COPOLYMER, INJECTION MOLDED BODY, MEMBER TO BE COMPRESSED, AND COATED WIRE

Information

  • Patent Application
  • 20230272136
  • Publication Number
    20230272136
  • Date Filed
    March 28, 2023
    a year ago
  • Date Published
    August 31, 2023
    8 months ago
Abstract
A copolymer containing tetrafluoroethylene unit, and a perfluoro(propyl vinyl ether) unit, wherein the copolymer has a content of the perfluoro(propyl vinyl ether) unit of 2.0 to 2.8% by mass with respect to the whole of the monomer units, and a melt flow rate of 23 to 30 g/10 min.
Description
TECHNICAL FIELD

The present disclosure relates to a copolymer, an injection molded article a member to be compressed and a coated electric wire.


BACKGROUND ART

A known fluororesin having excellent mechanical property, chemical property, electric property, etc., and also being melt-fabricable includes a tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA).


For example, in Patent Document 1, a sealing material is described which is composed of a fluorine-containing polymer having a polymerization unit based on tetrafluoroethylene and a polymerization unit based on one or more perfluoro(alkyl vinyl ether)s, wherein the fluorine-containing polymer has a content of the polymerization unit based on perfluoro(alkyl vinyl ether)s of 4.0% by mass or lower with respect to the whole of the polymerization units, and has a melt flow rate of 0.1 to 100 g/10 min.


RELATED ART
Patent Document

Patent Document 1: Japanese Patent Laid-Open No. 2013-177574


SUMMARY

According to the present disclosure, there is provided a copolymer containing tetrafluoroethylene unit and a perfluoro(propyl vinyl ether) unit, wherein the copolymer has a content of the perfluoro(propyl vinyl ether) unit of 2.0 to 2.8% by mass with respect to the whole of the monomer units, a melt flow rate of 23 to 30 g/10 min.


Effects

According to the present disclosure, there can be provided a copolymer having a high glass transition temperature and a suitable hardness also at high temperatures, from which injection molded articles excellent in the surface smoothness can be obtained in a high productivity, and a thin coating layer excellent in the capacitance stability can be easily formed on small-diameter core wires, and the copolymer from which formed articles excellent in the crack resistance and the abrasion resistance at high temperatures, remarkably excellent in the water vapor low permeability, hardly making water vapor to infiltrate, and very excellent in the sealability at high temperatures can be obtained.





BRIEF DESCRIPTION OF DRAWING

The FIG. 1 is a schematic cross-sectional diagram of a test jig to be used for a water vapor leak test.





DESCRIPTION OF EMBODIMENTS

Hereinafter, specific embodiments of the present disclosure will be described in detail, but the present disclosure is not limited to the following embodiments.


A copolymer of the present disclosure contains a tetrafluoroethylene (TFE) unit and a perfluoro(propyl vinyl ether) (PPVE) unit.


Patent Document 1 describes that a vehicular secondary battery is sometimes exposed to a high temperature of 85° C. or higher in the use environment, and in order to keep the airtightness and the liquid tightness of the battery interior, it is important that a sealing material exhibits a sufficient compression recovering property even under such a severe use condition, and can maintain high adhesion between a battery can and a sealing body.


However, a copolymer which can hold the sealing property also in a higher-temperature environment is demanded. A copolymer which can exhibit excellent sealability, in particular, even in a temperature exceeding the glass transition temperature of the copolymer, is demanded.


It has been found that by suitably regulating the content of the PPVE unit and the melt flow rate (MFR) of the copolymer containing the TFE unit and the PPVE unit, the glass transition temperature of the copolymer sufficiently increased, the copolymer exhibits an excellent heat resistance and a suitable hardness at high temperature, and the formed article containing the copolymer exhibits a very excellent sealability at high temperature. Since the copolymer has a suitable hardness at high temperature, the formed article excellent in the crack resistance and the abrasion resistance at high temperatures can be obtained, and even in the case where thin-wall formed articles are made, the formed articles exhibiting a sufficient rebound resilience can be obtained. Further it has been also found that by using such a copolymer, injection molded articles excellent in the surface smoothness, in a high productivity can be obtained; a thin coating layer excellent in the capacitance stability, on small-diameter core wires can be formed; and formed articles remarkably excellent in the water vapor low permeability, hardly making water vapor to infiltrate, and very excellent in the sealability at high temperatures can be obtained.


The copolymer of the present disclosure is a melt-fabricable fluororesin. The being melt-fabricable means that it is possible to melt and process a polymer by using a conventional processing device such as an extruder or an injection molding machine.


The content of the PPVE unit of the copolymer is, with respect to the whole of the monomer units, 2.0 to 2.8% by mass, preferably 2.1% by mass or higher, more preferably 2.2% by mass or higher, still more preferably 2.3% by mass or higher, especially preferably 2.4% by mass or higher and most preferably 2.6% by mass or higher, and preferably 2.7% by mass or lower. Due to that the content of the PPVE unit of the copolymer is in the above range, the copolymer higher in the glass transition temperature and having a suitable hardness also at high temperatures can be obtained. Further, formed articles excellent in the crack resistance and the abrasion resistance at high temperatures, remarkably excellent in the water vapor low permeability, hardly making water vapor to infiltrate and very excellent in the sealability at high temperatures can be obtained. Further by using such a copolymer, injection molded articles excellent in the surface smoothness can be obtained in a high productivity, and a thin coating layer excellent in the capacitance stability can be easily formed on small-diameter core wires.


The content of the TFE unit of the copolymer is, with respect to the whole of the monomer units, preferably 97.2 to 98.0% by mass, more preferably 97.9% by mass or lower, still more preferably 97.8% by mass or lower, further still more preferably 97.7% by mass or lower, especially preferably 97.6% by mass or lower and most preferably 97.4% by mass or lower, and more preferably 97.3% by mass or higher. Due to that the content of the TFE unit of the copolymer is in the above range, the copolymer higher in the glass transition temperature and having a suitable hardness also at high temperatures can be obtained. Further, formed articles excellent in the crack resistance and the abrasion resistance at high temperatures, remarkably excellent in the water vapor low permeability, hardly making water vapor to infiltrate and very excellent in the sealability at high temperatures can be obtained. Further by using such a copolymer, injection molded articles excellent in the surface smoothness can be obtained in a high productivity, and a thin coating layer excellent in the capacitance stability can be more easily formed on small-diameter core wires.


In the present disclosure, the content of each monomer unit in the copolymer is measured by a 19F-NMR method.


The copolymer can also contain a monomer unit originated from a monomer copolymerizable with TFE and PPVE. In this case, the content of the monomer unit copolymerizable with TFE and PPVE is, with respect to the whole of monomer units of the copolymer, preferably 0 to 4.0% by mass, more preferably 0.05 to 0.80% by mass and still more preferably 0.1 to 0.5% by mass.


The monomers copolymerizable with TFE and PPVE may include hexafluoropropylene (HFP), vinyl monomers represented by CZ1Z2=CZ3 (CF2) nZ4 wherein Z1, Z2 and Z3 are identical or different, and represent H or F; Z4 represents H, F or Cl; and n represents an integer of 2 to 10, and alkyl perfluorovinyl ether derivatives represented by CF2=CF-OCH2-Rf1 wherein Rf1 represents a perfluoroalkyl group having 1 to 5 carbon atoms. Among these, HFP is preferred.


The copolymer is preferably at least one selected from the group consisting of a copolymer consisting only of the TFE unit and the PPVE unit, and TFE/HFP/PPVE copolymer, and is more preferably a copolymer consisting only of the TFE unit and the PPVE unit.


The melt flow rate (MFR) of the copolymer is 23 to 30 g/10 min, preferably 24 g/10 min or higher, more preferably 25 g/10 min or higher and still more preferably 26 g/10 min or higher, and preferably 27 g/10 min or lower.


Due to that the MFR of the copolymer is in the above range, by using such a copolymer, injection molded articles further excellent in the surface smoothness can be obtained in a higher productivity, and a thin coating layer excellent in the capacitance stability can be easily formed on small-diameter core wires. Further, formed articles remarkably excellent in the water vapor low permeability, hardly making water vapor to infiltrate, excellent in the crack resistance and the abrasion resistance at high temperatures, and very excellent in the sealability at high temperatures can be obtained.


Due to that the MFR of the copolymer is in the above range, since the fluidity during forming of the copolymer is improved, a relatively low forming temperature is enabled to be adopted. Consequently, in the case where the number of functional groups of the copolymer is small, there is exhibited the synergetic effect of making the MFR to be in the above range and making the number of functional groups of the copolymer to be reduced, and the corrosion of a metal mold can be suppressed.


Further, by using the copolymer of the present disclosure, small injection formed articles having thin-wall portions can be produced simultaneously in a large number thereof.


In the present disclosure, the MFR is a value obtained as a mass (g/10 min) of the polymer flowing out from a nozzle of 2.1 mm in inner diameter and 8 mm in length per 10 min at 372° C. under a load of 5 kg using a melt indexer, according to ASTM D1238.


