vehicle.


The first computing device may include an undo function to maneuver the first aerial vehicle in flight to a last previously saved geo-spatial location of the first aerial vehicle based on a last previous location of the first aerial vehicle stored in the central server when the undo function is initiated. A turn-and-face logic block may maneuver the second aerial vehicle in a semicircular rotation from the first aerial vehicle such that the second aerial vehicle is facing the first aerial vehicle through first person view cameras of both the first aerial vehicle and the second aerial vehicle when the command instructs a turn-and-face operation. A back-up logic block may back the second aerial up a distance away while maintaining the altitude of the first aerial vehicle through the central server when in the semi-circularly rotated state of the second aerial vehicle.


The threshold distance away may be based on an accuracy of aerial geo-spatial coordinates of the first aerial vehicle and/or the second aerial vehicle. A no-fly logic block may create a no-fly zone between the first aerial vehicle and the second aerial vehicle based on the threshold distance. The first aerial vehicle and/or the second aerial vehicle may have an attachment through which a payload weight is transportable. A follow-the-leader logic block may designate the first aerial vehicle as a master aerial vehicle and/or the second aerial vehicle as a slave aerial vehicle, such that an aeronautical maneuver of the master aerial vehicle is mirrored by the slave aerial vehicle at an equivalent displacement in a three dimensional space while maintaining a separation in the no-fly zone between the first aerial vehicle and the second aerial vehicle.


A group of at least two aerial vehicles may carry a combined payload equivalent to proportionally an addition of the payload weight of individual aerial vehicles forming the group of at least two aerial vehicles. The combined payload may be an outdoor sign that is liftable by a tethering of individual ones of the aerial vehicles through a coupling mechanism that attach locations of the outdoor sign with each of the aerial vehicles forming the group of at least two aerial vehicles. The combined payload may be a flood lighting that is liftable by the tethering of individual ones of the group of at least two aerial vehicles through the coupling mechanism that attaches an assembly of the flood lighting with each of the aerial vehicles forming the group of at least two aerial vehicles.


The first user and/or the second user may be communicatively coupled to each other through a neighborhood social network. The first user may be connected to the second user in the neighborhood social network prior to the second computing device of the second user communicating the command to the first aerial vehicle through the central server. The first computing device and/or the second computing device may be a mobile device and/or a desktop computer. The first aerial vehicle may include an intelligent emergency function in which rotors of the first aerial vehicle shut-down power when a landing command provided by the first computing device fails to reduce altitude of the first aerial vehicle at an expected rate of descent.


A peer-to-peer logic block may enable the first aerial vehicle and/or the second aerial vehicle to also directly communicate (e.g., without use of the central server) with each other in-flight through an ad-hoc local area network formed between the first aerial vehicle and the second aerial vehicle. An assumption logic block may automatically assume a previous geo-spatial location and/or a previous altitude of the first aerial vehicle when the first aerial vehicle indicates that a remaining battery power of the first aerial vehicle is below a threshold level based on a take-over function authorized by the first user and/or communicated to the second user through the Internet protocol network using the central server and/or the ad-hoc local area network between the first aerial vehicle and/or the second aerial vehicle.


In another aspect, a method includes communicatively coupling a first aerial vehicle with a central server through an Internet protocol network and communicatively coupling a second aerial vehicle with the first aerial vehicle when a coordination command is transferred through the central server using the Internet protocol network. A first computing device of a first user of the first aerial vehicle operatively controls the first aerial vehicle through the first computing device through the Internet protocol network. A second computing device of a second user of the second aerial vehicle operatively controls the second aerial vehicle through the second computing device through the Internet protocol network. The first computing device of the first user and/or the second computing device of the second user communicate the coordination command to the first aerial vehicle through the central server.


In yet another aspect, a system includes a central server and an Internet protocol network. A first aerial vehicle is communicatively coupled with the central server through the Internet protocol network. A second aerial vehicle is communicatively coupled with the first aerial vehicle when a command is transferred through the central server using the Internet protocol network. A first computing device of a first user of the first aerial vehicle operatively controls the first aerial vehicle through the first computing device through the Internet protocol network. A second computing device of a second user of the second aerial vehicle operatively controls the second aerial vehicle through the second computing device through the Internet protocol network. The first computing device of the first user and/or the second computing device of the second user to communicate a coordination command to the first aerial vehicle through the central server. A communication logic block communicates a current geo-spatial location and an altitude data of the first aerial vehicle to the central server when the first aerial vehicle is hovering at the current geo-spatial location for at least a threshold amount of time. The threshold amount of time is at least approximately two seconds of time.


The methods and systems disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form of a non-transitory machine-readable medium embodying a set of instructions that, when executed by a machine, cause the machine to perform any of the operations disclosed herein. Other features will be apparent from the accompanying drawings and from the detailed description that follows.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of this invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is a view of an aerial vehicle organization system showing aerial vehicles communicatively coupled with a central server through an Internet protocol network, according to one embodiment.



FIG. 2 is an exploded view of the central server, the first aerial vehicle, and the second aerial vehicle, according to one embodiment.



FIG. 3A is an adjacent position top view of the second aerial vehicle of FIG. 1 occupying possible positions in relation to the first aerial vehicle of FIG. 1, according to one embodiment.



FIG. 3B is an adjacent position side view of the second aerial vehicle of FIG. 1 occupying a right position and a left position in an adjacent manner to the first aerial vehicle, according to one embodiment.



FIG. 4 is a geospatial position accuracy distribution view of the probability cut-off of two aerial vehicles, according to one embodiment.



FIG. 5 is a buffer distance establishment view of a threshold distance and a no-fly zone between two aerial vehicles, according to one embodiment.



FIG. 6 is a semicircular aeronautical maneuver view, according to one embodiment.



FIG. 7 is an aerial vehicle camera view of the first computing device 104A of FIG. 1 showing the view of the camera of the first aerial vehicle of FIG. 1, according to one embodiment.



FIG. 8 is a saved geospatial location view of an aerial vehicle returning from its current geospatial location to the last previously saved geospatial location using an undo function, according to one embodiment.



FIG. 9 is an aerial vehicle jaunt view showing previously saved geospatial locations of an aerial vehicle, according to one embodiment.



FIG. 10 is a combined payload view of two aerial vehicles sharing a combined payload, according to one embodiment.



FIG. 11 shows a neighborhood social network with two users communicatively coupled through the Internet protocol network, according to one embodiment.





Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.


DETAILED DESCRIPTION

A method, apparatus and system of coordinated aerial vehicles through a central server are disclosed. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. It will be evident, however to one skilled in the art that the various embodiments may be practiced without these specific details.


Disclosed are a method, a device and/or a system of coordination of aerial vehicles through a central server 100. In one embodiment, a system includes a central server 100 and an Internet protocol network 101. A first aerial vehicle 102A is communicatively coupled with the central server 100 through the Internet protocol network 101. A second aerial vehicle 102B is communicatively coupled with the first aerial vehicle 102A when a command 108 is transferred through the central server 100 using the Internet protocol network 101. A first computing device 104A of a first user 106A of the first aerial vehicle 102A operatively controls the first aerial vehicle 102A through the first computing device 104A through the Internet protocol network 101. A second computing device 104B of a second user 106B of the second aerial vehicle 102B operatively controls the second aerial vehicle 102B through the second computing device 104B through the Internet protocol network 101. The first computing device 104A of the first user 106A and/or the second computing device 104B of the second user 106B communicate the command 108 to the first aerial vehicle 102A through the central server 100.


A communication logic block 202 may communicate a current geo-spatial location 110 and/or an altitude data 112 of the first aerial vehicle 102A to the central server 100 when the first aerial vehicle 102A is hovering at the current geo-spatial location 110 for at least a threshold amount of time. The threshold amount of time may be approximately two seconds of time. The command 108 communicated by the second computing device 104B of the second user 106B to the first aerial vehicle 102A through the central server 100 may be a set of instructions that instruct any of the first computing device 104A, the first aerial vehicle 102A, and/or the second aerial vehicle 102B that the second aerial vehicle 102B is to position itself in an adjacent manner in relation to the first aerial vehicle 102A at a threshold distance 500 away that is to a left to the first aerial vehicle 102A, to a right of the first aerial vehicle 102A, to a front of the first aerial vehicle 102A, and/or to a rear of the first aerial vehicle 102A.


The first computing device 104A may include an undo function 806 to maneuver the first aerial vehicle 102A in flight to a last previously saved geo-spatial location 110 of the first aerial vehicle 102A based on a last previous location of the first aerial vehicle 102A stored in the central server 100 when the undo function 806 is initiated. A turn-and-face logic block 206 may maneuver the second aerial vehicle 102B in a semicircular rotation from the first aerial vehicle 102A such that the second aerial vehicle 102B is facing the first aerial vehicle 102A through first person view camera 604s of both the first aerial vehicle 102A and the second aerial vehicle 102B when the command 108 instructs a turn-and-face operation. A back-up logic block 208 may back the second aerial up a distance away while maintaining the altitude of the first aerial vehicle 102A through the central server 100 when in the semi-circularly rotated state of the second aerial vehicle 102B.


The threshold distance 500 away may be based on an accuracy of aerial geo-spatial coordinates of the first aerial vehicle 102A and/or the second aerial vehicle 102B. A no-fly logic block 212 may create a no-fly zone 501 between the first aerial vehicle 102A and/or the second aerial vehicle 102B based on the threshold distance 500. The first aerial vehicle 102A and/or the second aerial vehicle 102B may have an attachment through which a payload weight is transportable. A follow-the-leader logic block 210 may designate the first aerial vehicle 102A as a master aerial vehicle and/or the second aerial vehicle 102B as a slave aerial vehicle, such that an aeronautical maneuver of the master aerial vehicle is mirrored by the slave aerial vehicle at an equivalent displacement in a three dimensional space while maintaining a separation in the no-fly zone 501 between the first aerial vehicle 102A and the second aerial vehicle 102B.


A group of at least two aerial vehicles may carry a combined payload 1000 equivalent to proportionally an addition of the payload weight of individual aerial vehicles forming the group of at least two aerial vehicles. The combined payload 1000 may be an outdoor sign that is liftable by a tethering of individual ones of the aerial vehicles through a coupling mechanism 1002 that attach locations of the outdoor sign with each of the aerial vehicles forming the group of at least two aerial vehicles. The combined payload 1000 may be a flood lighting that is liftable by the tethering of individual ones of the group of at least two aerial vehicles through the coupling mechanism 1002 that attaches an assembly of the flood lighting with each of the aerial vehicles forming the group of at least two aerial vehicles.


The first user 106A and/or the second user 106B may be communicatively coupled to each other through a neighborhood social network 1100. The first user 106A may be connected to the second user 106B in the neighborhood social network 1100 prior to the second computing device 104B of the second user 106B communicating the command 108 to the first aerial vehicle 102A through the central server 100. The first computing device 104A and/or the second computing device 104B may be a mobile device and/or a desktop computer. The first aerial vehicle 102A may include an intelligent emergency function in which rotors of the first aerial vehicle 102A shut-down power when a landing command 108 provided by the first computing device 104A fails to reduce altitude of the first aerial vehicle 102A at an expected rate of descent.


A peer-to-peer logic block 204 may enable the first aerial vehicle 102A and/or the second aerial vehicle 102B to also directly communicate with each other in-flight through an ad-hoc local area network formed between the first aerial vehicle 102A and the second aerial vehicle 102B. An assumption logic block 214 may automatically assume a previous geo-spatial location 110 and/or a previous altitude of the first aerial vehicle 102A when the first aerial vehicle 102A indicates that a remaining battery power of the first aerial vehicle 102A is below a threshold level based on a take-over function authorized by the first user 106A and/or communicated to the second user 106B through the Internet protocol network 101 using the central server 100 and/or the ad-hoc local area network between the first aerial vehicle 102A and/or the second aerial vehicle 102B.


In another embodiment, a method includes communicatively coupling a first aerial vehicle 102A with a central server 100 through an Internet protocol network 101 and communicatively coupling a second aerial vehicle 102B with the first aerial vehicle 102A when a coordination command 108 is transferred through the central server 100 using the Internet protocol network 101. A first computing device 104A of a first user 106A of the first aerial vehicle 102A operatively controls the first aerial vehicle 102A through the first computing device 104A through the Internet protocol network 101. A second computing device 104B of a second user 106B of the second aerial vehicle 102B operatively controls the second aerial vehicle 102B through the second computing device 104B through the Internet protocol network 101. The first computing device 104A of the first user 106A and/or the second computing device 104B of the second user 106B communicate the coordination command 108 to the first aerial vehicle 102A through the central server 100.


In yet another embodiment, a system includes a central server 100 and an Internet protocol network 101. A first aerial vehicle 102A is communicatively coupled with the central server 100 through the Internet protocol network 101. A second aerial vehicle 102B is communicatively coupled with the first aerial vehicle 102A when a command 108 is transferred through the central server 100 using the Internet protocol network 101. A first computing device 104A of a first user 106A of the first aerial vehicle 102A operatively controls the first aerial vehicle 102A through the first computing device 104A through the Internet protocol network 101. A second computing device 104B of a second user 106B of the second aerial vehicle 102B operatively controls the second aerial vehicle 102B through the second computing device 104B through the Internet protocol network 101. The first computing device 104A of the first user 106A and/or the second computing device 104B of the second user 106B to communicate a coordination command 108 to the first aerial vehicle 102A through the central server 100. A communication logic block 202 communicates a current geo-spatial location 110 and an altitude data 112 of the first aerial vehicle 102A to the central server 100 when the first aerial vehicle 102A is hovering at the current geo-spatial location 110 for at least a threshold amount of time. The threshold amount of time is at least approximately two seconds of time.



FIG. 1 is a view of an aerial vehicle organization system 150 showing aerial vehicles communicatively coupled with a central server 100 through an Internet protocol network 101, according to one embodiment. In particular, FIG. 1 shows a central server 100, an Internet protocol network 101, a first aerial vehicle 102A, a second aerial vehicle 102B, a processor 103, a first computing device 104A, a second computing device 104B, a memory 105, a first user 106A, a second user 106B, a database 107, a command 108, a geo-spatial location 110, a GPS network 111, an altitude data 112, an altitude sensing 114, a saved geospatial path data 116, an ad hoc LAN 118, and an aeronautical maneuver instructions 120. In one embodiment, the central server 100 may be communicatively coupled with the first aerial vehicle 102A and/or the second aerial vehicle 102B through the Internet protocol network 101. The Internet protocol network 101 may be a wide area network.


The first computing device 104A of the first user 106A of the first aerial vehicle 102A (e.g., the computing device controlling the first aerial vehicle 102A) may be communicatively coupled with the first aerial vehicle 102A through the central server 100 (e.g., through wifi, a cellular network (e.g., 3G) and/or the Internet protocol network 101). The second computing device 104B of the second user 106B of the second aerial vehicle 102B may be communicatively coupled with the second aerial vehicle 102B through the central server 100 and/or the Internet protocol network 101. The first computing device 104A and/or second computing device 104B may communicate the command 108 to the first aerial vehicle 102A and/or second aerial vehicle 102B through the central server 100 and/or the Internet protocol network 101. The computing device may be communicatively coupled with the aerial vehicle(s) through a centralized configuration (e.g., through the central server 100 (e.g., using the Internet protocol network and/or the cellular network)) and/or a decentralized configuration (e.g., directly through the Internet protocol network 101).