The MFR can be regulated by regulating the kind and amount of a polymerization initiator to be used in polymerization of monomers, the kind and amount of a chain transfer agent, and the like.


In the present disclosure, the number of functional groups of the copolymer per 106 main-chain carbon atoms thereof is preferably 50 or less, more preferably 40 or less, still more preferably 30 or less, further still more preferably 20 or less, further still more preferably 15 or less, especially preferably 10 or less and most preferably 6 or less. Due to that the number of functional groups of the copolymer is in the above range, the corrosion of a metal mold to be used for forming can be suppressed, and the electric property can more be improved. Further, formed articles hardly making fluorine ions to dissolve out in an electrolytic solution can be obtained.


Further, since there is suppressed the functional groups of the copolymer decomposing and generating gasses and causing forming defects such as foaming, it is preferable to regulate the number of functional groups of the copolymer in the above range. In the case of using a multi-cavity metal mold for forming a large number of thin-wall injection molded articles, or also in the case of using a single cavity metal mold for forming thin-wall large injection molded articles, the corrosion of the metal mold can be suppressed. When the number of functional groups of the copolymer is too large, there rise the possibilities of causing forming defects and metal mold corrosion. Although by lowering the forming temperature, these possibilities can be reduced, since when the forming temperature is lowered, the formability of the copolymer deteriorates, there arises a need of raising the MFR of the copolymer, and formed articles may not be obtained which can sufficiently suppress the infiltration of water vapor and formed articles may not be obtained which are excellent in the sealability at high temperatures. When the number of functional groups of the copolymer is in the above range, even when the MFR of the copolymer is in the above range, the copolymer can be formed without lowering the forming temperature, and formed articles excellent in physical properties can be obtained in a high productivity.


For identification of the kind of the functional groups and measurement of the number of the functional groups, infrared spectroscopy can be used.


The number of the functional groups is measured, specifically, by the following method. First, the copolymer is molded by cold press to prepare a film of 0.25 to 0.30 mm in thickness. The film is analyzed by Fourier transform infrared spectroscopy to obtain an infrared absorption spectrum, and a difference spectrum against a base spectrum that is completely fluorinated and has no functional groups is obtained. From an absorption peak of a specific functional group observed on this difference spectrum, the number N of the functional group per 1×106 carbon atoms in the copolymer is calculated according to the following formula (A).









N
=
I
×

K
/
t





­­­(A)









  • I: absorbance

  • K: correction factor

  • t: thickness of film (mm)



For reference, for some functional groups, the absorption frequency, the molar absorption coefficient and the correction factor are shown in Table 1. Then, the molar absorption coefficients are those determined from FT-IR measurement data of low molecular model compounds.





TABLE 1








Functional Group
Absorption Frequency (cm-1)
Molar Extinction Coefficient (l/cm/mol)
Correction Factor
Model Compound




—COF
1883
600
388
C7F15COF


—COOH free
1815
530
439
H(CF2)6COOH


—COOH bonded
1779
530
439
H(CF2)6COOH


—COOCH3
1795
680
342
C7F15COOCH3


—CONH2
3436
506
460
C7H15CONH2


—CH2OH2, —OH
3648
104
2236
C7H15CH2OH


—CF2H
3020
8.8
26485
H(CF2CF2)3CH2OH


—CF═CF2
1795
635
366
CF2=CF2






Absorption frequencies of —CH2CF2H, —CH2COF, —CH2COOH, —CH2COOCH3 and —CH2CONH2 are lower by a few tens of kaysers (cm-1) than those of —CF2H, —COF, —COOH free and —COOH bonded, —COOCH3 and —CONH2 shown in the Table, respectively.


For example, the number of the functional group —COF is the total of the number of a functional group determined from an absorption peak having an absorption frequency of 1,883 cm-1 derived from —CF2COF and the number of a functional group determined from an absorption peak having an absorption frequency of 1,840 cm-1 derived from —CH2COF.


The functional groups are ones present on main chain terminals or side chain terminals of the copolymer, and ones present in the main chain or the side chains. The number of the functional groups may be the total of numbers of —CF═CF2, —CF2H, —COF, —COOH, —COOCH3, —CONH2 and —CH2OH.


The functional groups are introduced to the copolymer by, for example, a chain transfer agent or a polymerization initiator used for production of the copolymer. For example, in the case of using an alcohol as the chain transfer agent, or a peroxide having a structure of —CH2OH as the polymerization initiator, —CH2OH is introduced on the main chain terminals of the copolymer. Alternatively, the functional group is introduced on the side chain terminal of the copolymer by polymerizing a monomer having the functional group.


The copolymer satisfying the above range regarding the number of functional groups can be obtained by subjecting the copolymer to a fluorination treatment. That is, the copolymer of the present disclosure is preferably one which is subjected to the fluorination treatment. Further, the copolymer of the present disclosure preferably has —CF3 terminal groups.


The melting point of the copolymer is preferably 305 to 315° C. and more preferably 305 to 313° C. Due to that the melting point is in the above range, there can be obtained the copolymer giving formed articles better in the sealability particularly at high temperatures.


In the present disclosure, the melting point can be measured by using a differential scanning calorimeter [DSC].


The glass transition temperature (Tg) of the copolymer is preferably 95° C. or higher and more preferably 99° C. or higher, and preferably 110° C. or lower, more preferably 105° C. or lower and still more preferably 100.0° C. or lower. Due to that the copolymer of the present disclosure can have such a high glass transition temperature, there can be obtained the copolymer giving formed articles exhibiting excellent heat resistance and being better in the sealability particularly at high temperatures.


In the present disclosure, the glass transition temperature can be measured by a dynamic viscoelasticity measurement.


The water vapor permeability of the copolymer is preferably lower than 7.0 g·cm/m2, more preferably 6.8 g·cm/m2 or lower and still more preferably 6.6 g·cm/m2 or lower. Due to that the copolymer of the present disclosure is suitably regulated in the content of the PPVE unit and the melt flow rate (MFR) of the copolymer containing the TFE unit and the PPVE unit, the copolymer has a remarkably excellent water vapor low permeability. Hence, by using a formed article containing the copolymer of the present disclosure, for example, as a member to be compressed of a secondary battery, the infiltration of moisture can effectively be prevented even under a high-temperature high-humidity condition.


In the present disclosure, the water vapor permeability can be measured under the condition of a temperature of 95° C. and for 30 days. Specific measurement of the water vapor permeability can be carried out by a method described in Examples.


In the copolymer of the present disclosure, the amount of fluorine ions dissolving out therefrom detected by an electrolytic solution immersion test is, in terms of mass, preferably 1.0 ppm or lower, more preferably 0.8 ppm or lower and still more preferably 0.7 ppm or lower. Due to that the amount of fluorine ions dissolving out is in the above range, the generation of gasses such as HF in a non-aqueous electrolyte battery can be more suppressed, and the deterioration and the shortening of the service life of the battery performance of a non-aqueous electrolyte battery can be more suppressed.


In the present disclosure, the electrolytic solution immersion test can be carried out by preparing a test piece of the copolymer having a weight corresponding to that of 10 sheets of formed articles (15 mm × 15 mm × 0.2 mm) of the copolymer, and putting, in a thermostatic chamber of 80° C., a glass-made sample bottle in which the test piece and 2 g of dimethyl carbonate (DMC) and allowing the resultant to stand for 144 hours.


The copolymer of the present disclosure can give formed articles very excellent in the sealability at high temperatures. The sealability at high temperatures can be evaluated by measuring the storage elastic modulus (E′) at 150° C., the amount of recovery at 150° C. and the surface pressure at 150° C. The copolymer high in the storage elastic modulus (E′) at 150° C. and large in the amount of recovery at 150° C. can continuously exhibit a sufficient rebound resilience also at high temperatures. Further, the copolymer high in the surface pressure at 150° C. can give formed articles very excellent in the sealability at high temperatures. The copolymer of the present disclosure can give formed articles very excellent in the sealability at high temperatures exceeding the glass transition temperature of the copolymer.


The storage elastic modulus (E′) at 150° C. of the copolymer is preferably 145 MPa or higher, more preferably 150 MPa or higher and still more preferably 155 MPa or higher, and preferably 1,000 MPa or lower, more preferably 500 MPa or lower and still more preferably 300 MPa or lower. Due to that the storage elastic modulus (E′) at 150° C. of the copolymer is in the above range, the copolymer which gives formed articles having a suitable hardness also at high temperatures, being capable of continuously exhibiting a sufficient rebound resilience also at high temperatures, and being further excellent in the sealability at high temperatures can be obtained.


The storage elastic modulus (E′) can be measured by carrying out a dynamic viscoelasticity measurement under the condition of a temperature-increasing rate of 2° C./min and a frequency of 10 Hz and in the range of 30 to 250° C. The storage elastic modulus (E′) at 150° C. can be raised by regulating the content of the PPVE unit and the melt flow rate (MFR) of the copolymer.


The surface pressure at 150° C. of the copolymer is preferably 1.30 MPa or higher, more preferably 1.40 MPa or higher and still more preferably 1.50 MPa or higher; the upper limit is not limited, but may be 2.00 MPa or lower. The surface pressure at 150° C. of the copolymer can be raised by regulating the content of the PPVE unit and the melt flow rate (MFR) of the copolymer.


The surface pressure can be determined as follows. A test piece obtained from the copolymer is deformed at a compression deformation rate of 50%, allowed to stand as is at 150° C. for 18 hours, released from the compressive state and allowed to stand at room temperature for 30 min, and thereafter, the height of the test piece (height of the test piece after being compressively deformed) is measured; and the surface pressure can be calculated by the following formula using the height of the test piece after being compressively deformed, and the storage elastic modulus (MPa) at 150° C.

  • surface pressure at 150° C. (MPa) = (t2 - t1)/t1 × E′
  • t1: an original height (mm) of a test piece before being compressively deformed × 50%
  • t2: a height (mm) of the test piece after being compressively deformed
  • E′: a storage elastic modulus (MPa) at 150° C.


The amount of recovery at 150° C. of the copolymer can be measured by the same method as in the measurement of the surface pressure. The amount of recovery at 150° C. of a formed article is, in the case where a test piece is deformed at a compression deformation rate of 50%, a difference (t2-t1) between a height (t2) of the test piece after being compression deformed and an original height (t1) of the test piece before being compression deformed. The amount of recovery at 150° C. of a formed article can be made large by regulating the content of the PPVE unit and the melt flow rate (MFR) of the copolymer.


The dielectric loss tangent at 6 GHz of the copolymer of the present disclosure is preferably 6.0×10-4 or lower, more preferably 5.0×10-4 or lower and still more preferably 4.0×10-4 or lower. The dielectric loss tangent of the copolymer, by regulating the number of functional groups of the copolymer, can be made to be in the above range. In recent years, along with the increase in the amount of information to be transmitted, radio waves in high frequency regions are likely to be increasingly used. For example, for high frequency wireless LAN, satellite communication, cell phone base stations and the like, microwaves of 3 to 30 GHz are used. As materials to be used for communication devices using such high frequencies, materials having a low dielectric loss tangent (tanδ) are demanded. When the dielectric loss tangent of the copolymer of the present disclosure is in the above range, since the attenuation factor of high frequency signals largely decreases, the case is preferable.


In the present disclosure, the dielectric loss tangent is a value obtained by using a network analyzer, manufactured by Agilent Technologies Inc., and a cavity resonator, and measuring the changes in the resonance frequency and the electric field strength in the temperature range of 20 to 25° C.


The copolymer of the present disclosure can be produced by a polymerization method such as suspension polymerization, solution polymerization, emulsion polymerization or bulk polymerization. The polymerization method is preferably emulsion polymerization or suspension polymerization. In these polymerization methods, conditions such as temperature and pressure, and a polymerization initiator and other additives can suitably be set depending on the formulation and the amount of the copolymer.


As the polymerization initiator, an oil-soluble radical polymerization initiator, or a water-soluble radical polymerization initiator may be used.


The oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, and examples thereof typically include:

  • dialkyl peroxycarbonates such as di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate and di-2-ethoxyethyl peroxydicarbonate;
  • peroxyesters such as t-butyl peroxyisobutyrate and t-butyl peroxypivalate;
  • dialkyl peroxides such as di-t-butyl peroxide; and
  • di[fluoro(or fluorochloro)acyl] peroxides.


The di[fluoro(or fluorochloro)acyl] peroxides include diacyl peroxides represented by [(RfCOO)-]2 wherein Rf is a perfluoroalkyl group, an ω-hydroperfluoroalkyl group or a fluorochloroalkyl group.


Examples of the di[fluoro(or fluorochloro)acyl] peroxides include di(ω-hydro-dodecafluorohexanoyl) peroxide, di(ω-hydro-tetradecafluoroheptanoyl) peroxide, di(ω-hydro-hexadecafluorononanoyl) peroxide, di(perfluoropropionyl) peroxide, di(perfluorobutyryl) peroxide, di(perfluorovaleryl) peroxide, di(perfluorohexanoyl) peroxide, di(perfluoroheptanoyl) peroxide, di(perfluorooctanoyl) peroxide, di(perfluorononanoyl) peroxide, di(ω-chloro-hexafluorobutyryl) peroxide, di(ω-chloro-decafluorohexanoyl) peroxide, di(ω-chloro-tetradecafluorooctanoyl) peroxide, ω-hydrodo-decafluoroheptanoyl-ω-hydrohexadecafluorononanoyl peroxide, ω-chloro-hexafluorobutyryl-ω-chloro-decafluorohexanoyl peroxide, ω-hydrododecafluoroheptanoyl-perfluorobutyryl peroxide, di(dichloropentafluorobutanoyl) peroxide, di(trichlorooctafluorohexanoyl) peroxide, di(tetrachloroundecafluorooctanoyl) peroxide, di(pentachlorotetradecafluorodecanoyl) peroxide and di(undecachlorotriacontafluorodocosanoyl) peroxide.


The water-soluble radical polymerization initiator may be a known water-soluble peroxide, and examples thereof include ammonium salts, potassium salts and sodium salts of persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonic acid and the like, organic peroxides such as disuccinoyl peroxide and diglutaroyl peroxide, and t-butyl permaleate and t-butyl hydroperoxide. A reductant such as a sulfite salt may be combined with a peroxide and used, and the amount thereof to be used may be 0.1 to 20 times with respect to the peroxide.


In the polymerization, a surfactant, a chain transfer agent and a solvent may be used, which are conventionally known.


The surfactant may be a known surfactant, for example, nonionic surfactants, anionic surfactants and cationic surfactants may be used. Among these, fluorine-containing anionic surfactants are preferred, and more preferred are linear or branched fluorine-containing anionic surfactants having 4 to 20 carbon atoms, which may contain an ether bond oxygen (that is, an oxygen atom may be inserted between carbon atoms). The amount of the surfactant to be added (with respect to water in the polymerization) is preferably 50 to 5,000 ppm.


Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetate esters such as ethyl acetate and butyl acetate; alcohols such as methanol and ethanol; mercaptans such as methylmercaptan; and halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride and methyl chloride. The amount of the chain transfer agent to be added may vary depending on the chain transfer constant value of the compound to be used, but is usually in the range of 0.01 to 20% by mass with respect to the solvent in the polymerization.


The solvent may include water and mixed solvents of water and an alcohol.


In the suspension polymerization, in addition to water, a fluorosolvent may be used. The fluorosolvent may include hydrochlorofluoroalkanes such as CH3CClF2, CH3CCl2F, CF3CF2CCl2H and CF2ClCF2CFHCl; chlorofluoroalaknes such as CF2ClCFClCF2CF3 and CF3CFClCFClCF3; hydrofluroalkanes such as CF3CFHCFHCF2CF2CF3, CF2HCF2CF2CF2CF2H and CF3CF2CF2CF2CF2CF2CF2H; hydrofluoroethers such as CH3OC2F5, CH3OC3F5CF3CF2CH2OCHF2, CF3CHFCF2OCH3, CHF2CF2OCH2F, (CF3)2CHCF2OCH3, CF3CF2CH2OCH2CHF2 and CF3CHFCF2OCH2CF3; and perfluoroalkanes such as perfluorocyclobutane, CF3CF2CF2CF3, CF3CF2CF2CF2CF3 and CF3CF2CF2CF2CF2CF3, and among these, perfluoroalkanes are preferred. The amount of the fluorosolvent to be used is, from the viewpoint of the suspensibility and the economic efficiency, preferably 10 to 100% by mass with respect to an aqueous medium.


The polymerization temperature is not limited, and may be 0 to 100° C. The polymerization pressure is suitably set depending on other polymerization conditions to be used such as the kind, the amount and the vapor pressure of the solvent, and the polymerization temperature, but may usually be 0 to 9.8 MPaG.


In the case of obtaining an aqueous dispersion containing the copolymer by the polymerization reaction, the copolymer can be recovered by coagulating, cleaning and drying the copolymer contained in the aqueous dispersion. Then in the case of obtaining the copolymer as a slurry by the polymerization reaction, the copolymer can be recovered by taking out the slurry from a reaction container, and cleaning and drying the slurry. The copolymer can be recovered in a shape of powder by the drying.


The copolymer obtained by the polymerization may be formed into pellets. A method of forming into pellets is not limited, and a conventionally known method can be used. Examples thereof include methods of melt extruding the copolymer by using a single-screw extruder, a twin-screw extruder or a tandem extruder and cutting the resultant into a predetermined length to form the copolymer into pellets. The extrusion temperature in the melt extrusion needs to be varied depending on the melt viscosity and the production method of the copolymer, and is preferably the melting point of the copolymer + 20° C. to the melting point of the copolymer + 140° C. A method of cutting the copolymer is not limited, and there can be adopted a conventionally known method such as a strand cut method, a hot cut method, an underwater cut method, or a sheet cut method. Volatile components in the obtained pellets may be removed by heating the pellets (degassing treatment). Alternatively, the obtained pellets may be treated by bringing the pellets into contact with hot water of 30 to 200° C., steam of 100 to 200° C. or hot air of 40 to 200° C.