In one embodiment, the command 108 may instruct any of the aerial vehicles (e.g., the first aerial vehicle 102A, the second aerial vehicle 102B and/or an Nth aerial vehicle) and/or computing devices to instruct the aerial vehicle(s) to position itself and/or one or more of the aerial vehicles in a particular position (e.g., a global positioning coordinate, a position in the sky and/or a position in relation to one or more other aerial vehicles). In one embodiment, the command 108 (e.g., a coordination command) may instruct the central server 100 to generate a set of instructions, using the processor 103 coupled with the memory 105, to instruct the second aerial vehicle 102B to position itself in an adjacent position 300 (e.g., the adjacent manner) to the first aerial vehicle 102A. In one embodiment, the adjacent manner may be to a left of the first aerial vehicle 102A (e.g., the left position), to a right of the first aerial vehicle 102A (e.g., the right position 302), to a front of the first aerial vehicle 102A (e.g., the front position 300), to a rear of the first aerial vehicle 102A (e.g., the back position), above the first aerial vehicle 102A, and/or below the first aerial vehicle 102A.


In one embodiment, the first aerial vehicle 102A and/or the second aerial vehicle 102B (while this disclosure mentions a first and second aerial vehicle, it will be appreciated that the methods and systems described herein may include any number of aerial vehicles) may periodically communicate its current geo-spatial location and/or altitude data 112 to the central server 100 through the Internet protocol network 101. In one embodiment, the aerial vehicle (e.g., a quadcopter, a helicopter, a multi-rotor copter, a fixed wing aerial vehicle, and/or an engine propelled aerial vehicle) may communicate at least one of the current geo-spatial location (e.g., the geo-spatial location 110) and/or altitude data 112 (e.g., altitude data captured using an altitude sensing 114 means) when the aerial vehicle has hovered in the current geo-spatial location 110 for a threshold amount of time (e.g., two seconds). In one embodiment, the communicated geo-spatial locations 110 and/or altitude data 112 may be stored in the database 107 (e.g., saved as geospatial path data 116). The saved geospatial path data 116 may enable the aerial vehicle(s) to execute an undo command 108. The database 107 may include aeronautical maneuver instructions 120 that may instruct the aerial vehicle(s) to execute maneuvers (e.g., the turn-and-face operation of FIG. 6 and/or an undo function 806). The central server 100 may use the processor 103, memory 105, and/or information from the database 107 to generate a set of instructions and/or instruct at least one of the first aerial vehicle 102A, the second aerial vehicle 102B, and/or an Nth aerial vehicle to fulfill an instruction set dictated by the command 108. In one embodiment, the processor 103 may be communicatively coupled with the memory 105. The processor 103 and/or memory 105 may work in concert with a sensory fusion algorithm and/or sensors of the aerial vehicle to enable and/or instruct the aerial vehicle to travel and/or maneuver autonomously and/or execute commands generated by the central server 100. The memory 105 and processor 103 may work in concert to select a master and/or slave aerial vehicle from a group of aerial vehicles and/or generate a set of instructions from the command 108.


A user (e.g., first user 106A) may need to request permission to control and/or coordinate with the aerial vehicle of another user (e.g., the second user 106B) before sending commands 108 to be executed by the aerial vehicle of the another user (e.g., in order to coordinate aerial vehicles). The another user may be required to grant permission to the user (e.g., the first user 106A) before the user may send commands 108 to be executed by the other aerial vehicle (e.g., the second aerial vehicle 102B). In one embodiment, the first user 106A may need to request to be a leader (e.g., to have the first aerial vehicle 102A as a master aerial vehicle that the second aerial vehicle 102B (e.g., the aerial vehicle of another user) follows and/or takes commands 108 from). The first user 106A may be able to send the command 108 instructing the second aerial vehicle 102B to execute a maneuver and/or act as a slave to the first aerial vehicle 102A (e.g., mimic movements and/or positions of the first aerial vehicle 102A) upon an acceptance of a request to coordinate and/or control.


In one embodiment, aerial vehicles of a set of aerial vehicles (e.g., the first aerial vehicle 102A, the second aerial vehicle 102B, aerial vehicles operating in a certain area, and/or aerial vehicles with users who have approved coordinated activities) may be able to establish peer-to-peer communication through ad-hoc local area networks (e.g., ad hoc LAN 118). When operating in the decentralized configuration, the aerial vehicles may be able to communicate using the ad hoc LAN 118. A master aerial vehicle may be able to communicate, using the ad hoc LAN 118, with the slave aerial vehicle in order to coordinate movements, flight paths, and/or communicate instructions.


The GPS network 111 may enable the computing device (e.g., the first computing device 104A), the central server 100, and/or the aerial vehicle (e.g., the first aerial vehicle 102A) to know the current location of the aerial vehicle. In one embodiment the GPS network 111 may capture and/or send the geo-spatial location 110 to the central server 100. GPS devices of the aerial vehicle and/or the GPS network 111 associated therewith may have varying degrees of accuracy, especially in regards to moving objects. The GPS network 111 is best illustrated in FIGS. 4-5 and accompanying descriptions.



FIG. 2 is an exploded view 250 of the central server, the first aerial vehicle, and the second aerial vehicle, according to one embodiment. In particular, FIG. 2 shows a communication logic block 202, a peer-to-peer logic block 204, a turn-and-face logic block 206, a back-up logic block 208, a follow-the-leader logic block 210, a no-fly logic block 212, and an assumption logic block 214. The communication logic block 202 may send the geo-spatial location 110 and/or altitude data 112 from the aerial vehicle (e.g., the first aerial vehicle 102A and/or the second aerial vehicle 102B) to the central server 100. In one embodiment, the communication logic block 202 may enable the aerial vehicle to store (e.g., temporarily save) the geo-spatial location 110 (e.g., last previously saved geospatial location 802) and/or altitude data 112 on a memory 105 of the aerial vehicle. This may enable the use of an undo function 806 on a computing device (e.g., the first computing device 104A) to be executed in a decentralized configuration of the aerial vehicle organization system 150.


In one embodiment, the aerial vehicle may have an intelligent emergency function in which motors of the aerial vehicle may shut down (e.g., rotors may automatically stop and/or power to the rotors may stop) when it is determined that a landing process (e.g., a landing command 108 being executed) of the aerial vehicle has failed and/or is failing to reduce altitude of the aerial vehicle at an expected rate (e.g., a specified rate of decline and/or a predetermined rate of decline). In one embodiment, the central server 100 may use the geo-spatial location 110 and/or altitude data 112 to make the determination. The aerial vehicle may use stored altitude data 112 and/or the geo-spatial location 110 (e.g., from sensors of the aerial vehicle and/or the GPS network 111) to make the determination, according to one embodiment.


The peer-to-peer logic block 204 may create the ad hoc LAN 118 and/or enable the aerial vehicles to directly communicate with each other through the ad hoc LAN 118. The turn-and-face logic block 206 may maneuver the aerial vehicle and/or instruct the aerial vehicle (e.g., the second aerial vehicle 102B) to execute a semicircular rotation such that the aerial vehicle turns and/or faces another aerial vehicle (e.g., the first aerial vehicle 102A). The turn-and-face logic block 206 may cause the aerial vehicle to position itself in such a way that the aerial vehicle has a same altitude as the another aerial vehicle and/or a first person view camera (e.g., the camera 604) of the aerial vehicle is level and/or lined up with the first person view camera of the another aerial vehicle.


The back-up logic block 208 may back the aerial vehicle (e.g., the aerial vehicle executing the turn-and-face operation) up a distance away from the another aerial vehicle (e.g., 1 meter, 5 meters, and/or 10 meters) while maintaining the altitude of the another aerial vehicle. The follow-the leader logic block may designate an aerial vehicle (e.g., the first aerial vehicle 102A) of a group of aerial vehicles as a master aerial vehicle. In one embodiment, the designation may be made at least in part based on which aerial vehicle was added to the group first, which aerial vehicle is being controlled by the user (e.g., profile of the neighborhood social network) and/or computing device that created and/or requested the group of aerial vehicles form and/or enter a coordination agreement, and/or a vote. The follow the leader logic block may designate at least one other aerial vehicle of the group of aerial vehicles as a slave aerial vehicle.


In one embodiment, the slave aerial vehicle(s) minors and/or mimics the path, speed, maneuvers, position, and/or altitude of the master aerial vehicle in a designated manner while maintaining a no-fly zone 501 between any and/or all aerial vehicles in the group of aerial vehicles. In one embodiment, the user of the aerial vehicle (e.g., the first aerial vehicle 102A) may be required to have permission (e.g., granted through the computing devices of the other users and/or on the neighborhood social network 1100) from the at least one other user to coordinate with the aerial vehicle (e.g., the first aerial vehicle 102A) serving as the master aerial vehicle and the at least one other aerial vehicle of the at least one other user as the slave aerial vehicle. Users may be able to grant permission allowing their aerial vehicle to be a slave aerial vehicle for a set amount of time, after which the aerial vehicle may land, exit the coordinated activities, and/or enter a safe mode (e.g., safely exit the coordinated activities and/or hover) until control is taken by the user.


In one embodiment, the central server 100 may make the slave aerial vehicle(s) aware of the path, aerial and/or geo-spatial location 110, speed, altitude, and/or planned movements of the master aerial vehicle. The master aerial vehicle may keep the slave aerial vehicles informed of the abovementioned information through the ad hoc LAN 118. Slave aerial vehicles may be able to propagate this information and/or information about the operational status of aerial vehicles to other slave aerial vehicles through the ad hoc LAN 118. Aerial vehicles (e.g., all aerial vehicles working in coordination and/or in a specified geo-spatial and/or aerial area) may be able to perform redundant cross checking of the above mentioned information and/or operational status of the other aerial vehicles (e.g., any and/or all aerial vehicles working in coordination) using the ad hoc LAN 118 and/or Internet protocol network 101.


The ad hoc LAN 118 may act as a fail-safe, enabling the master aerial vehicle and/or slave aerial vehicle to remain connected and/or informed of relevant information should the master aerial vehicle and/or slave aerial vehicle temporarily lose connection with the Internet protocol network 101 and/or central server 100. In one embodiment, the master aerial vehicle and/or slave aerial vehicle may send an alert message (e.g., through the ad hoc LAN 118) of an emergency state (e.g., a mechanical failure, a loss and/or expected loss of network connection, low battery, and/or a system failure) to at least one of the other aerial vehicles working in coordination. The failing aerial vehicle may automatically land and/or at least one of the other aerial vehicles working in coordination may send the failing aerial vehicle instructions for safe removal from coordination.


In one embodiment, a distributed algorithm may be used to enable the slave aerial vehicles (e.g., in a scenario with multiple slave aerial vehicles and one master aerial vehicle) to select a new master aerial vehicle from the slave aerial vehicles if the master aerial vehicle leaves the coordinated group of aerial vehicles (e.g., drops out, has to land, malfunctions, and/or is indicated to not be the master aerial vehicle any more). In one embodiment, a loss of the master aerial vehicle may cause the coordinated vehicles (e.g., all slave aerial vehicles) to automatically enter the safe mode and/or land. The loss of the master aerial vehicle may send a warning to the users of the slave aerial vehicles that control will need to be seized within a certain time frame (e.g., 30 seconds).


The no-fly logic block 212 may create a no-fly zone 501 between aerial vehicles (e.g., between the first aerial vehicle 102A and the second aerial vehicle 102B). The no-fly zone 501 is discussed in further detail in FIG. 5. The assumption logic block 214 may automatically assume a previous geo-spatial location and/or a previous altitude of an aerial vehicle (e.g., the first aerial vehicle 102A) when the aerial vehicle (e.g., the first aerial vehicle 102A) indicates (e.g., through a take-over function) that the aerial vehicle's remaining battery power is below a threshold level. The take-over function (e.g., the take-over function authorized by the user of the aerial vehicle) may be communicated to the second user 106B and/or second aerial vehicle 102B through the Internet protocol network 101 using the central server 100 and/or the ad hoc LAN 118 between the first aerial vehicle 102A and the second aerial vehicle 102B. In one embodiment, the geo-spatial location 110 and/or altitude from where the take-over function was sent (e.g., of the aerial vehicle at the time the aerial vehicle and/or user of the aerial vehicle sent the take-over function) may be assumed to be the pervious geo-spatial location and/or previous altitude. The first aerial vehicle 102A, second aerial vehicle 102B, the first computing device 104A, second computing device 104B, and/or central server 100 may include the communication logic block 202, the peer-to-peer logic block 204, the turn-and-face logic block 206, the back-up logic block 208, the follow-the-leader logic block 210, the no-fly circuitry, and/or the assumption logic block 214.



FIG. 3A is an adjacent position top view 350 of the second aerial vehicle of FIG. 1 occupying possible positions in relation to the first aerial vehicle of FIG. 1, according to one embodiment. FIG. 3A shows a front position 300, a front-right position 301, a right position 302, a rear-right position 303, a rear position 304, a rear-left position 305, a left position 306, a front-left position 307, and an adjacent position 310. In one embodiment, the first user 106A may use the first computing device 104A to command (e.g., send the command 108 through the centralized configuration or the decentralized configuration) one of the set of aerial vehicles to position itself in at least one of the multiple adjacent positions 310 illustrated in FIG. 3A. The adjacent position 310 may be any position in relation to one or more aerial vehicles, a geospatial coordinate and/or a position in the sky.


The first aerial vehicle 102A may communicate information (e.g., planned maneuvers, its current geospatial location 804, instructions, and/or planned routs (e.g., a set of coordinates along a planned flight path)) to the second aerial vehicle 102B through the ad hoc LAN 118. In one embodiment, this may enable the second aerial vehicle 102B to fly in a coordinated manner with the first aerial vehicle 102A (e.g., maintain a threshold distance 500 away, an altitude in relation to the first aerial vehicle 102A, and/or a position in relation to the first aerial vehicle 102A).



FIG. 3B is an adjacent position side view 351 of the second aerial vehicle of FIG. 1 occupying a right position and a left position in an adjacent manner to the first aerial vehicle, according to one embodiment. The second aerial vehicle 102B may be communicatively coupled with the first aerial vehicle 102A (e.g., through the ad hoc LAN 118, the Internet protocol network 101, and/or the central server 100). The second aerial vehicle 102B may be able to situate itself in the adjacent position 310 in real time, track, anticipate, and/or mirror the movements of the first aerial vehicle 102A using the ad hoc LAN 118, the central server 100, GPS network 111, and/or the Internet protocol network 101.



FIG. 4 is a geospatial position accuracy distribution view 450 of the probability cut-off of two aerial vehicles, according to one embodiment. In particular, FIG. 4 shows a normalized distribution probability 400A, a normalized distribution probability 400B, a collision zone 401, a probability cut-off 402A, and a probability of cut-off 402B. As discussed in FIG. 1, the GPS network 111 may enable the user, computing device, central server 100, and/or aerial vehicle to know the past and/or present geospatial coordinates, altitude, and/or location of one or more aerial vehicles. In one embodiment, the GPS network 111 may have a margin of error creating an area (e.g., a spherical region with a diameter of 5 meters) in which the GPS located object (e.g., the first aerial vehicle 102A and/or second aerial vehicle 102B) may be.


The probability of the first aerial vehicle 102A being in a particular location is represented by the normalized distribution probability 400A curve. The probability of the second aerial vehicle 102B being in a particular location is represented by the normalized distribution probability 400B curve. For example, the probability of the first aerial vehicle 102A being in a particular location may decrease the further the particular location is from the geospatial location indicated by the GPS network 111. The at least one computing device, aerial vehicle and/or central server 100 may generate a probability cut-off (e.g., the probability cut-off 402A-B). The probability cut-off 402A-B may be a probability (e.g., percent chance) that the aerial vehicle is in the particular location (e.g., the GPS network 111 being off by X amount of distance) past which the aerial vehicle organization system 150 is not willing to accept. The probability cut-off 402A and/or the probability cut-off 402B may act as boundaries of the collision zone 401. The probability cut-off may depend on weather conditions, the quality, type, and/or nature of the GPS network 111, and/or additional factors.