Alternatively, the copolymer obtained by the polymerization may be subjected to fluorination treatment. The fluorination treatment can be carried out by bringing the copolymer having been subjected to no fluorination treatment into contact with a fluorine-containing compound. By the fluorination treatment, thermally unstable functional groups of the copolymer, such as —COOH, —COOCH3, —CH2OH, —COF, —CF═CF2 and —CONH2, and thermally relatively stable functional groups thereof, such as —CF2H, can be converted to thermally very stable —CF3. Consequently, the total number (number of functional groups) of —COOH, —COOCH3, —CH2OH, —COF, —CF═CF2, —CONH2 and —CF2H of the copolymer can easily be controlled in the above-mentioned range.


The fluorine-containing compound is not limited, but includes fluorine radical sources generating fluorine radicals under the fluorination treatment condition. The fluorine radical sources include F2 gas, CoF3, AgF2, UF6, OF2, N2F2, CF3OF, halogen fluorides (for example, IFs and ClF3) .


The fluorine radical source such as F2 gas may be, for example, one having a concentration of 100%, but from the viewpoint of safety, the fluorine radical source is preferably mixed with an inert gas and diluted therewith to 5 to 50% by mass, and then used; and it is more preferably to be diluted to 15 to 30% by mass. The inert gas includes nitrogen gas, helium gas and argon gas, but from the viewpoint of the economic efficiency, nitrogen gas is preferred.


The condition of the fluorination treatment is not limited, and the copolymer in a melted state may be brought into contact with the fluorine-containing compound, but the fluorination treatment can be carried out usually at a temperature of not higher than the melting point of the copolymer, preferably at 20 to 240° C. and more preferably at 100 to 220° C. The fluorination treatment is carried out usually for 1 to 30 hours and preferably 5 to 25 hours. The fluorination treatment is preferred which brings the copolymer having been subjected to no fluorination treatment into contact with fluorine gas (F2 gas) .


A composition may be obtained by mixing the copolymer of the present disclosure and as required, other components. The other components include fillers, plasticizers, processing aids, mold release agents, pigments, flame retarders, lubricants, light stabilizers, weathering stabilizers, electrically conductive agents, antistatic agents, ultraviolet absorbents, antioxidants, foaming agents, perfumes, oils, softening agents and dehydrofluorination agents.


Examples of the fillers include silica, kaolin, clay, organo clay, talc, mica, alumina, calcium carbonate, calcium terephthalate, titanium oxide, calcium phosphate, calcium fluoride, lithium fluoride, crosslinked polystyrene, potassium titanate, carbon, boron nitride, carbon nanotube and glass fiber. The electrically conductive agents include carbon black. The plasticizers include dioctyl phthalate and pentaerythritol. The processing aids include carnauba wax, sulfone compounds, low molecular weight polyethylene and fluorine-based auxiliary agents. The dehydrofluorination agents include organic oniums and amidines.


As the above-mentioned other components, other polymers other than the copolymer may be used. The other polymers include fluororesins other than the copolymer, fluoroelastomer, and non-fluorinated polymers.


A method of producing the composition includes a method of dry mixing the copolymer and the other components, and a method of previously mixing the copolymer and the other components by a mixer and then melt kneading the mixture by a kneader, melt extruder or the like.


The copolymer of the present disclosure or the above-mentioned composition can be used as a processing aid, a forming material and the like, but use as a forming material is suitable. Further, there can also be utilized aqueous dispersions, solutions and suspensions of the copolymer of the present disclosure, and the copolymer/solvent-based materials; and these can be used for application of coating materials, encapsulation, impregnation, and casting of films. However, since the copolymer of the present disclosure has the above-mentioned properties, it is preferable to use the copolymer as the forming material.


Molded articles may be obtained by forming the copolymer of the present disclosure or the above composition.


A method of forming the copolymer or the composition is not limited, and includes injection molding, extrusion forming, compression molding, blow molding, transfer molding, rotomolding and rotolining molding. As the forming method, among these, preferable are a compression molding method, an injection molding method, an extrusion forming method and a transfer molding method; from the viewpoint of being able to produce formed articles in a high productivity, more preferable are injection molding and extrusion forming, and still more preferable is injection molding. That is, it is preferable that formed articles are compression molded articles, injection molded articles, extrusion formed articles or transfer molded articles; and from the viewpoint of being able to produce formed articles in a high productivity, being injection molded articles or extrusion formed articles is more preferable, and being injection molded articles is still more preferable.


The shapes of the formed articles are not limited, and may be shapes of, for example, hoses, pipes, tubes, electric wire coatings, sheets, seals, gaskets, packings, films, tanks, rollers, bottles and containers.


The copolymer of the present disclosure, the above composition and the above formed articles can be used, for example, in the following applications.


Food packaging films, and members for liquid transfer for food production apparatuses, such as lining materials of fluid transfer lines, packings, sealing materials and sheets, used in food production processes;

  • chemical stoppers and packaging films for chemicals, and members for chemical solution transfer, such as lining materials of liquid transfer lines, packings, sealing materials and sheets, used in chemical production processes; inner surface lining materials of chemical solution tanks and piping of chemical plants and semiconductor factories; members for fuel transfer, such as O (square) rings, tubes, packings, valve stem materials, hoses and sealing materials, used in fuel systems and peripheral equipment of automobiles, and such as hoses and sealing materials, used in ATs of automobiles;
  • members used in engines and peripheral equipment of automobiles, such as flange gaskets of carburetors, shaft seals, valve stem seals, sealing materials and hoses, and other vehicular members such as brake hoses, hoses for air conditioners, hoses for radiators, and electric wire coating materials;
  • members for chemical transfer for semiconductor production apparatuses, such as O (square) rings, tubes, packings, valve stem materials, hoses, sealing materials, rolls, gaskets, diaphragms and joints;
  • members for coating and inks, such as coating rolls, hoses and tubes, for coating facilities, and containers for inks; members for food and beverage transfer, such as tubes, hoses, belts, packings and joints for food and beverage, food packaging materials, and members for glass cooking appliances; members for waste liquid transport, such as tubes and hoses for waste transport;
  • members for high-temperature liquid transport, such as tubes and hoses for high-temperature liquid transport;
  • members for steam piping, such as tubes and hoses for steam piping;
  • corrosionproof tapes for piping, such as tapes wound on piping of decks and the like of ships;
  • various coating materials, such as electric wire coating materials, optical fiber coating materials, and transparent front side coating materials installed on the light incident side and back side lining materials of photoelectromotive elements of solar cells;
  • diaphragms and sliding members such as various types of packings of diaphragm pumps;
  • films for agriculture, and weathering covers for various kinds of roof materials, sidewalls and the like;
  • interior materials used in the building field, and coating materials for glasses such as non-flammable fireproof safety glasses; and
  • lining materials for laminate steel sheets used in the household electric field.


The fuel transfer members used in fuel systems of automobiles further include fuel hoses, filler hoses and evap hoses. The above fuel transfer members can also be used as fuel transfer members for gasoline additive-containing fuels, resultant to sour gasoline, resultant to alcohols, and resultant to methyl tertiary butyl ether and amines and the like.


The above chemical stoppers and packaging films for chemicals have excellent chemical resistance to acids and the like. The above chemical solution transfer members also include corrosionproof tapes wound on chemical plant pipes.


The above formed articles also include vehicular radiator tanks, chemical solution tanks, bellows, spacers, rollers and gasoline tanks, waste solution transport containers, high-temperature liquid transport containers and fishery and fish farming tanks.


The above formed articles further include members used for vehicular bumpers, door trims and instrument panels, food processing apparatuses, cooking devices, water- and oil-repellent glasses, illumination-related apparatuses, display boards and housings of OA devices, electrically illuminated billboards, displays, liquid crystal displays, cell phones, printed circuit boards, electric and electronic components, sundry goods, dust bins, bathtubs, unit baths, ventilating fans, illumination frames and the like.


Due to that formed articles containing the copolymer of the present disclosure are excellent in the heat resistance and have a suitable hardness also at high temperatures, even in the case where the formed articles are made as thin-wall formed articles, the formed articles exhibit a sufficient rebound resilience. Further, due to that formed articles containing the copolymer of the present disclosure are excellent in the crack resistance and the abrasion resistance at high temperatures, are remarkably excellent in the water vapor low permeability, hardly make water vapor to infiltrate, and are very excellent in the sealability at high temperatures, the formed articles can suitably be utilized as members to be compressed containing the copolymer.


The members to be compressed of the present disclosure, even when being deformed at a high compression deformation rate, exhibit a high surface pressure. The members to be compressed of the present disclosure can be used in a state of being compressed at a compression deformation rate of 10% or higher, and can be used in a state of being compressed at a compression deformation rate of 20% or higher or 25% or higher. By using the members to be compressed of the present disclosure by being deformed at such a high compression deformation rate, a certain rebound resilience can be retained for a long term and the sealing property and the insulating property can be retained for a long term.


The members to be compressed of the present disclosure, even when being deformed at a high temperature and at a high compression deformation rate, exhibit a high storage elastic modulus and a large amount of recovery and a high surface pressure. The members to be compressed of the present disclosure can be used at 150° C. or higher and in a state of being compression deformed at a compression deformation rate of 10% or higher, and can be used at 150° C. or higher and in a state of being compression deformed at a compression deformation rate of 20% or higher or 25% or higher. By using the members to be compressed of the present disclosure by being deformed at such a high temperature and at such a high compression deformation rate, a certain rebound resilience can be retained also at high temperatures for a long term and the sealing property and the insulating property at high temperatures can be retained for a long term.


In the case where the members to be compressed are used in a state of being compressed, the compression deformation rate is a compression deformation rate of a portion having the highest compression deformation rate. For example, in the case where a flat member to be compressed is used in a state of being compressed in the thickness direction, the compression deformation rate is that in the thickness direction. Further for example, in the case where a member to be compressed is used with only some portions of the member in a state of being compressed, the compression deformation rate is that of a portion having the highest compression deformation rate among compression deformation rates of the compressed portions.


The size and shape of the members to be compressed of the present disclosure may suitably be set according to applications, and are not limited. The shape of the members to be compressed of the present disclosure may be, for example, annular. The members to be compressed of the present disclosure may also have, in plan view, a circular shape, an elliptic shape, a corner-rounded square or the like, and may be a shape having a throughhole in the central portion thereof.


It is preferable that the members to be compressed of the present disclosure are used as members constituting non-aqueous electrolyte batteries. Due to that the members to be compressed of the present disclosure are remarkably excellent in the water vapor low permeability and excellent in the crack resistance and the abrasion resistance at high temperatures, hardly make water vapor to infiltrate, and are very excellent in the sealability at high temperatures, the members to be compressed are especially suitable as members to be used in a state of contacting with a non-aqueous electrolyte solution in non-aqueous electrolyte solution batteries. That is, the members to be compressed of the present disclosure may also be ones having a liquid-contact surface with a non-aqueous electrolyte in the non-aqueous electrolyte batteries.


The members to be compressed of the present disclosure hardly make water vapor to penetrate. Therefore, by using the members to be compressed of the present disclosure, the permeation of water vapor from the outside to secondary batteries can be suppressed. Consequently, by using the members to be compressed of the present disclosure, the deterioration of the battery performance and the shortening of the service life of non-aqueous electrolyte batteries can be suppressed.


The water vapor permeability of the members to be compressed of the present disclosure is, from the viewpoint that the deterioration of the battery performance and the shortening of the service life of non-aqueous electrolyte batteries can more be suppressed, preferably lower than 7.0 g·cm/m2, more preferably 6.8 g·cm/m2 or lower and still more preferably 6.6 g·cm/m2 or lower. The water vapor permeability can be measured under the condition of at a temperature of 95° C. and for 30 days.


The members to be compressed of the present disclosure hardly make water vapor to infiltrate. Therefore, the infiltration of water vapor from the outside into secondary batteries can be suppressed. Consequently, by using the members to be compressed of the present disclosure, the deterioration of the battery performance and the shortening of the service life of non-aqueous electrolyte batteries can be suppressed. The degree of infiltration of water vapor into the members to be compressed can be checked by the following water vapor leak amount.


The water vapor leak amount of the members to be compressed of the present disclosure is, from the viewpoint that the deterioration of the battery performance and the shortening of the service life of non-aqueous electrolyte batteries can more be suppressed, preferably smaller than 0.0030 g/1,000 hrs, more preferably 0.0027 g/1,000 hrs or smaller and still more preferably 0.0026 g/1,000 hrs or smaller. In the case where the water vapor leak amount is in the above range, the infiltration of water vapor into the members to be compressed can be effectively suppressed. The water vapor leak amount of the members to be compressed can be measured by a method described in Examples.


In the case where the copolymer has the number of functional groups in the specific range, the members to be compressed of the present disclosure hardly make fluorine ions to dissolve out in an electrolytic solution. Therefore, by using the members to be compressed of the present disclosure, the rise in the fluorine ion concentration in the non-aqueous electrolyte solutions can be suppressed. Consequently, by using the members to be compressed of the present disclosure, the generation of gases such as HF in the non-aqueous electrolyte solutions can be suppressed, and the deterioration and the shortening of the service life of the battery performance of the non-aqueous electrolyte solution batteries can be suppressed.


From the viewpoint that the members to be compressed of the present disclosure can more suppress the generation of gases such as HF in non-aqueous electrolyte solutions, and can more suppress the deterioration and the shortening of the service life of the battery performance of non-aqueous electrolyte solution batteries, the amount of fluorine ions dissolving out to be detected in an electrolytic solution immersion test is, in terms of mass, preferably 1 ppm or smaller, more preferably 0.8 ppm or smaller and still more preferably 0.7 ppm or smaller. The amount of fluorine ions dissolving out can be regulated by the number of functional groups of the copolymer contained in the members to be compressed. The electrolytic solution immersion test can be carried out by preparing a test piece having a weight equivalent to 10 sheets of a formed article (15 mm × 15 mm × 0.2 mm) using a member to be compressed, and putting a glass-made sample bottle in which the test piece and 2 g of dimethyl carbonate (DMC) have been charged in a constant-temperature vessel at 80° C. and allowing the sample bottle to stand for 144 hours.


The non-aqueous electrolyte batteries are not limited as long as being batteries having a non-aqueous electrolyte, and examples thereof include lithium ion secondary batteries and lithium ion capacitors. Members constituting the non-aqueous electrolyte batteries include sealing members and insulating members.


For the non-aqueous electrolyte, one or two or more of well-known solvents can be used such as propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyllactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. The non-aqueous electrolyte batteries may further have an electrolyte. The electrolyte is not limited, but may be LiClO4, LiAsF6, LiPF6, LiBF4, LiCl, LiBr, CH3SO3Li, CF3SO3Li, cesium carbonate and the like.


The members to be compressed of the present disclosure can suitably be utilized, for example, as sealing members such as sealing gaskets and sealing packings, and insulating members such as insulating gaskets and insulating packings. The sealing members are members to be used for preventing leakage of a liquid or a gas, or penetration of a liquid or a gas from the outside. The insulating members are members to be used for insulating electricity. The members to be compressed of the present disclosure may also be members to be used for the purpose of both of sealing and insulation.


Due to that the members to be compressed of the present disclosure are excellent in the heat resistance and the crack resistance at high temperatures, have a suitable hardness also at high temperatures and are very excellent in the sealability at high temperatures, the members to be compressed can suitably be used in the environment of becoming high temperatures. Then, since the copolymer of the present disclosure is excellent also in thin-wall formability, the members to be compressed can suitably be used as thin-wall members to be compressed, for example, thin-wall gaskets. As described above, due to that the members to be compressed of the present disclosure have a suitable hardness at high temperatures, even in the case of being made as thin-wall formed articles, the members to be compressed exhibit a sufficient rebound resilience.


It is suitable for the members to be compressed of the present disclosure to be used, for example, in an environment where the maximum temperature becomes 40° C. or higher. It is suitable for the members to be compressed of the present disclosure to be used, for example, in an environment where the maximum temperature becomes 150° C. or higher. Examples of the case where the temperature of the members to be compressed of the present disclosure may become such high temperatures include the case where after a member to be compressed is installed in a state of being compressed to a battery, other battery members are installed to the battery by welding, and the case where a non-aqueous electrolyte battery generates heat.


Due to that the members to be compressed of the present disclosure are excellent in the crack resistance and the abrasion resistance at high temperatures, remarkably excellent in the water vapor low permeability, hardly make water vapor to infiltrate, have a suitable hardness also at high temperatures and are very excellent in the sealability at high temperatures, the members to be compressed can suitably be used as sealing members for non-aqueous electrolyte solution batteries or insulating members for non-aqueous electrolyte solution batteries. For example, in the charge time of batteries such as non-aqueous electrolyte secondary batteries, the temperature of the batteries temporarily becomes 40° C. or higher, specially temporarily becomes 150° C. or higher in some cases. Even when the members to be compressed of the present disclosure are used by being deformed at high temperatures and at a high compression deformation rate, and moreover are brought into contact with non-aqueous electrolytes at high temperatures, in batteries such as non-aqueous electrolyte batteries, a high rebound resilience is not impaired. Therefore, in the case of using the members to be compressed of the present disclosure as sealing members, the sealing members exhibit an excellent sealing property, and retain the sealing property for a long term.


In the case where the copolymer has the number of functional groups in the specific range, due to that the dielectric loss tangent at 6 GHz is low, the copolymer can suitably be utilized as a material for products for high-frequency signal transmission.