In an example embodiment, the aerial vehicle system may determine that the probability cut-off is 5%. The central server 100, aerial vehicle, and/or computing device may determine that the probability of the aerial vehicle being X distance from the indicated geospatial location (e.g., that the GPS network 111's reading is off by X distance) is 5%. X distance from the indicated geospatial location from the aerial vehicle may be marked as a boundary of the collision zone 401. The same process may be conducted for a second aerial vehicle 102B. The two marked boundaries (e.g., the distances from the geospatial location of the aerial vehicles provided by the GPS network 111 at which there is a 5% probability of being the correct location) may define the collision zone 401.



FIG. 5 is a buffer distance establishment view 550 of a threshold distance and a no-fly zone between two aerial vehicles, according to one embodiment. FIG. 5 shows a threshold distance 500 and a no fly zone. In one embodiment, the probability cut-off may represent a perimeter (e.g., a spherical perimeter), a radial distance from the aerial vehicle and/or the geospatial location provided by the GPS network 111. The radial distance may be determined as detailed above. In the example given above, the radial distance may be the distance X.


The threshold distance 500 may be a minimum distance the aerial vehicles must keep between themselves. While flying in a formation and/or entering the adjacent manner, the aerial vehicles may be required to stay at least the threshold distance 500 from one another. The threshold distance 500 may depend on the accuracy of aerial geo-spatial coordinates (e.g., the quality and/or nature of the GPS network 111 and/or quality and/or nature of hardware (e.g., GPS hardware) of the aerial vehicle(s)) of at least one of the first aerial vehicle 102A and the second aerial vehicle 102B. The threshold distance 500 may be larger when the aerial vehicles are in motion and/or may be reduced while hovering and/or traveling at slower speeds. The threshold distance 500 may be enforced and/or sensed by sensors on the aerial vehicle (e.g., sonar and/or ultrasound sensors).


In one embodiment, the no-fly zone 501 may be a distance that must be maintained between points on the perimeter associated with the probability cut-off. The no-fly zone 501 may be the collision zone 401. The purpose of the no-fly zone 501 may be to ensure a buffer area in the case that both of the aerial vehicles are at the particular location determined to have a probability equal to that of the probability cut-off (e.g., the actual location of each of the aerial vehicles is on the perimeter associated with the probability cut-off). In an example embodiment, the probability cut-off 402A for the first aerial vehicle 102A and the probability cut-off 402B of the second aerial vehicle 102B may be associated with a distance of 2.5 meters from the geospatial location for each aerial vehicle provided by the GPS network 111. The no-fly zone 501 may be one meter. Thus, the threshold distance 500 in this example embodiment would be 6 meters (2.5 m+1 m+2.5 m).



FIG. 6 is a semicircular aeronautical maneuver view 650, according to one embodiment. In particular, FIG. 6 shows a semicircular maneuver 600, an initial adjacency 601, a backup maneuver 602, and a camera 604. The second aerial vehicle 102B may be able to execute the semicircular maneuver 600 (e.g., a semicircular rotation) in order to maneuver from the initial adjacency 601 (e.g., to the right of and facing the opposite direction as the first aerial vehicle 102A) to a position facing the first aerial vehicle 102A. In one embodiment, the semicircular maneuver 600 may be a turn-and-face operation in which the second aerial vehicle 102B turns and faces the first aerial vehicle 102A and/or the cameras 604 of the aerial vehicles (e.g., the first person view cameras) face one another.


The first aerial vehicle 102A and/or second aerial vehicle 102B may perform the backup maneuver 602. The backup maneuver 602 may back the aerial vehicle up a distance away from the other aerial vehicle now facing the aerial vehicle while maintaining the altitude of the other aerial vehicle. The backup maneuver 602 may be communicated through the central server 100, the Internet protocol network 101, and/or the ad hoc LAN 118.



FIG. 7 is an aerial vehicle camera view 750 of the first computing device of FIG. 1 showing the view of the camera of the first aerial vehicle of FIG. 1, according to one embodiment. The display 700 of the computing device (e.g., the first computing device 104A) may show pictures and/or video (e.g., in real time and/or recorded) captured by the camera 604 of the aerial vehicle (e.g., the first aerial vehicle 102A). In one embodiment, the aerial vehicles may be equipped with microphones. The first user 106A of the first computing device 104A may be able to record and/or send an audio message to be played by the first aerial vehicle 102A. The second user 106B may be able to hear the audio message played by the first aerial vehicle 102A through the second computing device 104B. In one embodiment, the users may be able to communicate to each other through their computing devices without the aerial vehicles and/or central server 100.


In one embodiment, the first aerial vehicle 102A and/or the second aerial vehicle 102B may have an interface (e.g., a screen) to display messages written by the user of the aerial vehicle and/or sent from the user's computing device through the central server 100, cellular network, and/or Internet protocol network 101 to the aerial vehicle(s). The display may show a message communicated by the second aerial vehicle 102B.



FIG. 8 is a saved geospatial location view 850 of an aerial vehicle returning from its current geospatial location to the last previously saved geospatial location 802 using an undo function, according to one embodiment. In particular, FIG. 8 shows a previously saved geospatial location 800, a last previously saved geospatial location 802, a current geospatial location 804, an undo function 806, and a geospatial coordinates 810A-C. In step one (shown as the circled 1), the first aerial vehicle 102A communicates geospatial coordinates 810A through the Internet protocol network 101 to the database 107 of the central server 100. The database 107 may store the geospatial coordinates 810A as saved geospatial path data 116. The first aerial vehicle 102A may communicate the geospatial coordinates 810A at predetermined intervals (e.g., when the first aerial vehicle 102A has remained in the same location for two seconds).


In step two, the first aerial vehicle 102A may travel from the previously saved geospatial location 800 (e.g., the geospatial coordinates 810A). In step three, the first aerial vehicle 102A may communicate the geospatial coordinates 810B to the central server 100 (e.g., upon remaining in the same geospatial location for a threshold amount of time (e.g., two seconds)). The database 107 of the central server 100 may store the geospatial coordinates 810B along with geospatial coordinates 810A. In step four, the first aerial vehicle 102A may travel from the geospatial coordinates 810B (e.g., the last previously saved geospatial location 802).


In step five, a computing device (e.g., the first computing device 104A and/or the second computing device 104B) and/or an aerial vehicle (e.g., the second aerial vehicle 102B and/or another aerial vehicle) may send commands 108 to the central server 100 instructing the central server 100 to instruct the first aerial vehicle 102A to execute an undo function 806. A computing device and/or an aerial vehicle may instruct the first aerial vehicle 102A (e.g., through the decentralized configuration) to execute the undo function 806 without need of the central server 100. In such an embodiment, the first aerial vehicle 102A may store previously saved geospatial locations 800 in a memory of the first aerial vehicle 102A.


In step six, the central server 100 may access the saved geospatial path data 116 and/or communicate the last previously saved geospatial location 802 (e.g., the geospatial coordinated 810B) and/or instructions to navigate from the current geospatial location 804 (e.g., the geospatial coordinated 810C communicated to the central server 100) to the last previously saved geospatial location 802 through the Internet protocol network 101 and/or cellular network to the first aerial vehicle 102A. In one embodiment, the geospatial coordinates 810C of the current geospatial location 804 may be communicated to the central server 100 to enable the central server 100 to generate, using the processor 103 and the memory 105, a set of instructions and/or flight path from the geospatial coordinated 810C to the geospatial coordinated 810B. The set of instructions and/or flight path may be communicated from the central server 100 to the first aerial vehicle 102A. The geospatial coordinates 810C may be stored in the database 107. In step seven, the first aerial vehicle 102A may execute the undo function 806, returning to the last previously saved geospatial location 802.



FIG. 9 is an aerial vehicle jaunt view 950 showing previously saved geospatial locations of an aerial vehicle, according to one embodiment. Particularly, FIG. 9 shows a start 900, a location 901, a location 902, a location 903, a location 904, and an end 905. In one embodiment, an aerial vehicle (e.g., the first aerial vehicle 102A) may travel from the start 900 to “Lily Pond” (i.e., the location 901). The aerial vehicle may hover around the pond taking pictures and/or video. The geospatial coordinates of the location of the hovering aerial vehicle may be communicated to the central server 100. The aerial vehicle may then travel to “Bunny Meadow” (i.e., the location 902) and/or hover above the meadow to watch a soccer game. The aerial vehicle may communicate its geospatial coordinates after hovering for a threshold amount of time (e.g., two seconds). The geospatial coordinates communicated while the aerial vehicle hovered by the location 902 may be the previously saved geospatial location 800 and/or the last previously saved geospatial location 802. The aerial vehicle may continue to travel to “Conservatory of Flowers” (i.e., the location 903) and “Golden Gate Park Tennis Courts” (i.e., the location 904), repeating the same process.


The aerial vehicle may hover in multiple locations around the tennis courts at location 904 to view and/or film the matches, transmitting the geospatial coordinates at which the aerial vehicle remains for a threshold amount of time. In one embodiment, the user may be able to drop a pin and/or mark a location (e.g., geospatial coordinates) at any time to be saved in the database 107 and/or aerial vehicle (e.g., using a function on the display 700). The aerial vehicle may leave the last saved geospatial location that was communicated from the aerial vehicle to the central server 100 and travel to the end 905. The aerial vehicle may receive instructions from the central server 100 and/or the computing device associated with the user of the aerial vehicle to execute an undo function 806. The aerial vehicle may return to the last saved geospatial location 802.


In one embodiment, another aerial vehicle (e.g., the second aerial vehicle 102B) may be able to coordinate with the aerial vehicle (e.g., the first aerial vehicle 102A) in order to optimally capture the tennis match being viewed at location 904. The aerial vehicles may be able to position themselves in a manner that maximizes their combined coverage (e.g., view and/or video capture-able view) of the match, according to one embodiment. The aerial vehicle may be able to alert the another aerial vehicle when the aerial vehicle is running low on battery and/or memory for video, audio, and/or pictorial data and/or when the aerial vehicle is leaving. The another aerial vehicle (e.g., the second aerial vehicle 102B) and/or central server 100 may determine if the position of the aerial vehicle is desired and/or may occupy and/or instruct the another aerial vehicle to occupy the desired position (e.g., the geospatial location and/or altitude from where the aerial vehicle sent the alert). The another aerial vehicle may maneuver to the desired position and/or resume its previous task and/or assume the task (e.g., videotaping) being executed by the aerial vehicle that sent the alert. In another embodiment, the aerial vehicle may send a command (e.g., in the form of the alert and/or a take-over function and/or the command 108) to the another vehicle (e.g., a slave vehicle) to take over the task of the aerial vehicle at the position from where the aerial vehicle sent the alert. The alert may be communicated through the ad hoc LAN 118, the cellular network, and/or the Internet protocol network 101.



FIG. 10 is a combined payload view 1050 of two aerial vehicles sharing a combined payload, according to one embodiment. FIG. 10 shows a combined payload 1000, a coupling mechanism 1002, and a tethering mechanism 1004. In one embodiment, the coupling mechanism 1002 may enable attachments with connection means complementary to the coupling mechanism 1002 to attach to the aerial vehicle. In one embodiment, the coupling mechanism 1002 may secure attachments with a quarter turn of the connection means of the attachment. The coupling means may be customizable and/or may be a camera assembly, a hook assembly, a container assembly, a tethering assembly, a lighting assembly and/or another connection assembly. The tethering assembly may include a means through which the tethering mechanism 1004 (e.g., rope, rod, string, cord, and/or line) may be securely connected to the aerial vehicle. In one embodiment, the tethering and/or hooking means may include contraction and/or retraction means. The tethering and/or hooking means may enable the payload to be brought closer and/or further from the aerial vehicle.


In one embodiment, multiple aerial vehicles may coordinate to lift, carry, and/or display the combined payload 1000. The combined payload 1000 may be distributed (e.g., evenly distributed) between the aerial vehicles. In one embodiment, one or more aerial vehicles working in coordination (e.g., to share a combined payload 1000) may send alerts to others of the aerial vehicles working in coordination and/or other aerial vehicles (e.g., other aerial vehicles in the area, belonging to and/or being used by certain users, and/or existing in a certain area) indicating need of assistance, battery power below a threshold level, and/or a failure state of the aerial vehicle sending the alert. In one embodiment, the alert may be communicated through the ad hoc LAN 118.



FIG. 11 shows a neighborhood social network with two users communicatively coupled through the Internet protocol network, according to one embodiment. In particular, FIG. 11 shows the neighborhood social network 1100 and a landing pad 1101. In one embodiment, the first user 106A and the second user 106B may log onto the neighborhood social network 1100 using the first computing device 104A (e.g., a laptop associated with the first user 106A) and the second computing device 104B (e.g., a smart phone associated with the second user 106B). The users may be communicatively coupled on the neighborhood social network 1100 (e.g., the first user 106A and the second user 106B may be communicatively coupled with the central server 100 through the Internet protocol network 101). The users may communicate on the neighborhood social network 1100 their desire to coordinate their aerial vehicles.


The second user 106B may request permission (e.g., using the second computing device 104B and/or on the neighborhood social network 1100) to send command(s) 108 to the first aerial vehicle 102A. The first user 106A may allow the second user 106B to control the first aerial vehicle 102A (e.g., by granting permission on the first computing device 104A and/or on the neighborhood social network 1100). The second user 106B may send the command 108, using the second computing device 104B, through the Internet protocol network 101 to the central server 100. The central server 100 may communicate instructions to the first aerial vehicle 102A (e.g., to follow, mimic, and/or maneuver to an adjacent position 310 to the second aerial vehicle 102B) through the Internet protocol network 101. In another embodiment, the second user 106B may send the command 108 through the decentralized configuration (e.g., through the Internet protocol network 101, wifi, a wide area network, and/or a cellular network to the second aerial vehicle 102B without involvement of the central server 100).


The GPS network 111 may enable the first aerial vehicle 102A to be aware of its location and/or the location of the second aerial network, allowing the first aerial vehicle 102A to maneuver and/or execute instructions to take the adjacent position 310, maintain the threshold distance 500 and/or no-fly zone 501. In one embodiment, at least one of the aerial vehicles may be instructed to land on the landing pad 1101. The GPS, sensors on the at least one aerial vehicle, and/or instructions from the central server 100, other aerial vehicle and/or computing device may guide and/or enable the at least one aerial vehicle to land on the landing pad 1101. In one embodiment, the landing pad 1101 may be a physical landing surface (e.g., a mat with a readable QR code, marking, and/or signal), a beacon designating a landing spot, and/or a previously designated area (e.g., an area marked using a computing device and/or designated on the neighborhood social network 1100 as the landing pad 1101)).


An example embodiment will now be described. In one embodiment, Bob may wish to videotape his son's soccer game. However, Bob may not be able to follow the plays and/or view the field well enough using his one aerial vehicle. Bob may be able to work with other parents of players to coordinate their aerial vehicles above the field. The team of parents may be able to organize and/or coordinate their aerial vehicles to properly capture multiple angles of the game in order to create a video far better than they each could have made on their own. The video feeds from the aerial vehicles may be streamed live to player devices and/or may be stored on the central server 100 so that parents may be able to access and/or edit the video later using the multiple angles captured. Video captured from the same angle may be centrally located and/or stored (e.g., on the central server 100). In one embodiment, Bob may be able to indicate to another aerial vehicle that his aerial vehicle needs to vacate its position above the soccer field due to low battery power. Bob's aerial vehicle may be the master aerial vehicle and/or may instruct another aerial vehicle of the group of aerial vehicle to take the spot of his aerial vehicle in order to ensure seamless coverage from that angle. The result may be an expertly covered tape of the game that may be used by the coach for educational purposes and/or shared with relatives of the players.