The products for high-frequency signal transmission are not limited as long as being products to be used for transmission of high-frequency signals, and include (1) formed boards such as insulating boards for high-frequency circuits, insulating materials for connection parts and printed circuit boards, (2) formed articles such as bases of high-frequency vacuum tubes and antenna covers, and (3) coated electric wires such as coaxial cables and LAN cables. The products for high-frequency signal transmission can suitably be used in devices utilizing microwaves, particularly microwaves of 3 to 30 GHz, in satellite communication devices, cell phone base stations, and the like.


In the products for high-frequency signal transmission, in the case where the copolymer has the number of functional groups in the specific range, the products can suitably be used as insulators in that the dielectric loss tangent is low.


As the (1) formed boards, printed wiring boards are preferable in that the good electric property is provided. The printed wiring boards are not limited, but examples thereof include printed wiring boards of electronic circuits for cell phones, various computers, communication devices and the like. As the (2) formed articles, antenna covers are preferable in that the dielectric loss is low.


It is preferable that the above (3) coated electric wire is a coated electric wire having a coating layer containing the copolymer having the number of functional groups in the specific range. That is, formed articles containing the copolymer having the number of functional groups in the specific range can suitably be utilized as coating layers.


The copolymer of the present disclosure, since having a very high storage elastic modulus (E′), has a suitable hardness, and even in the case of being made into twisted electric wires, the coating layer is hardly crushed, enabling the electric wires to withstand the long-term usage.


Further in the case where the copolymer has the number of functional groups in the specific range, the coated electric wires having a coating layer containing the copolymer are excellent in the electric property and excellent also in the insulating property of the coating layer. The coated electric wires, since the coating layer hardly softens and has a suitable hardness even at high temperatures, can retain the excellent electric property also at high temperatures.


A commercially available tetrafluoroethylene/fluoro(alkyl vinyl ether) copolymer is known to have a continuous use-temperature of 260° C. The continuous use-temperature means the highest operating temperature which a polymer can withstand continuously.


In recent years, copolymers have been needed which can be used in a severer working environment, in other words, have a continuous use-temperature exceeding 260° C. In many industrial applications in oil fields and gas fields, there has been arising the necessity of having a melt-fabricable polymer material having a continuous use-temperature exceeding 260° C. in order to withstand an extremely high working temperature encountered in construction work and the like. For example, in the case of carrying out deep excavation, the data communication cable may possibly be exposed to a temperature of 280° C. or higher in a downhole winze.


The formed articles containing the copolymer of the present disclosure enable having a continuous use-temperature of 280° C. The formed articles containing the copolymer of the present disclosure do not melt even at a very high temperature of 280° C.; and the coating layers composed of the formed articles hold the coating without forming rupture and cracking caused by a thermal load, and can be used continuously. Hence, the formed articles containing the copolymer of the present disclosure are suitable to use as the coating layers of the coated electric wires to be used in an environment where the maximum temperature becomes 280° C. or higher.


The coated electric wire has a core wire, and the coating layer installed on the periphery of the core wire and containing the copolymer of the present disclosure. The coated electric wires, due to that the coating layer has excellent heat resistance and, in the case where the copolymer has the number of functional groups in the specific range, has a low dielectric loss tangent, are suitable to high-frequency transmission cables, flat cables, heat-resistant cables and the like, and particularly to high-frequency transmission cables.


In the case where the copolymer of the present disclosure has the number of functional groups in the specific range, a coating layer having a uniform thickness and having no defects in the layer film can be obtained. Hence, a thin coating layer further excellent in the capacitance stability can be obtained.


As a material for the core wire, for example, a metal conductor material such as copper or aluminum can be used. The core wire is preferably one having a diameter of 0.02 to 3 mm. The diameter of the core wire is more preferably 0.04 mm or larger, still more preferably 0.05 mm or larger and especially preferably 0.1 mm or larger. The diameter of the core wire is more preferable 2 mm or smaller.


With regard to specific examples of the core wire, there may be used, for example, AWG (American Wire Gauge)-46 (solid copper wire of 40 µm in diameter), AWG-26 (solid copper wire of 404 µm in diameter), AWG-24 (solid copper wire of 510 µm in diameter), and AWG-22 (solid copper wire of 635 µm in diameter).


The coating layer is preferably one having a thickness of 0.1 to 3.0 mm. It is also preferable that the thickness of the coating layer is 2.0 mm or smaller.


The high-frequency transmission cables include coaxial cables. The coaxial cables generally have a structure configured by laminating an inner conductor, an insulating coating layer, an outer conductor layer and a protective coating layer in order from the core part to the peripheral part. A formed article containing the copolymer of the present disclosure can suitably be utilized as the insulating coating layer containing the copolymer. The thickness of each layer in the above structure is not limited, but is usually: the diameter of the inner conductor is approximately 0.1 to 3 mm; the thickness of the insulating coating layer is approximately 0.3 to 3 mm; the thickness of the outer conductor layer is approximately 0.5 to 10 mm; and the thickness of the protective coating layer is approximately 0.5 to 2 mm.


Alternatively, the coating layer may be one containing cells, and is preferably one in which cells are homogeneously distributed.


The average cell size of the cells is not limited, but is, for example, preferably 60 µm or smaller, more preferably 45 µm or smaller, still more preferably 35 µm or smaller, further still more preferably 30 µm or smaller, especially preferable 25 µm or smaller and further especially preferably 23 µm or smaller. Then, the average cell size is preferably 0.1 µm or larger and more preferably 1 µm or larger. The average cell size can be determined by taking an electron microscopic image of an electric wire cross section, calculating the diameter of each cell and averaging the diameters.


The foaming ratio of the coating layer may be 20% or higher, and is more preferably 30% or higher, still more preferably 33% or higher and further still more preferably 35% or higher. The upper limit is not limited, but is, for example, 80%. The upper limit of the foaming ratio may be 60%. The foaming ratio is a value determined as ((the specific gravity of an electric wire coating material - the specific gravity of the coating layer))/(the specific gravity of the electric wire coating material) × 100. The foaming ratio can suitably be regulated according to applications, for example, by regulation of the amount of a gas, described later, to be injected in an extruder, or by selection of the kind of a gas dissolving.


Alternatively, the coated electric wire may have another layer between the core wire and the coating layer, and may further have another layer (outer layer) on the periphery of the coating layer. In the case where the coating layer contains cells, the electric wire of the present disclosure may be of a two-layer structure (skin-foam) in which a non-foaming layer is inserted between the core wire and the coating layer, a two-layer structure (foam-skin) in which a non-foaming layer is coated as the outer layer, or a three-layer structure (skin-foam-skin) in which a non-foaming layer is coated as the outer layer of the skin-foam structure. The non-foaming layer is not limited, and may be a resin layer composed of a resin, such as a TFE/HFP-based copolymer, a TFE/PAVE copolymer, a TFE/ethylene-based copolymer, a vinylidene fluoride-based polymer, a polyolefin resin such as polyethylene [PE], or polyvinyl chloride [PVC].


The coated electric wire can be produced, for example, by using an extruder, heating the copolymer, extruding the copolymer in a melt state on the core wire to thereby form the coating layer.


In formation of a coating layer, by heating the copolymer and introducing a gas in the copolymer in a melt state, the coating layer containing cells can be formed. As the gas, there can be used, for example, a gas such as chlorodifluoromethane, nitrogen or carbon dioxide, or a mixture thereof. The gas may be introduced as a pressurized gas in the heated copolymer, or may be generated by mingling a chemical foaming agent in the copolymer. The gas dissolves in the copolymer in a melt state.


So far, embodiments have been described, but it is to be understood that various changes and modifications of patterns and details may be made without departing from the subject matter and the scope of the claims.


According to the present disclosure, there is provided a copolymer containing tetrafluoroethylene unit and a perfluoro(propyl vinyl ether) unit, wherein the copolymer has a content of the perfluoro(propyl vinyl ether) unit of 2.0 to 2.8% by mass with respect to the whole of the monomer units, a melt flow rate of 23 to 30 g/10 min.


It is preferable that the copolymer of the present disclosure has the number of functional groups of 50 or less per 106 main-chain carbon atoms.


According to the present disclosure, an injection molded article comprising the above copolymer is provided.


According to the present disclosure, a member to be compressed comprising the above copolymer is provided.


According to the present disclosure, a coated electric wire having a coating layer comprising the above copolymer is provided.


EXAMPLES

The embodiments of the present disclosure will be described by Examples as follows, but the present disclosure is not limited only to these Examples.


Each numerical value in Examples and Comparative Examples was measured by the following methods.


Content of a Monomer Unit

The content of each monomer unit was measured by an NMR analyzer (for example, manufactured by Bruker BioSpin GmbH, AVANCE 300, high-temperature probe).


Melt Flow Rate MFR

The polymer was made to flow out from a nozzle of 2.1 mm in inner diameter and 8 mm in length at 372° C. under a load of 5 kg by using a Melt Indexer G-01 (manufactured by Toyo Seiki Seisaku-sho, Ltd.) according to ASTM D1238, and the mass (g/10 min) of the polymer flowing out per 10 min was determined.


Number of Functional Groups

Pellets of the copolymer was molded by cold press into a film of 0.25 to 0.30 mm in thickness. The film was 40 times scanned and analyzed by a Fourier transform infrared spectrometer [FT-IR (Spectrum One, manufactured by PerkinElmer, Inc.)] to obtain an infrared absorption spectrum, and a difference spectrum against a base spectrum that is completely fluorinated and has no functional groups is obtained. From an absorption peak of a specific functional group observed on this difference spectrum, the number N of the functional group per 1×106 carbon atoms in the sample was calculated according to the following formula (A).









N
=
I
×

K
/
t





­­­(A)









  • I: absorbance

  • K: correction factor

  • t: thickness of film (mm)



Regarding the functional groups in the present disclosure, for reference, the absorption frequency, the molar absorption coefficient and the correction factor are shown in Table 2. The molar absorption coefficients are those determined from FT-IR measurement data of low molecular model compounds.





TABLE 2








Functional Group
Absorption Frequency (cm-1)
Molar Extinction Coefficient (l/cm/mol)
Correction Factor
Model Compound




—COF
1883
600
388
C7F15COF


—COOH free
1815
530
439
H(CF2)6COOH


—COOH bonded
1779
530
439
H(CF2)6COOH


—COOCH3
1795
680
342
C7F15COOCH3


—CONH2
3436
506
460
C7H15CONH2


—CH2OH2, —OH
3648
104
2236
C7H15CH2OH


—CF2H
3020
8.8
26485
H(CF2CF2)3CH2OH


—CF═CF2
1795
635
366
CF2═CF2






Melting Point

The polymer was heated, as a first temperature raising step at a temperature-increasing rate of 10° C./min from 200° C. to 350° C., then cooled at a cooling rate of 10° C./min from 350° C. to 200° C., and then again heated, as second temperature raising step, at a temperature-increasing rate of 10° C./min from 200° C. to 350° C. by using a differential scanning calorimeter (trade name: X-DSC7000, manufactured by Hitachi High-Tech Science Corp.); and the melting point was determined from a melting curve peak observed in the second temperature raising step.


Glass Transition Temperature Tg

The glass transition temperature (Tg) was determined by carrying out a dynamic viscoelasticity measurement using a dynamic viscoelasticity analyzer DVA-220 (manufactured by IT Keisoku Seigyo K.K.). The measurement was carried out under the condition of a temperature-increasing rate of 2° C./min and a frequency of 10 Hz, and the temperature at the peak of tanδ was determined as the glass transition temperature.


Example 1

53.8 L of pure water was charged in a 174 L-volume autoclave; nitrogen replacement was sufficiently carried out; thereafter, 41.7 kg of perfluorocyclobutane, 0.57 kg of perfluoro(propyl vinyl ether) (PPVE) and 1.45 kg of methanol were charged; and the temperature in the system was held at 35° C. and the stirring speed was held at 200 rpm. Then, tetrafluoroethylene (TFE) was introduced under pressure up to 0.5 MPa, and thereafter 0.224 kg of a 50% methanol solution of di-n-propyl peroxydicarbonate was charged to initiate polymerization. Since the pressure in the system decreased along with the progress of the polymerization, TFE was continuously supplied to make the pressure constant, and 0.029 kg of PPVE was added for every 1 kg of TFE supplied and the polymerization was continued for 7 hours. TFE was released to return the pressure in the autoclave to the atmospheric pressure, and thereafter, an obtained reaction product was washed with water and dried to thereby obtain 30 kg of a powder.


The obtained powder was melt extruded at 360° C. by a screw extruder (trade name: PCM46, manufactured by Ikegai Corp.) to thereby obtain pellets of a TFE/PPVE copolymer. The PPVE content of the obtained pellets was measured by the method described above. The result is shown in Table 3.


The obtained pellets were put in a vacuum vibration-type reactor VVD-30 (manufactured by Okawara MFG. Co., Ltd.), and heated to 210° C. After vacuumizing, F2 gas diluted to 20% by volume with N2 gas was introduced to the atmospheric pressure. 0.5 hour after the F2 gas introduction, vacuumizing was once carried out and F2 gas was again introduced. Further, 0.5 hour thereafter, vacuumizing was again carried out and F2 gas was again introduced. Thereafter, while the above operation of the F2 gas introduction and the vacuumizing was carried out once every 1 hour, the reaction was carried out at a temperature of 210° C. for 10 hours. After the reaction was finished, the reactor interior was replaced sufficiently by N2 gas to finish the fluorination reaction. By using the fluorinated pellets, the above physical properties were measured by the methods described above. The results are shown in Table 3.


Example 2

Non-fluorinated pellets were obtained as in Example 1, except for changing the charged amount of PPVE to 0.55 kg, changing the charged amount of methanol to 1.65 kg, adding 0.028 kg of PPVE for every 1 kg of TFE supplied, and changing the polymerization time to 8 hours. The results are shown in Table 3.


Example 3

Fluorinated pellets were obtained as in Example 1, except for changing the charged amount of PPVE to 0.49 kg, changing the charged amount of methanol to 1.69 kg, and adding 0.025 kg of PPVE for every 1 kg of TFE supplied. The results are shown in Table 3.


Example 4

Fluorinated pellets were obtained as in Example 1, except for changing the charged amount of PPVE to 0.55 kg, changing the charged amount of methanol to 1.62 kg, adding 0.028 kg of PPVE for every 1 kg of TFE supplied, and changing the polymerization time to 8 hours. The results are shown in Table 3.


Example 5

Fluorinated pellets were obtained as in Example 1, except for changing the charged amount of PPVE to 0.55 kg, changing the charged amount of methanol to 1.69 kg, adding 0.028 kg of PPVE for every 1 kg of TFE supplied, and changing the polymerization time to 8 hours.


Comparative Example 1

Fluorinated pellets were obtained as in Example 1, except for changing the charged amount of PPVE to 0.53 kg, changing the charged amount of methanol to 1.83 kg, adding 0.027 kg of PPVE for every 1 kg of TFE supplied, and changing the polymerization time to 8 hours. The results are shown in Table 3.


Comparative Example 2

1.224 L of pure water was charged in a 4.11 L-volume autoclave; nitrogen replacement was sufficiently carried out; thereafter, 967 g of perfluorocyclobutane, 6.7 g of perfluoro(propyl vinyl ether) (PPVE) and 142 g of methanol were charged; and the temperature in the system was held at 35° C. and the stirring speed was held at 483 rpm. Then, tetrafluoroethylene (TFE) was introduced under pressure up to 0.64 MPa, and thereafter 2.4 g of a 50% methanol solution of di-n-propyl peroxydicarbonate was charged to initiate polymerization. Since the pressure in the system decreased along with the progress of the polymerization, TFE was continuously supplied to make the pressure constant, and 0.016 g of PPVE was additionally charged for every 1 g of TFE supplied. The polymerization was finished at the time when the amount of TFE additionally charged reached 580 g. Unreacted TFE was released to return the pressure in the autoclave to the atmospheric pressure, and thereafter, an obtained reaction product was washed with water and dried to thereby obtain 584 g of a powder.


The obtained powder was melt extruded at 360° C. by a 14ϕ screw extruder (manufactured by Imoto machinery Co., LTD.) to thereby obtain pellets of the copolymer. By using the obtained pellets, the PPVE content was measured by the above-mentioned method.


Comparative Example 3

Non-fluorinated pellets were obtained as in Example 1, except for changing the charged amount of PPVE to 0.42 kg, changing the charged amount of methanol to 1.23 kg, and adding 0.021 kg of PPVE for every 1 kg of TFE supplied. The results are shown in Table 3.


Comparative Example 4

Fluorinated pellets were obtained as in Example 1, except for changing the charged amount of pure water to 26.6 L, perfluorocyclobutane to 30.4 kg, PPVE to 0.77 kg and methanol to 4.80 kg, introducing TFE under pressure up to 0.58 MPa, charging 0.011 kg of the 50% methanol solution of di-n-propyl peroxydicarbonate, adding 0.031 kg of PPVE for every 1 kg of TFE supplied, and changing the polymerization time to 10.5 hours, to thereby obtain 15 kg of a powder. The results are shown in Table 3.





TABLE 3










PPVE content (mass%)
MFR (g/10 min)
Number of functional groups (number/C108)
Melting point (°C)
Tg (°C)




Example 1
2.8
25.0
< 6
310
99.0


Example 2
2.7
26.0
289
310
99.5


Example 3
2.4
28.0
< 6
311
99.5


Example 4
2.7
28.0
< 6
310
99.5


Example 5
2.7
30.0
< 6
310
99.5


Comperative Example 1
2.6
33.0
< 6
310
99.5


Comperative Example 2
1.6
27.0
292
317
103.0


Comperative Example 3
2.1
17.5
254
314
101.0


Comperative Example 4
3.0
26.6
< 6
310
98.5






The description of “<6” in Table 3 means that the number of functional groups is less than 6.


Then, by using the obtained pellets, the following properties were evaluated. The results are shown in Table 4.