In another example embodiment, Oak Park High School may not have lights over its football field. The school may not have money in its budget to put lights in and/or may not be able to host night games as a result due to league rules and/or safety concerns. As a result, players at Oak Park High School may need to travel long distances to play games and/or may not be able to have a home game during the fall and/or winter due to lack of lighting for night games.


Members of the community may be able to coordinate their aerial vehicles using the aerial vehicle organization system 150. The coordinated aerial vehicles may be able to lift and/or support a combined payload 1000 of flood lights (e.g., using the tethering mechanism 1004). The aerial vehicles may be able to form a configuration over the football field that enables the payload of flood lights to sufficiently illuminate the field. Through the use and coordination of aerial vehicles, members of the community may be able to help members of the Oak Park High School football team play a home game under the lights in front of their classmates and family.


In yet another embodiment, Steven may own his own business. He may find that traditional advertising is costly and/or ineffective. Posters and/or billboards may become commonplace and/or may not be noticed as they become part of the scenery. Steven may be able to coordinate several aerial vehicles to lift and/or carry a banner and/or other advertisement over the neighborhood in which his shop operates. The aerial vehicles and/or advertisement attached therewith may draw a large amount of attention. Steven may be able to use the aerial vehicle organization system 150 to promote his business and connect with his neighborhood in a cheap, safe, and/or intriguing manner.


In addition, it will be appreciated that the various operations, processes and methods disclosed herein may be embodied in a non-transitory machine-readable medium and/or a machine-accessible medium compatible with a data processing system (e.g., a computer system). Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A system comprising: a central server;an Internet protocol network;a first aerial vehicle communicatively coupled with the central server through the Internet protocol network;a second aerial vehicle communicatively coupled with the first aerial vehicle when a command is transferred through the central server using the Internet protocol network;a first computing device of a first user of the first aerial vehicle operatively controlling the first aerial vehicle through the first computing device through the Internet protocol network, wherein the first computing device to include an undo function to maneuver the first aerial vehicle in flight to a last previously saved geo-spatial location of the first aerial vehicle based on a last previous location of the first aerial vehicle stored in the central server when the undo function is initiated; anda second computing device of a second user of the second aerial vehicle operatively controlling the second aerial vehicle through the second computing device through the Internet protocol network, and wherein at least one of the first computing device of the first user and the second computing device of the second user to communicate the command to the first aerial vehicle through the central server,a neighborhood social network through which the first user and the second user are communicatively coupled to each other,wherein the first user is connected to the second user in the neighborhood social network prior to the second computing device of the second user communicating the command to the first aerial vehicle through the central server, and wherein at least one of the first computing device and the second computing device is at least one of a mobile device and a desktop computer.
  • 2. The system of claim 1: a communication logic block to communicate a current geo-spatial location and an altitude data of the first aerial vehicle to the central server when the first aerial vehicle is hovering at the current geo-spatial location for at least a threshold amount of time,wherein the threshold amount of time is at least approximately two seconds of time.
  • 3. The system of claim 2: wherein the command communicated by the second computing device of the second user to the first aerial vehicle through the central server to be a set of instructions that instruct any of the first computing device, the first aerial vehicle, and the second aerial vehicle that the second aerial vehicle to position itself in an adjacent manner in relation to the first aerial vehicle at a threshold distance away that is at least one of to a left to the first aerial vehicle, to a right of the first aerial vehicle, to a front of the first aerial vehicle, and to a rear of the first aerial vehicle.
  • 4. The system of claim 3: a turn-and-face logic block to maneuver the second aerial vehicle in a semicircular rotation from the first aerial vehicle such that the second aerial vehicle is facing the first aerial vehicle through first person view cameras of both the first aerial vehicle and the second aerial vehicle when the command instructs a turn-and-face operation, anda back-up logic block to back the second aerial vehicle up a distance away while maintaining the altitude of the first aerial vehicle through the central server when in the semi-circularly rotated state of the second aerial vehicle.
  • 5. The system of claim 4: wherein the threshold distance away is based on an accuracy of aerial geo-spatial coordinates of at least one of the first aerial vehicle and the second aerial vehicle.
  • 6. The system of claim 5 further comprising: a no-fly logic block to create a no-fly zone between the first aerial vehicle and the second aerial vehicle based on the threshold distance,wherein the first aerial vehicle and the second aerial vehicle each of which have an attachment through which a payload weight is transportable.
  • 7. The system of claim 6: a follow-the-leader logic block to designate the first aerial vehicle as a master aerial vehicle and the second aerial vehicle as a slave aerial vehicle, such that an aeronautical maneuver of the master aerial vehicle to be mirrored by the slave aerial vehicle at an equivalent displacement in a three dimensional space while maintaining a separation in the no-fly zone between the first aerial vehicle and the second aerial vehicle.
  • 8. The system of claim 7: wherein a group of at least two aerial vehicles carry a combined payload equivalent to proportionally an addition of the payload weight of individual aerial vehicles forming the group of at least two aerial vehicles.
  • 9. The system of claim 8: wherein the combined payload is an outdoor sign that is liftable by a tethering of individual ones of the aerial vehicles through a coupling mechanism that attach locations of the outdoor sign with each of the aerial vehicles forming the group of at least two aerial vehicles.
  • 10. The system of claim 9: wherein the combined payload is a flood lighting that is liftable by the tethering of individual ones of the group of at least two aerial vehicles through the coupling mechanism that attaches an assembly of the flood lighting with each of the aerial vehicles forming the group of at least two aerial vehicles.
  • 11. The system of claim 1 wherein any of the first aerial vehicle to include an intelligent emergency function in which rotors of the first aerial vehicle to shut-down power when a landing command provided by the first computing device fails to reduce altitude of the first aerial vehicle at an expected rate of descent.
  • 12. The system of claim 1 further comprising: a peer-to-peer logic block to enable the first aerial vehicle and the second aerial vehicle to also directly communicate with each other in-flight through an ad-hoc local area network formed between the first aerial vehicle and the second aerial vehicle, andan assumption logic block to automatically assume a previous geo-spatial location and a previous altitude of the first aerial vehicle when the first aerial vehicle indicates that a remaining battery power of the first aerial vehicle is below a threshold level based on a take-over function authorized by the first user and communicated to the second user through at least one of the Internet protocol network using the central server and the ad-hoc local area network between the first aerial vehicle and the second aerial vehicle.
  • 13. A method comprising: communicatively coupling a first aerial vehicle with a central server through an Internet protocol network;communicatively coupling a second aerial vehicle with the first aerial vehicle when a coordination command is transferred through the central server using the Internet protocol network;operatively controlling the first aerial vehicle through a first computing device through the Internet protocol network using the first computing device of a first user;operatively controlling the second aerial vehicle through a second computing device through the Internet protocol network using the second computing device of a second user, wherein at least one of the first computing device of the first user and the second computing device of the second user communicate the coordination command to the first aerial vehicle through the central server,wherein the first computing device to include an undo function to maneuver in flight the first aerial vehicle to a last previously saved geo-spatial location of the first aerial-vehicle based on a last previous location of the first aerial vehicle stored in the central server when the undo function is initiated,wherein the first user and the second user are communicatively coupled to each other through a neighborhood social network, in which the first user is connected to the second user in the neighborhood social network prior to the second computing device of the second user communicating the coordination command to the first aerial vehicle through the central server, andwherein at least one of the first computing device and the second computing device is at least one of a mobile device and a desktop computer.
  • 14. The method of claim 13: wherein first aerial vehicle to communicate a current geo-spatial location and an altitude data of the first aerial vehicle to the central server when the first aerial vehicle is hovering at the current geo-spatial location for at least a threshold amount of time,wherein the threshold amount of time is at least approximately two seconds of time, andwherein the coordination command communicated by the second computing device of the second user to the first aerial vehicle through the central server to be a set of instructions that instruct any of the first computing device, the first aerial vehicle, and the second aerial vehicle that the second aerial vehicle to position itself in an adjacent manner in relation to the first aerial vehicle at a threshold distance away that is at least one of to a left to the first aerial vehicle, to a right of the first aerial vehicle, to a front of the first aerial vehicle, and to a rear of the first aerial vehicle.
  • 15. The method of claim 14: wherein the second aerial vehicle to maneuver itself in a semicircular rotation from the first aerial vehicle such that the second aerial vehicle is facing the first aerial vehicle through first person view cameras of both the first aerial vehicle and the second aerial vehicle when the coordination command instructs a turn-and-face operation, andwherein the second aerial vehicle to back up a distance away while maintaining the altitude of the first aerial vehicle through the central server when in the semi-circularly rotated state of the second aerial vehicle.
  • 16. The method of claim 15: wherein the threshold distance away is based on an accuracy of aerial geo-spatial coordinates of at least one of the first aerial vehicle and the second aerial vehicle.
  • 17. The method of claim 16: wherein a no-fly zone is created between the first aerial vehicle and the second aerial vehicle based on the threshold distance, andwherein the first aerial vehicle and the second aerial vehicle each of which have an attachment through which a payload weight is transportable.
  • 18. The method of claim 17: wherein the first aerial vehicle to be a master aerial vehicle and the second aerial vehicle to a be slave aerial vehicle, such that an aeronautical maneuver of the master aerial vehicle to be mirrored by the slave aerial vehicle at an equivalent displacement in a three dimensional space while maintaining a separation in the no-fly zone between the first aerial vehicle and the second aerial vehicle.
  • 19. The method of claim 18: wherein a group of at least two aerial vehicles carry a combined payload equivalent to proportionally an addition of the payload weight of individual aerial vehicles forming the group of at least two aerial vehicles.
  • 20. The method of claim 19: wherein the combined payload is an outdoor sign that is liftable by a tethering of individual ones of the aerial vehicles through a coupling mechanism that attach locations of the outdoor sign with each of the aerial vehicles forming the group of at least two aerial vehicles.
  • 21. The method of claim 20: wherein the combined payload is a flood lighting that is liftable by the tethering of individual ones of the group of at least two aerial vehicles through the coupling mechanism that attaches an assembly of the flood lighting with each of the aerial vehicles forming the group of at least two aerial vehicles.
  • 22. The method of claim 13 wherein any of the first aerial vehicle to include an intelligent emergency function in which rotors of the first aerial vehicle to shut-down power when a landing command provided by the first computing device fails to reduce altitude of the first aerial vehicle at an expected rate of descent.
  • 23. The method of claim 13: wherein the first aerial vehicle and the second aerial vehicle also directly communicate with each other in-flight through an ad-hoc local area network formed between the first aerial vehicle and the second aerial vehicle, andwherein the second aerial vehicle to automatically assume a previous geo-spatial location and a previous altitude of the first aerial vehicle when the first aerial vehicle indicates that a remaining battery power of the first aerial vehicle is below a threshold level based on a take-over function authorized by the first user and communicated to the second user through at least one of the Internet protocol network using the central server and the ad-hoc local area network between the first aerial vehicle and the second aerial vehicle.
  • 24. A system comprising: a central server;an Internet protocol network;a first aerial vehicle communicatively coupled with the central server through the Internet protocol network;a second aerial vehicle communicatively coupled with the first aerial vehicle when a command is transferred through the central server using the Internet protocol network;a first computing device of a first user of the first aerial vehicle operatively controlling the first aerial vehicle through the first computing device through the Internet protocol network,wherein the first computing device to include an undo function to maneuver in flight the first aerial vehicle to a last previously saved geo-spatial location of the first aerial-vehicle based on a last previous location of the first aerial vehicle stored in the central server when the undo function is initiated; anda second computing device of a second user of the second aerial vehicle operatively controlling the second aerial vehicle through the second computing device through the Internet protocol network, and wherein at least one of the first computing device of the first user and the second computing device of the second user to communicate a coordination command to the first aerial vehicle through the central server,a communication logic block to communicate a current geo-spatial location and an altitude data of the first aerial vehicle to the central server when the first aerial vehicle is hovering at the current geo-spatial location for at least a threshold amount of time,wherein the first user and the second user are communicatively coupled to each other through a neighborhood social network, in which the first user is connected to the second user in the neighborhood social network prior to the second computing device of the second user communicating the coordination command to the first aerial vehicle through the central server,wherein at least one of the first computing device and the second computing device is at least one of a mobile device and a desktop computer, andwherein the threshold amount of time is at least approximately two seconds of time.
  • 25. The system of claim 24: wherein the second computing device of the second user to communicate the coordination command to the first aerial vehicle through the central server to be a set of instructions that instruct any of the first computing device, the first aerial vehicle, and the second aerial vehicle that the second aerial vehicle to position itself in an adjacent manner in relation to the first aerial vehicle at a threshold distance away that is at least one of to a left to the first aerial vehicle, to a right of the first aerial vehicle, to a front of the first aerial vehicle, and to a rear of the first aerial vehicle.
  • 26. The system of claim 25: wherein at least one of the first computing device and the second computing device is at least one of a mobile device and a desktop computer,wherein any of the first aerial vehicle to include an intelligent emergency function in which rotors of the first aerial vehicle to shut-down power when a landing command provided by the first computing device fails to reduce altitude of the first aerial vehicle at an expected rate of descent,a peer-to-peer logic block to enable the first aerial vehicle and the second aerial vehicle to also directly communicate with each other in-flight through an ad-hoc local area network formed between the first aerial vehicle and the second aerial vehicle, andan assumption logic block to automatically assume a previous geo-spatial location and a previous altitude of the first aerial vehicle when the first aerial vehicle indicates that a remaining battery power of the first aerial vehicle is below a threshold level based on a take-over function authorized by the first user and communicated to the second user through at least one of the Internet protocol network using the central server and the ad-hoc local area network between the first aerial vehicle and the second aerial vehicle.
US Referenced Citations (1053)
Number Name Date Kind
2035218 Bloom Mar 1936 A
3253806 Eickmann May 1966 A
3556438 Meditz Jan 1971 A
3762669 Curci Oct 1973 A
4119163 Ball Oct 1978 A
4161843 Hui Jul 1979 A
4375354 Henriksson Mar 1983 A
4556198 Tominaga Dec 1985 A
4779203 McClure et al. Oct 1988 A
4914605 Loughmiller, Jr. et al. Apr 1990 A
4996468 Field et al. Feb 1991 A
5032989 Tornetta Jul 1991 A
5050844 Hawk Sep 1991 A
5199686 Fletcher Apr 1993 A
5208750 Kurami et al. May 1993 A
5325294 Keene Jun 1994 A
5372211 Wilcox et al. Dec 1994 A
5521817 Burdoin et al. May 1996 A
5577567 Johnson et al. Nov 1996 A
5581630 Bonneau, Jr. Dec 1996 A
5584025 Keithley et al. Dec 1996 A
5590062 Nagamitsu et al. Dec 1996 A
5617319 Arakawa et al. Apr 1997 A
5630103 Smith et al. May 1997 A
5671342 Millier et al. Sep 1997 A
5720363 Kipp Feb 1998 A
5751245 Janky et al. May 1998 A
5774133 Neave et al. Jun 1998 A
5794207 Walker et al. Aug 1998 A
5805810 Maxwell Sep 1998 A
5819269 Uomini Oct 1998 A
5826244 Huberman Oct 1998 A
5831664 Wharton et al. Nov 1998 A
5835896 Fisher et al. Nov 1998 A
5852810 Sotiroff et al. Dec 1998 A
5904214 Lin May 1999 A
5905499 McDowall et al. May 1999 A
5907322 Kelly et al. May 1999 A
5926765 Sasaki Jul 1999 A
5930474 Dunworth et al. Jul 1999 A
5937413 Hyun et al. Aug 1999 A
5940806 Danial Aug 1999 A
5991737 Chen Nov 1999 A
6024288 Gottlich et al. Feb 2000 A
6029141 Bezos et al. Feb 2000 A
6029195 Herz Feb 2000 A
6034618 Tatebayashi et al. Mar 2000 A
6036601 Heckel Mar 2000 A
6047194 Andersson Apr 2000 A
6047236 Hancock et al. Apr 2000 A
6049778 Walker et al. Apr 2000 A
6059263 Otema et al. May 2000 A
6073138 de l'Etraz et al. Jun 2000 A
6078906 Huberman Jun 2000 A
6088702 Plantz et al. Jul 2000 A
6092076 McDonough et al. Jul 2000 A
6092105 Goldman Jul 2000 A
6101484 Halbert et al. Aug 2000 A
6108639 Walker et al. Aug 2000 A
6122592 Arakawa et al. Sep 2000 A
6134486 Kanayama Oct 2000 A
6148260 Musk et al. Nov 2000 A
6148289 Virdy Nov 2000 A
6175831 Weinreich et al. Jan 2001 B1
6199076 Logan et al. Mar 2001 B1
6229533 Farmer et al. May 2001 B1
6236990 Geller et al. May 2001 B1
6269369 Robertson Jul 2001 B1
6308177 Israni et al. Oct 2001 B1
6317718 Fano Nov 2001 B1
6336111 Ashby et al. Jan 2002 B1
6339745 Novik Jan 2002 B1
6356834 Hancock et al. Mar 2002 B2
6381537 Chenault et al. Apr 2002 B1
6401085 Gershman et al. Jun 2002 B1
6405123 Rennard et al. Jun 2002 B1
6408307 Semple et al. Jun 2002 B1
6445983 Dickson et al. Sep 2002 B1
6453339 Schultz et al. Sep 2002 B1
6470268 Ashcraft et al. Oct 2002 B1
6480885 Olivier Nov 2002 B1
6487583 Harvey et al. Nov 2002 B1
6498982 Bellesfield et al. Dec 2002 B2
6507776 Fox, III Jan 2003 B1
6513069 Abato et al. Jan 2003 B1
6519629 Harvey et al. Feb 2003 B2
6532007 Matsuda Mar 2003 B1
6542813 Kovacs Apr 2003 B1
6542817 Miyaki Apr 2003 B2
6542936 Mayle et al. Apr 2003 B1
6557013 Ziff et al. Apr 2003 B1
6587787 Yokota Jul 2003 B1
6597983 Hancock Jul 2003 B2
6600418 Francis et al. Jul 2003 B2
6611751 Warren Aug 2003 B2
6615039 Eldering Sep 2003 B1
6622086 Polidi Sep 2003 B2
6629136 Naidoo Sep 2003 B1
6633311 Douvikas et al. Oct 2003 B1
6636803 Hartz, Jr. et al. Oct 2003 B1
6640187 Chenault et al. Oct 2003 B1
6643663 Dabney et al. Nov 2003 B1
6646568 MacPhail et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6654800 Rieger, III Nov 2003 B1
6658410 Sakamaki et al. Dec 2003 B1
6662016 Buckham et al. Dec 2003 B1
6672601 Hofheins et al. Jan 2004 B1
6677894 Sheynblat et al. Jan 2004 B2
6684196 Mini et al. Jan 2004 B1
6687878 Eintracht et al. Feb 2004 B1
6691105 Virdy Feb 2004 B1
6691114 Nakamura Feb 2004 B1
6711414 Lightman et al. Mar 2004 B1
6716101 Meadows et al. Apr 2004 B1
6719570 Tsuchioka Apr 2004 B2
6721748 Knight et al. Apr 2004 B1
6728635 Hamada et al. Apr 2004 B2
6745196 Colyer et al. Jun 2004 B1
6750881 Appelman Jun 2004 B1
6798407 Benman Sep 2004 B1
6816850 Culliss Nov 2004 B2
6819267 Edmark et al. Nov 2004 B1
6834229 Rafiah et al. Dec 2004 B2
6847823 Lehikoinen et al. Jan 2005 B2
6868314 Frink Mar 2005 B1
6871140 Florance et al. Mar 2005 B1
6882307 Gifford Apr 2005 B1
6883748 Yoeli Apr 2005 B2
6889213 Douvikas et al. May 2005 B1
6907405 Brett Jun 2005 B2
6918576 Finkbeiner Jul 2005 B2
6926233 Corcoran, III Aug 2005 B1
6931419 Lindquist Aug 2005 B1
6950791 Bray et al. Sep 2005 B1
6963879 Colver et al. Nov 2005 B2
6968179 De Vries Nov 2005 B1
6968513 Rinebold et al. Nov 2005 B1
6974123 Latvys Dec 2005 B2
6976031 Toupal et al. Dec 2005 B1
6978284 McBrearty et al. Dec 2005 B2
6983139 Dowling et al. Jan 2006 B2
6987976 Kohar et al. Jan 2006 B2
7006881 Hoffberg et al. Feb 2006 B1
7013292 Hsu et al. Mar 2006 B1
7024397 Donahue Apr 2006 B1
7024455 Yokobori et al. Apr 2006 B2
7038681 Scott et al. May 2006 B2
7047202 Jaipuria et al. May 2006 B2
7050909 Nichols et al. May 2006 B2
7068309 Toyama et al. Jun 2006 B2
7069308 Abrams Jun 2006 B2
7072849 Filepp et al. Jul 2006 B1
7076409 Agrawala et al. Jul 2006 B2
7076741 Miyaki Jul 2006 B2
7079943 Flann et al. Jul 2006 B2
7080019 Hurzeler Jul 2006 B1
7080096 Imamura Jul 2006 B1
7085650 Anderson Aug 2006 B2
7099745 Ebert Aug 2006 B2
7099862 Fitzpatrick et al. Aug 2006 B2
7117254 Lunt et al. Oct 2006 B2
7130702 Morrell Oct 2006 B2
7136915 Rieger, III Nov 2006 B2
7155336 Dorfman et al. Dec 2006 B2
7158878 Rasmussen et al. Jan 2007 B2
7174301 Florance et al. Feb 2007 B2
7177872 Schwesig et al. Feb 2007 B2
7178720 Strubbe et al. Feb 2007 B1
7184990 Walker et al. Feb 2007 B2
7188056 Kagarlis Mar 2007 B2
7188080 Walker et al. Mar 2007 B1
7188153 Lunt et al. Mar 2007 B2
7209803 Okamoto et al. Apr 2007 B2
7218993 Yasukawa et al. May 2007 B2
7228232 Bodin et al. Jun 2007 B2
7233942 Nye Jun 2007 B2
7249123 Elder et al. Jul 2007 B2
7249732 Sanders, Jr. et al. Jul 2007 B2
7251647 Hoblit Jul 2007 B2
7254559 Florance et al. Aug 2007 B2
7269590 Hull et al. Sep 2007 B2
7293019 Dumais et al. Nov 2007 B2
7296026 Patrick et al. Nov 2007 B2
7306186 Kusic Dec 2007 B2
7324810 Nave et al. Jan 2008 B2
7343564 Othmer Mar 2008 B2
7353034 Haney Apr 2008 B2
7353114 Rohlf et al. Apr 2008 B1
7353199 DiStefano, III Apr 2008 B1
7359871 Paasche et al. Apr 2008 B1
7359894 Liebman et al. Apr 2008 B1
7373244 Kreft May 2008 B2
7375618 Quintos May 2008 B2
7383251 Might Jun 2008 B2
7386542 Maybury et al. Jun 2008 B2
7389210 Kagarlis Jun 2008 B2
7424438 Vianello Sep 2008 B2
7424541 Bourne Sep 2008 B2
7426970 Olsen Sep 2008 B2
7433832 Bezos et al. Oct 2008 B1
7433868 Satomi et al. Oct 2008 B1
7437368 Kolluri et al. Oct 2008 B1
7441031 Shrinivasan et al. Oct 2008 B2
7444241 Grimm Oct 2008 B2
7447509 Cossins et al. Nov 2008 B2
7447685 Nye Nov 2008 B2
7447771 Taylor Nov 2008 B1
7454524 Jeong Nov 2008 B2
7475953 Osborn et al. Jan 2009 B2
7477285 Johnson Jan 2009 B1
7478324 Ohtsu Jan 2009 B1
7480867 Racine et al. Jan 2009 B1
7483960 Kyusojin Jan 2009 B2
7487114 Florance et al. Feb 2009 B2
7496603 Deguchi et al. Feb 2009 B2
7500258 Eldering Mar 2009 B1
7505919 Richardson Mar 2009 B2
7505929 Angert et al. Mar 2009 B2
7520466 Bostan Apr 2009 B2
7525276 Eaton Apr 2009 B2
7561169 Carroll Jul 2009 B2
7562023 Yamamoto Jul 2009 B2
7580862 Montelo et al. Aug 2009 B1
7581702 Olson et al. Sep 2009 B2
7587276 Gold et al. Sep 2009 B2
7596511 Hall et al. Sep 2009 B2
7599795 Blumberg et al. Oct 2009 B1
7599935 La Rotonda et al. Oct 2009 B2
7617048 Simon et al. Nov 2009 B2
7636687 Foster et al. Dec 2009 B2
7640204 Florance et al. Dec 2009 B2
7658346 Goossen Feb 2010 B2
7668405 Gallagher Feb 2010 B2
7669123 Zuckerberg et al. Feb 2010 B2
7680673 Wheeler Mar 2010 B2
7680859 Schiller Mar 2010 B2
7693953 Middleton et al. Apr 2010 B2
7702545 Compton et al. Apr 2010 B1
7725492 Sittig et al. May 2010 B2
7734254 Frost et al. Jun 2010 B2
7751971 Chang et al. Jul 2010 B2
7761789 Erol et al. Jul 2010 B2
7792815 Aravamudan et al. Sep 2010 B2
7797256 Zuckerberg et al. Sep 2010 B2
7801542 Stewart Sep 2010 B1
7802290 Bansal et al. Sep 2010 B1
7808378 Hayden Oct 2010 B2
7809709 Harrison, Jr. Oct 2010 B1
7809805 Stremel et al. Oct 2010 B2
7810037 Edwards et al. Oct 2010 B1
7812717 Cona et al. Oct 2010 B1
7823073 Holmes et al. Oct 2010 B2
7827052 Scott et al. Nov 2010 B2
7827120 Evans et al. Nov 2010 B1
7827208 Bosworth et al. Nov 2010 B2
7827265 Cheever et al. Nov 2010 B2
7831917 Karam Nov 2010 B1
7840224 Vengroff et al. Nov 2010 B2
7840319 Zhong Nov 2010 B2
7840558 Wiseman et al. Nov 2010 B2
7848765 Phillips et al. Dec 2010 B2
7853518 Cagan Dec 2010 B2
7853563 Alvarado et al. Dec 2010 B2
7860889 Martino et al. Dec 2010 B1
7870199 Galli et al. Jan 2011 B2
7873471 Gieseke Jan 2011 B2
7881864 Smith Feb 2011 B2
7886024 Kelly et al. Feb 2011 B2
7894933 Mountz et al. Feb 2011 B2
7894939 Zini et al. Feb 2011 B2
7894981 Yamane et al. Feb 2011 B2
7904366 Pogust Mar 2011 B2
7913179 Sheha et al. Mar 2011 B2
7933808 Garcia Apr 2011 B2
7933810 Morgenstern Apr 2011 B2
7945653 Zuckerberg et al. May 2011 B2
7949714 Burnim May 2011 B1
7958011 Cretney et al. Jun 2011 B1
7961986 Jing et al. Jun 2011 B1
7962281 Rasmussen et al. Jun 2011 B2
7966567 Abhyanker Jun 2011 B2
7969606 Chu Jun 2011 B2
7970657 Morgenstern Jun 2011 B2
7980808 Chilson et al. Jul 2011 B2
7991703 Watkins Aug 2011 B1
7996109 Zini et al. Aug 2011 B2
7996270 Sundaresan Aug 2011 B2
8010230 Zini et al. Aug 2011 B2
8027943 Juan et al. Sep 2011 B2
8046309 Evans et al. Oct 2011 B2
8051089 Gargi et al. Nov 2011 B2
8060389 Johnson Nov 2011 B2
8060555 Grayson et al. Nov 2011 B2
8064590 Abhyanker Nov 2011 B2
8065291 Knorr Nov 2011 B2
8095430 Abhyanker Jan 2012 B2
8103734 Galli et al. Jan 2012 B2
8107879 Pering et al. Jan 2012 B2
8108501 Birnie et al. Jan 2012 B2
8112419 Hancock et al. Feb 2012 B2
8117486 Handley Feb 2012 B2
8136145 Fetterman et al. Mar 2012 B2
8139514 Weber et al. Mar 2012 B2
8145661 Billman et al. Mar 2012 B1
8145703 Frishert et al. Mar 2012 B2
8149113 Diem Apr 2012 B2
8167234 Moore May 2012 B1
8171128 Zuckerberg et al. May 2012 B2
8190357 Abhyanker et al. May 2012 B2
8190476 Urbanski et al. May 2012 B2
8195601 Law et al. Jun 2012 B2
8195744 Julia et al. Jun 2012 B2
8204624 Zini et al. Jun 2012 B2
8204776 Abhyanker Jun 2012 B2
8204952 Stremel et al. Jun 2012 B2
8223012 Diem Jul 2012 B1
8225376 Zuckerberg et al. Jul 2012 B2
8229470 Ranjan et al. Jul 2012 B1
8249943 Zuckerberg et al. Aug 2012 B2
8271057 Levine et al. Sep 2012 B2
8275546 Xiao et al. Sep 2012 B2
8290943 Carbone et al. Oct 2012 B2
8292215 Olm et al. Oct 2012 B2
8296373 Bosworth et al. Oct 2012 B2
8301743 Curran et al. Oct 2012 B2
8315389 Qiu et al. Nov 2012 B2
8326091 Jing et al. Dec 2012 B1
8326315 Phillips et al. Dec 2012 B2
8328130 Goossen Dec 2012 B2
8352183 Thota et al. Jan 2013 B2
8364757 Scott et al. Jan 2013 B2
8370003 So et al. Feb 2013 B2
8380382 Sung et al. Feb 2013 B2
8380638 Watkins Feb 2013 B1
8391789 Palin et al. Mar 2013 B2
8391909 Stewart Mar 2013 B2
8401771 Krumm et al. Mar 2013 B2
8402094 Bosworth et al. Mar 2013 B2
8402372 Gillespie et al. Mar 2013 B2
8412576 Urbanski Apr 2013 B2
8412675 Alvarado et al. Apr 2013 B2
8427308 Baron, Sr. et al. Apr 2013 B1
8428565 Middleton et al. Apr 2013 B2
8433609 Abhyanker Apr 2013 B2
8433650 Thomas Apr 2013 B1
8438156 Redstone et al. May 2013 B2
8442923 Gross May 2013 B2
8443107 Burdette et al. May 2013 B2
8447810 Roumeliotis et al. May 2013 B2
8463295 Caralis et al. Jun 2013 B1
8463764 Fujioka et al. Jun 2013 B2
8473199 Blumberg et al. Jun 2013 B2
8493849 Fuste Vilella et al. Jul 2013 B2
8504284 Brülle-Drews et al. Aug 2013 B2
8504512 Herzog et al. Aug 2013 B2
8510268 Laforge et al. Aug 2013 B1
8515609 McAndrew et al. Aug 2013 B2
8521656 Zimberoff et al. Aug 2013 B2
8538458 Haney Sep 2013 B2
8543143 Chandra et al. Sep 2013 B2
8543323 Gold et al. Sep 2013 B1
8548493 Rieger, III Oct 2013 B2
8554770 Purdy Oct 2013 B2
8554852 Burnim Oct 2013 B2
8560515 Kimchi et al. Oct 2013 B2
8584091 Champion et al. Nov 2013 B2
8589330 Petersen et al. Nov 2013 B2
8594715 Stewart Nov 2013 B1
8595292 Grayson et al. Nov 2013 B2
8600602 McAndrew et al. Dec 2013 B1
8615565 Randall Dec 2013 B2
8620532 Curtis et al. Dec 2013 B2
8620827 Watkins, III Dec 2013 B1
8621374 Sheha et al. Dec 2013 B2
8626699 Xie et al. Jan 2014 B2
8627506 Vera et al. Jan 2014 B2
8649976 Kreft Feb 2014 B2
8650103 Wilf et al. Feb 2014 B2
8655873 Mitchell et al. Feb 2014 B2
8660541 Beresniewicz et al. Feb 2014 B1
8660897 Abhyanker Feb 2014 B2
8666660 Sartipi et al. Mar 2014 B2
8671095 Gross Mar 2014 B2
8671106 Lee et al. Mar 2014 B1
8683342 Van Riel Mar 2014 B2
8688594 Thomas et al. Apr 2014 B2
8694605 Burrell et al. Apr 2014 B1
8695919 Shachor et al. Apr 2014 B2
8712441 Haney Apr 2014 B2
8713055 Callahan et al. Apr 2014 B2
8713143 Centola et al. Apr 2014 B2
8718910 Guéziec May 2014 B2
8723679 Whisenant May 2014 B2
8732091 Abhyanker May 2014 B1
8732155 Vegnaduzzo et al. May 2014 B2
8732219 Ferries et al. May 2014 B1
8732846 D'Angelo et al. May 2014 B2
8738545 Abhyanker May 2014 B2
8775405 Gross Jul 2014 B2
D710454 Barajas et al. Aug 2014 S
8794566 Hutson Aug 2014 B2
8799253 Valliani et al. Aug 2014 B2
8825226 Worley, III et al. Sep 2014 B1
8832556 Steinberg Sep 2014 B2
20010005829 Raveis Jun 2001 A1
20010016795 Bellinger Aug 2001 A1
20010020955 Nakagawa et al. Sep 2001 A1
20010029426 Hancock et al. Oct 2001 A1
20010029501 Yokobori et al. Oct 2001 A1
20010036833 Koshima et al. Nov 2001 A1
20010037721 Hasegawa et al. Nov 2001 A1
20010042087 Kephart et al. Nov 2001 A1
20010049616 Khuzadi et al. Dec 2001 A1
20010049636 Hudda et al. Dec 2001 A1
20020019739 Juneau et al. Feb 2002 A1
20020023018 Kleinbaum Feb 2002 A1
20020026388 Roebuck Feb 2002 A1
20020029350 Cooper et al. Mar 2002 A1
20020030689 Eichel et al. Mar 2002 A1
20020038225 Klasky et al. Mar 2002 A1
20020046131 Boone et al. Apr 2002 A1
20020046243 Morris et al. Apr 2002 A1
20020049617 Lencki et al. Apr 2002 A1
20020059201 Work May 2002 A1
20020059379 Harvey et al. May 2002 A1
20020065691 Twig et al. May 2002 A1
20020065739 Florance et al. May 2002 A1
20020070967 Tanner et al. Jun 2002 A1
20020072848 Hamada et al. Jun 2002 A1
20020077060 Lehikoinen et al. Jun 2002 A1
20020077901 Katz Jun 2002 A1
20020078171 Schneider Jun 2002 A1
20020087260 Hancock et al. Jul 2002 A1
20020087506 Reddy Jul 2002 A1
20020090996 Maehiro Jul 2002 A1
20020091556 Fiala et al. Jul 2002 A1
20020097267 Dinan et al. Jul 2002 A1
20020099693 Kofsky Jul 2002 A1
20020103813 Frigon Aug 2002 A1
20020103892 Rieger Aug 2002 A1
20020124009 Hoblit Sep 2002 A1
20020124053 Adams et al. Sep 2002 A1
20020130906 Miyaki Sep 2002 A1
20020133292 Miyaki Sep 2002 A1
20020143462 Warren Oct 2002 A1
20020147638 Banerjee et al. Oct 2002 A1
20020156782 Rubert Oct 2002 A1
20020156917 Nye Oct 2002 A1
20020160762 Nave et al. Oct 2002 A1
20020161666 Fraki et al. Oct 2002 A1
20020169662 Claiborne Nov 2002 A1
20020184496 Mitchell et al. Dec 2002 A1
20020188522 McCall et al. Dec 2002 A1
20030004802 Callegari Jan 2003 A1
20030005035 Rodgers Jan 2003 A1
20030018521 Kraft et al. Jan 2003 A1
20030023489 McGuire et al. Jan 2003 A1
20030023586 Knorr Jan 2003 A1
20030033176 Hancock Feb 2003 A1
20030036958 Warmus et al. Feb 2003 A1
20030036963 Jacobson et al. Feb 2003 A1
20030055983 Callegari Mar 2003 A1
20030061503 Katz et al. Mar 2003 A1
20030063072 Brandenberg et al. Apr 2003 A1
20030064705 Desiderio Apr 2003 A1
20030065716 Kyusojin Apr 2003 A1
20030069002 Hunter et al. Apr 2003 A1
20030069693 Snapp et al. Apr 2003 A1
20030078897 Florance et al. Apr 2003 A1
20030088520 Bohrer et al. May 2003 A1
20030145093 Oren et al. Jul 2003 A1
20030154020 Polidi Aug 2003 A1
20030154213 Ahn Aug 2003 A1
20030158668 Anderson Aug 2003 A1
20030177019 Santos et al. Sep 2003 A1
20030177192 Umeki et al. Sep 2003 A1
20030182222 Rotman et al. Sep 2003 A1
20030200192 Bell et al. Oct 2003 A1
20030218253 Avanzino et al. Nov 2003 A1
20030220807 Hoffman et al. Nov 2003 A1
20030222918 Coulthard Dec 2003 A1
20030225632 Tong et al. Dec 2003 A1
20030225833 Pilat et al. Dec 2003 A1
20040002871 Geranio Jan 2004 A1
20040003283 Goodman et al. Jan 2004 A1
20040021584 Hartz et al. Feb 2004 A1
20040024846 Randall et al. Feb 2004 A1
20040030525 Robinson et al. Feb 2004 A1
20040030741 Wolton et al. Feb 2004 A1
20040039581 Wheeler Feb 2004 A1
20040054428 Sheha et al. Mar 2004 A1
20040056762 Rogers Mar 2004 A1
20040088177 Travis et al. May 2004 A1
20040109012 Kraus et al. Jun 2004 A1
20040111302 Falk et al. Jun 2004 A1
20040122570 Sonoyama et al. Jun 2004 A1
20040122693 Hatscher et al. Jun 2004 A1
20040128215 Florance et al. Jul 2004 A1
20040135805 Gottsacker et al. Jul 2004 A1
20040139034 Farmer Jul 2004 A1
20040139049 Hancock et al. Jul 2004 A1
20040145593 Berkner et al. Jul 2004 A1
20040146199 Berkner et al. Jul 2004 A1
20040148275 Achlioptas Jul 2004 A1
20040153466 Ziff et al. Aug 2004 A1
20040157648 Lightman Aug 2004 A1
20040158488 Johnson Aug 2004 A1
20040162064 Himmelstein Aug 2004 A1
20040166878 Erskine et al. Aug 2004 A1
20040167787 Lynch et al. Aug 2004 A1
20040172280 Fraki et al. Sep 2004 A1
20040186766 Fellenstein et al. Sep 2004 A1
20040210661 Thompson Oct 2004 A1
20040215517 Chen et al. Oct 2004 A1
20040215559 Rebenack et al. Oct 2004 A1
20040217884 Samadani et al. Nov 2004 A1
20040217980 Radburn et al. Nov 2004 A1
20040220903 Shah et al. Nov 2004 A1
20040220906 Gargi et al. Nov 2004 A1
20040230562 Wysoczanski et al. Nov 2004 A1
20040236771 Colver et al. Nov 2004 A1
20040243478 Walker et al. Dec 2004 A1
20040257340 Jawerth Dec 2004 A1
20040260604 Bedingfield Dec 2004 A1
20040260677 Malpani et al. Dec 2004 A1
20040267625 Feng et al. Dec 2004 A1
20050015488 Bayyapu Jan 2005 A1
20050018177 Rosenberg et al. Jan 2005 A1
20050021750 Abrams Jan 2005 A1
20050027723 Jones et al. Feb 2005 A1
20050034075 Riegelman et al. Feb 2005 A1
20050044061 Klemow Feb 2005 A1
20050049971 Bettinger Mar 2005 A1
20050055353 Marx et al. Mar 2005 A1
20050086309 Galli et al. Apr 2005 A1
20050091027 Zaher et al. Apr 2005 A1
20050091175 Farmer Apr 2005 A9
20050091209 Frank et al. Apr 2005 A1
20050094851 Bodin et al. May 2005 A1
20050096977 Rossides May 2005 A1
20050097319 Zhu et al. May 2005 A1
20050108520 Yamamoto et al. May 2005 A1
20050114527 Hankey et al. May 2005 A1
20050114759 Williams et al. May 2005 A1
20050114783 Szeto May 2005 A1
20050120084 Hu et al. Jun 2005 A1
20050131761 Trika et al. Jun 2005 A1
20050137015 Rogers et al. Jun 2005 A1
20050143174 Goldman et al. Jun 2005 A1
20050144065 Calabria et al. Jun 2005 A1
20050149432 Galey Jul 2005 A1
20050154639 Zetmeir Jul 2005 A1
20050159970 Buyukkokten et al. Jul 2005 A1
20050171799 Hull et al. Aug 2005 A1
20050171832 Hull et al. Aug 2005 A1
20050171954 Hull et al. Aug 2005 A1
20050171955 Hull et al. Aug 2005 A1
20050177385 Hull et al. Aug 2005 A1
20050187823 Howes Aug 2005 A1
20050192859 Mertins et al. Sep 2005 A1
20050192912 Bator et al. Sep 2005 A1
20050192999 Cook et al. Sep 2005 A1
20050193410 Eldering Sep 2005 A1
20050197775 Smith Sep 2005 A1
20050197846 Pezaris et al. Sep 2005 A1
20050197950 Moya et al. Sep 2005 A1
20050198020 Garland et al. Sep 2005 A1
20050198031 Pezaris et al. Sep 2005 A1
20050198305 Pezaris et al. Sep 2005 A1
20050203768 Florance et al. Sep 2005 A1
20050203769 Weild Sep 2005 A1
20050203807 Bezos et al. Sep 2005 A1
20050209776 Ogino Sep 2005 A1
20050209781 Anderson Sep 2005 A1
20050216186 Dorfman et al. Sep 2005 A1
20050216300 Appelman et al. Sep 2005 A1
20050216550 Paseman et al. Sep 2005 A1
20050219044 Douglass et al. Oct 2005 A1
20050235062 Lunt et al. Oct 2005 A1
20050240580 Zamir et al. Oct 2005 A1
20050251331 Kreft Nov 2005 A1
20050256756 Lam et al. Nov 2005 A1
20050259648 Kodialam et al. Nov 2005 A1
20050270299 Rasmussen et al. Dec 2005 A1
20050273346 Frost Dec 2005 A1
20050283497 Nurminen et al. Dec 2005 A1
20050288957 Eraker et al. Dec 2005 A1
20050288958 Eraker et al. Dec 2005 A1
20050289650 Kalogridis Dec 2005 A1
20060004680 Robarts et al. Jan 2006 A1
20060004703 Spivack et al. Jan 2006 A1
20060004734 Malkin et al. Jan 2006 A1
20060022048 Johnson Feb 2006 A1
20060023881 Akiyama et al. Feb 2006 A1
20060025883 Reeves Feb 2006 A1
20060026147 Cone et al. Feb 2006 A1
20060036588 Frank et al. Feb 2006 A1
20060036748 Nusbaum et al. Feb 2006 A1
20060041543 Achlioptas Feb 2006 A1
20060042483 Work et al. Mar 2006 A1
20060047825 Steenstra et al. Mar 2006 A1
20060048059 Etkin Mar 2006 A1
20060052091 Onyon et al. Mar 2006 A1
20060058921 Okamoto Mar 2006 A1
20060058952 Cooper et al. Mar 2006 A1
20060059023 Mashinsky Mar 2006 A1
20060064431 Kishore et al. Mar 2006 A1
20060074780 Taylor et al. Apr 2006 A1
20060075335 Gloor Apr 2006 A1
20060080613 Savant Apr 2006 A1
20060085419 Rosen Apr 2006 A1
20060088145 Reed et al. Apr 2006 A1
20060089882 Shimansky Apr 2006 A1
20060100892 Ellanti May 2006 A1
20060113425 Rader Jun 2006 A1
20060123053 Scannell Jun 2006 A1
20060125616 Song Jun 2006 A1
20060136127 Coch et al. Jun 2006 A1
20060136419 Brydon et al. Jun 2006 A1
20060143066 Calabria Jun 2006 A1
20060143067 Calabria Jun 2006 A1
20060143083 Wedeen Jun 2006 A1
20060143183 Goldberg et al. Jun 2006 A1
20060149624 Baluja et al. Jul 2006 A1
20060161599 Rosen Jul 2006 A1
20060178972 Jung et al. Aug 2006 A1
20060184578 La Rotonda et al. Aug 2006 A1
20060184617 Nicholas et al. Aug 2006 A1
20060184997 La Rotonda et al. Aug 2006 A1
20060190279 Heflin Aug 2006 A1
20060190281 Kott et al. Aug 2006 A1
20060194186 Nanda Aug 2006 A1
20060200384 Arutunian et al. Sep 2006 A1
20060212407 Lyon Sep 2006 A1
20060217885 Crady et al. Sep 2006 A1
20060218225 Hee Voon et al. Sep 2006 A1
20060218226 Johnson et al. Sep 2006 A1
20060223518 Haney Oct 2006 A1
20060226281 Walton Oct 2006 A1
20060229063 Koch Oct 2006 A1
20060230061 Sample et al. Oct 2006 A1
20060238383 Kimchi et al. Oct 2006 A1
20060242139 Butterfield et al. Oct 2006 A1
20060242178 Butterfield et al. Oct 2006 A1
20060242581 Manion et al. Oct 2006 A1
20060247940 Zhu et al. Nov 2006 A1
20060248573 Pannu et al. Nov 2006 A1
20060251292 Gokturk et al. Nov 2006 A1
20060253491 Gokturk et al. Nov 2006 A1
20060256008 Rosenberg Nov 2006 A1
20060264209 Atkinson et al. Nov 2006 A1
20060265277 Yasinovsky et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060270421 Phillips et al. Nov 2006 A1
20060271287 Gold et al. Nov 2006 A1
20060271472 Cagan Nov 2006 A1
20060293976 Nam Dec 2006 A1
20060294011 Smith Dec 2006 A1
20070002057 Danzig et al. Jan 2007 A1
20070003182 Hunn Jan 2007 A1
20070005683 Omidyar Jan 2007 A1
20070005750 Lunt et al. Jan 2007 A1
20070011148 Burkey et al. Jan 2007 A1
20070011617 Akagawa et al. Jan 2007 A1
20070016689 Birch Jan 2007 A1
20070027920 Alvarado et al. Feb 2007 A1
20070032942 Thota Feb 2007 A1
20070033064 Abrahamsohn Feb 2007 A1
20070033182 Knorr Feb 2007 A1
20070038646 Thota Feb 2007 A1
20070043947 Mizikovsky et al. Feb 2007 A1
20070050360 Hull et al. Mar 2007 A1
20070061128 Odom et al. Mar 2007 A1
20070061405 Keohane et al. Mar 2007 A1
20070067219 Altberg et al. Mar 2007 A1
20070078747 Baack Apr 2007 A1
20070078772 Dadd Apr 2007 A1
20070099609 Cai May 2007 A1
20070105536 Tingo May 2007 A1
20070106627 Srivastava et al. May 2007 A1
20070112461 Zini et al. May 2007 A1
20070112645 Traynor et al. May 2007 A1
20070112729 Wiseman et al. May 2007 A1
20070118430 Wiseman et al. May 2007 A1
20070118525 Svendsen May 2007 A1
20070150375 Yang Jun 2007 A1
20070150603 Crull et al. Jun 2007 A1
20070156429 Godar Jul 2007 A1
20070159651 Disario et al. Jul 2007 A1
20070162432 Armstrong et al. Jul 2007 A1
20070162458 Fasciano Jul 2007 A1
20070162547 Ross Jul 2007 A1
20070162942 Hamynen et al. Jul 2007 A1
20070167204 Lyle et al. Jul 2007 A1
20070168852 Erol et al. Jul 2007 A1
20070168888 Jawerth Jul 2007 A1
20070174389 Armstrong et al. Jul 2007 A1
20070179905 Buch et al. Aug 2007 A1
20070185906 Humphries et al. Aug 2007 A1
20070192299 Zuckerberg et al. Aug 2007 A1
20070203644 Thota et al. Aug 2007 A1
20070203820 Rashid Aug 2007 A1
20070207755 Julia et al. Sep 2007 A1
20070208613 Backer Sep 2007 A1
20070208802 Barman et al. Sep 2007 A1
20070208916 Tomita Sep 2007 A1
20070214141 Sittig et al. Sep 2007 A1
20070218900 Abhyanker Sep 2007 A1
20070219659 Abhyanker et al. Sep 2007 A1
20070219712 Abhyanker Sep 2007 A1
20070220174 Abhyanker Sep 2007 A1
20070226314 Eick et al. Sep 2007 A1
20070233291 Herde et al. Oct 2007 A1
20070233367 Chen et al. Oct 2007 A1
20070233375 Garg et al. Oct 2007 A1
20070233582 Abhyanker Oct 2007 A1
20070239352 Thota et al. Oct 2007 A1
20070239552 Sundaresan Oct 2007 A1
20070239648 Thota Oct 2007 A1
20070245002 Nguyen et al. Oct 2007 A1
20070250321 Balusu Oct 2007 A1
20070250511 Endler et al. Oct 2007 A1
20070255785 Hayashi et al. Nov 2007 A1
20070255831 Hayashi et al. Nov 2007 A1
20070258642 Thota Nov 2007 A1
20070259654 Oijer Nov 2007 A1
20070260599 McGuire et al. Nov 2007 A1
20070261071 Lunt et al. Nov 2007 A1
20070266003 Wong et al. Nov 2007 A1
20070266097 Harik et al. Nov 2007 A1
20070266118 Wilkins Nov 2007 A1
20070268310 Dolph et al. Nov 2007 A1
20070270163 Anupam et al. Nov 2007 A1
20070271367 Yardeni et al. Nov 2007 A1
20070273558 Smith et al. Nov 2007 A1
20070281689 Altman et al. Dec 2007 A1
20070281690 Altman et al. Dec 2007 A1
20070281716 Altman et al. Dec 2007 A1
20070282621 Altman et al. Dec 2007 A1
20070282987 Fischer et al. Dec 2007 A1
20070288164 Gordon et al. Dec 2007 A1
20070288311 Underhill Dec 2007 A1
20070288621 Gundu et al. Dec 2007 A1
20070294357 Antoine Dec 2007 A1
20080005076 Payne et al. Jan 2008 A1
20080005231 Kelley et al. Jan 2008 A1
20080010343 Escaffi et al. Jan 2008 A1
20080010365 Schneider Jan 2008 A1
20080016051 Schiller Jan 2008 A1
20080020814 Kernene Jan 2008 A1
20080032666 Hughes et al. Feb 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033641 Medalia Feb 2008 A1
20080033652 Hensley et al. Feb 2008 A1
20080033739 Zuckerberg et al. Feb 2008 A1
20080033776 Marchese Feb 2008 A1
20080040370 Bosworth et al. Feb 2008 A1
20080040428 Wei et al. Feb 2008 A1
20080040474 Zuckerberg et al. Feb 2008 A1
20080040475 Bosworth et al. Feb 2008 A1
20080040673 Zuckerberg et al. Feb 2008 A1
20080043020 Snow et al. Feb 2008 A1
20080043037 Carroll Feb 2008 A1
20080046976 Zuckerberg Feb 2008 A1
20080048065 Kuntz Feb 2008 A1
20080051932 Jermyn et al. Feb 2008 A1
20080059992 Amidon et al. Mar 2008 A1
20080065321 DaCosta Mar 2008 A1
20080065611 Hepworth et al. Mar 2008 A1
20080070593 Altman et al. Mar 2008 A1
20080070697 Robinson et al. Mar 2008 A1
20080071929 Motte et al. Mar 2008 A1
20080077464 Gottlieb et al. Mar 2008 A1
20080077581 Drayer et al. Mar 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080077708 Scott et al. Mar 2008 A1
20080086368 Bauman et al. Apr 2008 A1
20080086458 Robinson et al. Apr 2008 A1
20080091461 Evans et al. Apr 2008 A1
20080091723 Zuckerberg et al. Apr 2008 A1
20080091786 Jhanji Apr 2008 A1
20080097999 Horan Apr 2008 A1
20080098090 Geraci et al. Apr 2008 A1
20080098313 Pollack Apr 2008 A1
20080103959 Carroll et al. May 2008 A1
20080104227 Birnie et al. May 2008 A1
20080109718 Narayanaswami May 2008 A1
20080115082 Simmons et al. May 2008 A1
20080115226 Welingkar et al. May 2008 A1
20080117928 Abhyanker May 2008 A1
20080125969 Chen et al. May 2008 A1
20080126355 Rowley May 2008 A1
20080126411 Zhuang et al. May 2008 A1
20080126476 Nicholas et al. May 2008 A1
20080126478 Ferguson et al. May 2008 A1
20080133495 Fischer Jun 2008 A1
20080133649 Pennington Jun 2008 A1
20080134035 Pennington et al. Jun 2008 A1
20080148156 Brewer et al. Jun 2008 A1
20080154733 Wolfe Jun 2008 A1
20080155019 Wallace et al. Jun 2008 A1
20080162027 Murphy et al. Jul 2008 A1
20080162211 Addington Jul 2008 A1
20080162260 Rohan et al. Jul 2008 A1
20080167771 Whittaker et al. Jul 2008 A1
20080168068 Hutheesing Jul 2008 A1
20080168175 Tran Jul 2008 A1
20080172173 Chang et al. Jul 2008 A1
20080172244 Coupal et al. Jul 2008 A1
20080172288 Pilskalns et al. Jul 2008 A1
20080189292 Stremel et al. Aug 2008 A1
20080189380 Bosworth et al. Aug 2008 A1
20080189768 Callahan et al. Aug 2008 A1
20080195483 Moore Aug 2008 A1
20080201156 Abhyanker Aug 2008 A1
20080208956 Spiridellis et al. Aug 2008 A1
20080208969 Van Riel Aug 2008 A1
20080215994 Harrison et al. Sep 2008 A1
20080221846 Aggarwal et al. Sep 2008 A1
20080221984 Abhyanker Sep 2008 A1
20080222140 Lagad et al. Sep 2008 A1
20080222308 Abhyanker Sep 2008 A1
20080228719 Abhyanker et al. Sep 2008 A1
20080228775 Abhyanker et al. Sep 2008 A1
20080229424 Harris et al. Sep 2008 A1
20080231630 Shenkar et al. Sep 2008 A1
20080238941 Kinnan et al. Oct 2008 A1
20080240397 Abhyanker Oct 2008 A1
20080242317 Abhyanker Oct 2008 A1
20080243378 Zavoli Oct 2008 A1
20080243598 Abhyanker Oct 2008 A1
20080243667 Lecomte Oct 2008 A1
20080243830 Abhyanker Oct 2008 A1
20080250025 Abhyanker Oct 2008 A1
20080255759 Abhyanker Oct 2008 A1
20080256230 Handley Oct 2008 A1
20080263460 Altberg et al. Oct 2008 A1
20080269992 Kawasaki Oct 2008 A1
20080270158 Abhyanker Oct 2008 A1
20080270366 Frank Oct 2008 A1
20080270615 Centola et al. Oct 2008 A1
20080270945 Abhyanker Oct 2008 A1
20080281854 Abhyanker Nov 2008 A1
20080288277 Fasciano Nov 2008 A1
20080288612 Kwon Nov 2008 A1
20080294678 Gorman et al. Nov 2008 A1
20080294747 Abhyanker Nov 2008 A1
20080300979 Abhyanker Dec 2008 A1
20080301565 Abhyanker Dec 2008 A1
20080306754 Abhyanker Dec 2008 A1
20080307053 Mitnick et al. Dec 2008 A1
20080307066 Amidon et al. Dec 2008 A1
20080307320 Payne et al. Dec 2008 A1
20080316021 Manz et al. Dec 2008 A1
20080319778 Abhyanker Dec 2008 A1
20080319806 Abhyanker Dec 2008 A1
20090003265 Agarwal et al. Jan 2009 A1
20090006177 Beaver et al. Jan 2009 A1
20090006473 Elliott et al. Jan 2009 A1
20090007195 Beyabani Jan 2009 A1
20090018850 Abhyanker Jan 2009 A1
20090018925 Abhyanker Jan 2009 A1
20090019004 Abhyanker Jan 2009 A1
20090019085 Abhyanker Jan 2009 A1
20090019122 Abhyanker Jan 2009 A1
20090019366 Abhyanker Jan 2009 A1
20090019373 Abhyanker Jan 2009 A1
20090024740 Abhyanker Jan 2009 A1
20090029672 Manz Jan 2009 A1
20090030927 Cases et al. Jan 2009 A1
20090031006 Johnson Jan 2009 A1
20090031245 Brezina et al. Jan 2009 A1
20090031301 D'Angelo et al. Jan 2009 A1
20090043650 Abhyanker et al. Feb 2009 A1
20090044254 Tian Feb 2009 A1
20090048922 Morgenstern et al. Feb 2009 A1
20090049018 Gross Feb 2009 A1
20090049037 Gross Feb 2009 A1
20090049070 Steinberg Feb 2009 A1
20090049127 Juan et al. Feb 2009 A1
20090061883 Abhyanker Mar 2009 A1
20090063252 Abhyanker Mar 2009 A1
20090063467 Abhyanker Mar 2009 A1
20090063500 Zhai et al. Mar 2009 A1
20090064011 Abhyanker Mar 2009 A1
20090064144 Abhyanker Mar 2009 A1
20090069034 Abhyanker Mar 2009 A1
20090070334 Callahan et al. Mar 2009 A1
20090070435 Abhyanker Mar 2009 A1
20090077100 Hancock et al. Mar 2009 A1
20090102644 Hayden Apr 2009 A1
20090119275 Chen et al. May 2009 A1
20090132504 Vegnaduzzo et al. May 2009 A1
20090132644 Frishert et al. May 2009 A1
20090171950 Lunenfeld Jul 2009 A1
20090177577 Garcia Jul 2009 A1
20090177628 Yanagisawa et al. Jul 2009 A1
20090228305 Gustafsson et al. Sep 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090271417 Toebes et al. Oct 2009 A1
20090271524 Davi et al. Oct 2009 A1
20090282353 Halbherr et al. Nov 2009 A1
20090284530 Lester et al. Nov 2009 A1
20090287682 Fujioka et al. Nov 2009 A1
20090299551 So et al. Dec 2009 A1
20100011081 Crowley et al. Jan 2010 A1
20100023388 Blumberg et al. Jan 2010 A1
20100024045 Sastry et al. Jan 2010 A1
20100051740 Yoeli Mar 2010 A1
20100057555 Butterfield et al. Mar 2010 A1
20100064007 Randall Mar 2010 A1
20100070075 Chirnomas Mar 2010 A1
20100076966 Strutton et al. Mar 2010 A1
20100077316 Omansky et al. Mar 2010 A1
20100079338 Wooden et al. Apr 2010 A1
20100082683 Law et al. Apr 2010 A1
20100083125 Zafar et al. Apr 2010 A1
20100088015 Lee Apr 2010 A1
20100094548 Tadman et al. Apr 2010 A1
20100100937 Tran Apr 2010 A1
20100106731 Cartmell et al. Apr 2010 A1
20100108801 Olm et al. May 2010 A1
20100118025 Smith et al. May 2010 A1
20100120422 Cheung et al. May 2010 A1
20100138259 Delk Jun 2010 A1
20100138318 Chun Jun 2010 A1
20100191798 Seefeld et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100214250 Gillespie et al. Aug 2010 A1
20100231383 Levine et al. Sep 2010 A1
20100243794 Jermyn Sep 2010 A1
20100255899 Paulsen Oct 2010 A1
20100275033 Gillespie et al. Oct 2010 A1
20100302359 Adams et al. Dec 2010 A1
20100306016 Solaro et al. Dec 2010 A1
20110001020 Forgac Jan 2011 A1
20110015954 Ward Jan 2011 A1
20110022540 Stern et al. Jan 2011 A1
20110040681 Ahroon Feb 2011 A1
20110040692 Ahroon Feb 2011 A1
20110041084 Karam Feb 2011 A1
20110061018 Piratla et al. Mar 2011 A1
20110066588 Xie et al. Mar 2011 A1
20110066648 Abhyanker et al. Mar 2011 A1
20110078012 Adamec Mar 2011 A1
20110078270 Galli et al. Mar 2011 A1
20110082747 Khan et al. Apr 2011 A1
20110087667 Hutheesing Apr 2011 A1
20110093340 Kramer et al. Apr 2011 A1
20110093498 Lunt et al. Apr 2011 A1
20110099142 Karjalainen et al. Apr 2011 A1
20110106658 Britt May 2011 A1
20110112976 Ryan et al. May 2011 A1
20110128144 Baron, Sr. et al. Jun 2011 A1
20110131172 Herzog et al. Jun 2011 A1
20110151898 Chandra et al. Jun 2011 A1
20110163160 Zini et al. Jul 2011 A1
20110174920 Yoeli Jul 2011 A1
20110181470 Qiu et al. Jul 2011 A1
20110184643 Abhyanker Jul 2011 A1
20110202426 Cretney et al. Aug 2011 A1
20110219318 Abhyanker Sep 2011 A1
20110231268 Ungos Sep 2011 A1
20110246258 Cragun et al. Oct 2011 A1
20110256895 Palin et al. Oct 2011 A1
20110258028 Satyavolu et al. Oct 2011 A1
20110264692 Kardell Oct 2011 A1
20110291851 Whisenant Dec 2011 A1
20120023196 Grayson et al. Jan 2012 A1
20120047102 Petersen et al. Feb 2012 A1
20120047448 Amidon et al. Feb 2012 A1
20120077523 Roumeliotis et al. Mar 2012 A1
20120084289 Hutheesing Apr 2012 A1
20120096098 Balassanian Apr 2012 A1
20120123667 Guéziec May 2012 A1
20120126974 Phillips et al. May 2012 A1
20120138732 Olm et al. Jun 2012 A1
20120163206 Leung et al. Jun 2012 A1
20120166935 Abhyanker Jun 2012 A1
20120191606 Milne Jul 2012 A1
20120191797 Masonis et al. Jul 2012 A1
20120209775 Milne Aug 2012 A1
20120221470 Lyon Aug 2012 A1
20120224076 Niedermeyer et al. Sep 2012 A1
20120232958 Silbert Sep 2012 A1
20120239483 Yankovich et al. Sep 2012 A1
20120239520 Lee Sep 2012 A1
20120246024 Thomas et al. Sep 2012 A1
20120254774 Patton Oct 2012 A1
20120259688 Kim Oct 2012 A1
20120264447 Rieger, III Oct 2012 A1
20120270567 Johnson Oct 2012 A1
20120278743 Heckman et al. Nov 2012 A1
20120331002 Carrington Dec 2012 A1
20130005307 Kim et al. Jan 2013 A1
20130024108 Grün Jan 2013 A1
20130041761 Voda Feb 2013 A1
20130041862 Yang et al. Feb 2013 A1
20130054317 Abhyanker Feb 2013 A1
20130055163 Matas et al. Feb 2013 A1
20130068876 Radu Mar 2013 A1
20130072114 Abhyanker Mar 2013 A1
20130073375 Abhyanker Mar 2013 A1
20130073474 Young et al. Mar 2013 A1
20130080217 Abhyanker Mar 2013 A1
20130103437 Nelson Apr 2013 A1
20130105635 Alzu'bi et al. May 2013 A1
20130110631 Mitchell et al. May 2013 A1
20130151455 Odom et al. Jun 2013 A1
20130159127 Myslinski Jun 2013 A1
20130204437 Koselka et al. Aug 2013 A1
20130254670 Eraker et al. Sep 2013 A1
20130282842 Blecon et al. Oct 2013 A1
20130297589 Work et al. Nov 2013 A1
20130301405 Fuste Vilella et al. Nov 2013 A1
20130303197 Chandra et al. Nov 2013 A1
20130317999 Zimberoff et al. Nov 2013 A1
20140032034 Raptopoulos et al. Jan 2014 A1
20140040179 Herzog et al. Feb 2014 A1
20140067167 Levien et al. Mar 2014 A1
20140067704 Abhyanker Mar 2014 A1
20140074736 Carrington Mar 2014 A1
20140081450 Kuehnrich et al. Mar 2014 A1
20140087780 Abhyanker et al. Mar 2014 A1
20140095293 Abhyanker Apr 2014 A1
20140100900 Abhyanker Apr 2014 A1
20140108540 Crawford Apr 2014 A1
20140108556 Abhyanker Apr 2014 A1
20140108613 Randall Apr 2014 A1
20140114866 Abhyanker Apr 2014 A1
20140115671 Abhyanker Apr 2014 A1
20140117147 Hanna et al. May 2014 A1
20140123246 Abhyanker May 2014 A1
20140123247 Abhyanker May 2014 A1
20140130140 Abhyanker May 2014 A1
20140135039 Sartipi May 2014 A1
20140136328 Abhyanker May 2014 A1
20140136414 Abhyanker May 2014 A1
20140136624 Abhyanker May 2014 A1
20140142848 Chen et al. May 2014 A1
20140143061 Abhyanker May 2014 A1
20140149244 Abhyanker May 2014 A1
20140149508 Middleton et al. May 2014 A1
20140164126 Nicholas et al. Jun 2014 A1
20140165091 Abhyanker Jun 2014 A1
20140172727 Abhyanker et al. Jun 2014 A1
20140204360 Dowski, Jr. et al. Jul 2014 A1
20140222908 Park et al. Aug 2014 A1
20140254896 Zhou et al. Sep 2014 A1
20140277834 Levien et al. Sep 2014 A1
20140316243 Niedermeyer Oct 2014 A1
Foreign Referenced Citations (26)
Number Date Country
1426876 Jun 2004 EP
101069834 Oct 2010 KR
1020120121376 Jul 2012 KR
9808055 Feb 1998 WO
9956143 Nov 1999 WO
0054170 Sep 2000 WO
0163423 Aug 2001 WO
0201455 Jan 2002 WO
0219236 Mar 2002 WO
0241115 May 2002 WO
03058540 Jul 2003 WO
2005103624 Nov 2005 WO
2006020471 Feb 2006 WO
2007108927 Sep 2007 WO
2007108928 Sep 2007 WO
2007113844 Oct 2007 WO
2008103149 Aug 2008 WO
2008105766 Sep 2008 WO
2008108772 Sep 2008 WO
2008118119 Oct 2008 WO
2008123851 Oct 2008 WO
2008111929 Nov 2008 WO
2009138559 Nov 2009 WO
2010103163 Sep 2010 WO
2013188762 Dec 2013 WO
2014121145 Aug 2014 WO
Non-Patent Literature Citations (79)
Entry
http://www.zdnet.com/news/perspective-social-networking-for-a11/149441.
http://www.remax.com/advancedsearch/.
http://global.remax.com/AdvancedListingSearch.aspx.
http://www.magicbricks.com/property-requirement-to-buy-rent/residential-commercial.
http://www.mapmyindia.com/solutions/tracking-lbs/vehicle-tracking.
http://www.mapmyindia.com/solutions/tracking-lbs/asset-tracking.
http://www.mapmyindia.com/solutions/enterprises/geo-tagging.
http://www.zillow.com/.
http://www.zillow.com/homes/for—rent/.
http://www.zillow.com/homes/for—sale/days—sort/53.409532,-64.072266,19.352611,-129.550781—rect/3—zm/.
http://www.trulia.com/home—prices/.
http://www.trulia.com/for—rent/New—York,NY.
http://www.realtor.com/rentals.
http://www.realtor.com/realestateforsale.
http://www.househunt.com/.
http://www.coldwellbanker.com/real—estate—search;jsessionid=S8ok3kaZtBh5GKHoo-Yzo28Z.sky-node04.
http://www.switchboard.com/.
http://www.anywho.com/whitepages.
http://wp.superpages.com/.
http://www.whitepages.com/.
http://www-personal.umich.edu/˜ladamic/papers/socialsearch/adamicsocialsearch.pdf.
http://cs.wellesley.edu/˜cs315/315—PPTs/L19-SocialNetworks/Stuff/wellesley.pdf.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.5230&rep=rep1&type=pdf.
http://www.ece.Isu.edu/xinli/Research/HeatMap—TVCG06.pdf.
http://www.usa-people-search.com/.
https://www.i-neighbors.org/.
“Friends and Neighbors on the Web”, 2001 by Lada A. Adamic et al. (pp. 9) http://www.hpl.hp.com/research/idl/papers/web10/fnn2.pdf.
“A social influence model of consumer participation in network- and small-group-based virtual communities”, International Journal of Research in Marketing, 2004 by Utpal M, Dholakia et al. (pp. 23) http://www-bcf.usc.edu/˜douglast/620/bettina1.pdf.
“BuzzMaps: a prototype social proxy for predictive utility”, ACM Digital Library, 2003 by Azzari Caillier Jarrett et al. (Pages) http://dl.acm.org/citation.cfm?id=948547&dl=ACM&coll=DL&CFID=456946313&CFTOKEN=50139062.
“Direct Annotation: A Drag-and-Drop Strategy for Labeling Photos”, University of Maryland, 2000 by Ben Shneiderman et al. (Pages 8) http://hcil2.cs.umd.edu/trs/2000-06/2000-06.pdf.
“Notification for Shared Annotation of Digital Documents”, Technical Report MSR-TR-2001-87, Sep. 19, 2001 by A. J. Bernheim Brush et al. (Pages 9) http://research.microsoft.com/pubs/69880/tr-2001-87.pdf.
“HT06, Tagging Paper, Taxonomy, Flickr, Academic Article, ToRead”, Yahoo Research Berkeley, CA, 2006 by Cameron Marlow et al. (Pages 9) http://www.danah.org/papers/Hypertext2006.pdf.
“ChipIn—the easy way to collect money”, Louis' Really Useful Finds, Mar. 12. (Page 1) http://reallyusefulthings.tumblr.com/post/28688782/chipin-the-easy-way-to-collect-money.
Benchmark-Backed Nextdoor Launches as a Private Social Network for Neighborhoods, Techcrunch Article, Oct. 26, 2011 by Leena Rao (6 Pages) http://techcrunch.com/2011/10/26/benchmark-backed-nextdoor-launches-as-a-private-social-network-for-neighborhoods/.
Fatdoor Founder Sues Benchmark Capital, Saying it Stole His Idea for Nextdoor, All Things Digital Article, Nov. 11, 2011, by Liz Gannes (7 Pages) http://allthingsd.com/20111111/fatdoor-founder-sues-benchmark-capital-saying-it-stole-his-idea-for-nextdoor/.
Fatdoor CEO Talks About Balancing Security with Community, Wired Magazine, May 31, 2007, by Terrence Russell (2 Pages) http://www.wired.com/2007/05/fatdoor—ceo—tal/.
Fatdoor Launches Social Network for Your Neighborhood, Mashable Article, May 28, 2007, by Kristen Nicole (3 Pages) http://mashable.com/2007/05/28/fatdoor/.
Screenshots of Nextdoor website and its features—as submitted in Case5:14-cv-02335-BLF on Jul. 15, 2014 (pp. 19) http://www.nextdoor.com/.
Fatdoor turns neighborhoods into online social networks, VentureBeat News Article, May 28, 2007, by Dan Kaplan (pp. 4) http://venturebeat.com/2007/05/28/fatdoor-turns-neighborhoods-into-online-social-networks/.
Halloween Just Got Easier: Nextdoor Debuts Halloween Treat Map, Nextdoor Blog, Oct. 17, 2013, by Anne Dreshfield (pp. 6) http://blog.nextdoor.com/2013/10/17/halloween-just-got-easier-nextdoor-debuts-halloween-treat-map/.
Helping Neighbors Connect, Screenshot from FrontPorchForum website—screenshots of Aug. 21, 2014 (3 Pages) http://frontporchforum.com/.
Advocacy Strategy for the Age of Connectivity, Netcentric Advocacy: fatdoor.com (alpha), Jun. 23, 2007 (p. 1) http://www.network-centricadvocacy.net/2007/06/fatdoorcom-alph.html.
Silicon Valley venture capital and legal globalization Blog, WayBack Machine Blogs Apr. 8, 2008, by Raj V. Abhyanker (pp. 2) https://web.archive.org/web/20080706001509/http:/abhyanker.blogspot.com/.
Frontporchforum.screenshots. Jul. 19, 2006 webarchive.org 1-15 (herein FrontPorch) (pp. 15).
Fatdoor where 2.0 Launch Coverage Report, Jun. 21, 2007, by Sterling Communications (pp. 24).
Screenshot of Fatdoor on Wikipedia, Apr. 12, 2007 (p. 1).
Case No. 5-14-cv-02335-BLF Complaint Fatdoor v. Nextdoor, Northern District of California, with Exhibits A, B and C {Part 1 (pp. 258)} and Exhibits D, E, F, G and H {Part 2 (pp. 222)}, Jul. 15, 2014.
Expert Report—Forensics of Jon Berryhill, Report, Nextdoor v. Abhyanker, Aug. 8, 2014, by Berryhill Computer forensics Inc. (pp. 23).
Case No. 3:12-cv-05667-EMC Complaint Nextdoor v. Abhyanker, Northern District of California, Nov. 5, 2012 (pp. 46).
Expert Report—Patent of Jeffrey G. Sheldon, Nextdoor v. Abhyanker, Aug. 8, 2014 (pp. 7).
Exhibits of Expert Report—Patent of Jeffrey G. Sheldon, Nextdoor v. Abhyanker, with Attachments A, B, C, D and E (1/2) {Part 1 (pp. 46)} and Attachments E (2/2) and F {Part 2 (pp. 41)}.
Case No. 111-CV-212924 Abhyanker v. Benchmark Capital Partners L.P., Superior Court of California, County of Santa Clara, Nov. 10, 2011 (pp. 78). http://www.scribd.com/doc/72441873/Stamped-COMPLAINT-Abhyanker-v-Benchmark-Capital-Et-Al-FILED-PUBLIC.
Neighbors Stop Diaper and Formula Thief in his Tracks, Nextdoor Blog, Aug. 15, 2014, by Anne Dreshfield (pp. 12) http://blog.nextdoor.com/.
Screenshot of Fatdoor website with its features—Aug. 21, 2014 (pp. 6) http://www.fatdoor.com/.
Screenshot of AirBnB website with its features—Aug. 21, 2014 (pp. 4)http://www.airbnb.com/.
Wikipedia entry AirBnB website—Aug. 21, 2014 (pp. 16) http://en.wikipedia.org/wiki/Airbnb.
AirBed&Breakfast for Connecting '07—Oct. 10, 2007 (1 Page) http://www.core77.com/blog/events/airbed—breakfast—for—connecting—07—7715.asp.
Case No. 5:14-cv-03844-PSG, Complaint Fatdoor, Inc. v. IP Analytics LLC and Google Inc.,Northern District of California, Aug. 25, 2014, (pp. 16).
Screenshot of Meetey on CrunchBase, Aug. 27, 2014, (pp. 3) http://www.crunchbase.com/organization/meetey.
Wikipedia entry Patch Media website—Aug. 27, 2014 (pp. 2) http://en.wikipedia.org/wiki/Patch—Media.
Wikipedia entry Yahoo! Groups website—Aug. 27, 2014 (pp. 7) http://en.wikipedia.org/wiki/Yahoo—groups.
Palo Alto News on Topix, Aug. 27, 2014, (pp. 3) http://www.topix.com/palo-alto.
Screenshot of My Neighbourhoods on Crunch Base, Aug. 27, 2014 (pp. 2) http://www.crunchbase.com/organization/my-neighbourhoods.
Screenshot of Dehood website, Aug. 27, 2014, (p. 1) http://www.dehood.com/home.
Wikipedia entry The Freecycle Network website—Aug. 27, 2014 (pp. 3) http://en.wikipedia.org/wiki/The—Freecycle—Network.
eDirectree Brings Group Wiki Twist to Social Networking, Techcrunch Article, Feb. 1, 2008 by Mark Hendrickson, (pp. 2) http://techcrunch.com/2008/02/01/edirectree-brings-group-wiki-twist-to-social-networking/.
Wikipedia entry Meetup website—Aug. 27, 2014 (p. 1) http://en.wikipedia.org/wiki/Meetup—(website).
Wikipedia entry Google Maps website—Aug. 27, 2014 (p. 18) http://en.wikipedia.org/wiki/Google—Maps.
Screenshot of Facebook website for groups, Aug. 27, 2014, (p. 1) https://www.facebook.com/about/groups.
Facebook Engineers bring Google+ Circles to Facebook, Article on ZDNet by Emil Protalinski, Jul. 3, 2011, (pp. 2) http://www.zdnet.com/blog/facebook/facebook-engineers-bring-google-circles-to-facebook/1885.
Screenshot of Uber website, Aug. 27, 2014, (pp. 5) https://www.uber.com/.
Screenshot of Lyft website, Aug. 27, 2014, (pp. 5) https://www.lyft.com/.
Wikipedia entry Google driverless car—Aug. 27, 2014 (pp. 4) http://en.wikipedia.org/wiki/Google—driverless—car.
Wikipedia entry Uber (company)—Aug. 27, 2014 (pp. 7) http://en.wikipedia.org/wiki/Uber—(company).
Wikipedia entry Autonomous car—Aug. 27, 2014 (pp. 15) http://en.wikipedia.org/wiki/Autonomous—car.
Screenshot of sidecar website, Aug. 27, 2014 (p. 1) http://www.sidecar.com/.
Screenshot of patch media website, Aug. 27, 2014 (pp. 6) http://patch.com/.
Screenshot of i-neighbors website, Aug. 27, 2014 (pp. 3) https://www.i-neighbors.org/howitworks.php.
“Crowdsourcing: Those that are willing to test & learn will be those that will win”, Newsline, Mar. 1, 2011 by Neil Perkin http://mediatel.co.uk/newsline/2011/03/01/crowdsourcing-those-that-are-willing-to-test-learn-will-be-those-that-will-win/.