Water Vapor Permeability

By using the pellets and a heat press molding machine, a sheet-shape test piece of approximately 0.2 mm in thickness was prepared. 18 g of water was put in a test cup (permeation area: 12.56 cm2), and the test cup was covered with the sheet-shape test piece; and a PTFE gasket was pinched and fastened to hermetically close the test cup. The sheet-shape test piece was brought into contact with the water, and held at a temperature of 95° C. for 30 days, and thereafter, the test cup was taken out and allowed to stand at room temperature for 2 hours; thereafter, the amount of the mass lost was measured. The water vapor permeability (g·cm/m2) was determined by the following formula.








Water vapor permeability


g



cm

/


m
2





=
the amount of the mass lost





g

×
the thickness of the sheet-shape test peice








cm



/

the permeation area




m
2











In Table 4, the description of “crack” means that a test piece was inferior in the crack resistance to a compression stress and a crack(s) was generated in the test piece during the test.


Water Vapor Leak Test

The copolymer was injection molded by using an injection molding machine (SE50EV-A, manufactured by Sumitomo Heavy Industries, Ltd.) set at a cylinder temperature of 350 to 385° C. and a metal mold temperature of 150 to 200° C., to thereby obtain a gasket of ϕ17.7 mm in outer diameter, ϕ14.3 mm in inner diameter and 1.6 mmt in thickness.


As illustrated in the FIG. 1, 2 g of water was put in an aluminum alloy-made cup 1. The gasket 7 was assembled between the cup 1 and a gasket compression jig 3 and the gasket 7 was compressed by fastening a lid 4 with bolts 5. A spacer 6 was installed between the lid 4 and the cup 1 to regulate the compression deformation rate of the gasket 7 to 50%. The mass of a test jig 10 thus obtained was measured. The test jig 10 was charged in a constant-temperature vessel heated at 95° C., and after being allowed to stand for 1,000 hours, was taken out, and after the test jig 10 was allowed to stand at room temperature for 2 hours, the mass thereof was measured. The water vapor leak amount was determined by the following formula. This operation was repeated 5 times, and the average value of the water vapor leak amounts was determined. In Table 4, the average value is indicated.








Water vapor leak amount




g
/

1
,
000
h




=


the mass of the








test jig before the heating







the mass of the test jig after








the heating








Amount of Recovery

Approximately 2 g of the pellets was charged in a metal mold (inner diameter: 13 mm, height: 38 mm), and in that state, melted by hot plate press at 370° C. for 30 min, thereafter, water-cooled under a pressure of 0.2 MPa (resin pressure) to thereby prepare a molded article of approximately 8 mm in height. Thereafter, the obtained molded article was cut to prepare a test piece of 13 mm in outer diameter and 6 mm in height.


The prepared test piece was compressed to a compression deformation rate of 50% (that is, the test piece of 6 mm in height was compressed to a height of 3 mm) at a normal temperature by using a compression device. The compressed test piece fixed on the compression device was allowed to stand still in an electric furnace at 150° C. for 18 hours. The compression device was taken out from the electric furnace, and cooled to room temperature; thereafter, the test piece was dismounted. The collected test piece was allowed to stand at room temperature for 30 min, and the height of the collected test piece was measured and the amount of recovery was determined by the following formula.






Amount of recovery


mm


=

t
2



t
1







  • t1: the height of a spacer (mm)

  • t2: the height of the test piece dismounted from the compression device (mm)



In the above test, t1 was 3 mm.


Storage Elastic Modulus E′

The storage elastic modulus was determined by carrying out a dynamic viscoelasticity measurement using a DVA-220 (manufactured by IT Keisoku Seigyo K.K.). By using, as a sample test piece, a heat press molded sheet of 25 mm in length, 5 mm in width and 0.2 mm in thickness, the measurement was carried out under the condition of a temperature-increasing rate of 2° C./min, and a frequency of 10 Hz, and in the range of 30° C. to 250° C., and the storage elastic modulus (MPa) at 150° C. was identified.


Surface Pressure at 150° C.

The 150° C. surface pressure was determined by the following formula from the result of the compression test at 150° C. and the result of the storage elastic modulus measurement at 150° C.


Surface pressure at 150° C. (MPa) : (t2 - t1)/t1 × E′

  • t1: the height of a spacer (mm)
  • t2: the height of the test piece dismounted from the compression device (mm)
  • E′: the storage elastic modulus at 150° C. (MPa)


Bar-Flow Test

The pellets were injected in a spiral bar-flow metal mold (size of the metal mold: 152.5 mm × 152.5 mm, cavity thickness: 1 mm, cavity width: 23 mm) by using an injection molding machine (trade name: SG50, manufactured by Sumitomo Heavy Industries, Ltd.) under the condition of a cylinder temperature of 370° C., a metal mold temperature of 150° C. and an injection speed of 10 mm/s or 15 mm/s, to thereby obtain an injection molded article. The length (bar-flow flow length) of the obtained injection molded article was measured.


Surface Smoothness

The copolymer was injection molded by using an injection molding machine (SE50EV-A, manufactured by Sumitomo Heavy Industries, Ltd.) set at a cylinder temperature of 390° C., a metal mold temperature of 170° C. and an injection speed of 50 mm/s. The metal mold used was a metal mold (100 mm × 100 mm × 2.5 mmt, side gate) Cr plated on HPM38. The surface of the obtained injection molded article was visually observed and the surface smoothness was evaluated according to the following criteria.

  • Very Good: no roughness was observed on the surface and the surface was smooth
  • Good: roughness was observed only on a surface of the portion positioned in the vicinity of the gate of the metal mold
  • Poor: roughness was observed on the most portion of the surface


Electric Wire Coating Property

By using the pellets obtained in each Example and Comparative Example, coated electric wires were obtained by an extruder.


The extrusion conditions for the electric wire coating were as follows.

  • a) Core conductor: mild steel wire AWG24 (American Wire Gauge), core wire diameter: 20.1 mil
  • b) Coating thickness: 7.2 mil
  • c) Coated electric wire diameter: 34.5 mil
  • d) Electric wire take-over speed: 1,850 feet/min
  • e) Melt forming (Extrusion) condition:
    • Cylinder screw diameter = 2 inch, a single screw extruder of L/D = 30
    • Die (inner diameter)/tip (outer diameter) = 8.71 mm/4.75 mm
    • Set temperature of the extruder: barrel section Z1 (338° C.), barrel section Z2 (360° C.), barrel section Z3 (371° C.), barrel section Z4 (382° C.), barrel section Z5 (399° C.), clamp section (404° C.), adapter section (404° C.), crosshead section (404° C.), die section (404° C.), Set temperature for preheating core wire: 140° C.


The obtained coated electric wires were evaluated for the capacitance stability and the continuous formability of the coated electric wires.


Continuous Formability

Electric wire coating forming was continuously carried out, and the case where coating discontinuity occurred once or more in 1 hour was determined as poor (Poor) in continuous forming, and the case where no coating discontinuity occurred was determined as fair (Good) in continuous forming.


Capacitance Stability

The capacitance was measured for 1 hour by using a capacitance measuring device Capac HS (Type: MR20. 50HS, manufactured by Zumbach Electronic AG), and calculated as a process capability index (Cp). Then, the Cp was stored sequentially in USYS 2000 (manufactured by Zumbach Electronic AG), and was analyzed by setting the upper limit (USL) to be +1.0 (pf/inch) and the lower limit (LSL) to be -1.0 (pf/inch). The results are indicated as average capacitance fluctuation widths per 30,000 m.


Poor in Table means that cone breaks were generated and the capacitance fluctuation width could not be determined.


Metal Mold Corrosion Test

20 g of the pellets was put in a glass container (50-ml screw vial); and a metal post (5-mm square shape, length of 30 mm) formed of HPM38 (Cr-plated) or HPM38 (Ni-plated) was hung in the glass container so as not to be in contact with the pellets. Then, the glass container was covered with a lid made of an aluminum foil. The glass container was put in an oven as is and heated at 380° C. for 3 hours. Thereafter, the heated glass container was taken out from the oven, and cooled to room temperature; and the degree of corrosion of the surface of the metal post was visually observed. The degree of corrosion was judged based on the following criteria.

  • Good: no corrosion observed.
  • Fair: corrosion slightly observed
  • Poor: corrosion observed.


Electrolytic Solution Immersion Test

Approximately 5 g of the pellets was charged in a metal mold (inner diameter: 120 mm, height: 38 mm), and melted by hot plate press at 370° C. for 20 min, thereafter, water-cooled with a pressure of 1 MPa (resin pressure) to thereby prepare a molded article of approximately 0.2 mm in thickness. Thereafter, by using the obtained molded article, test pieces of 15-mm square were prepared.


10 sheets of the obtained test pieces and 2 g of an electrolytic solution (dimethyl carbonate (DMC)) were put in a 20-mL glass sample bottle, and the cap of the sample bottle was closed. The sample bottle was put in a thermostatic chamber at 80° C., and allowed to stand for 144 hours to thereby immerse the test pieces in the electrolytic solution. Thereafter, the sample bottle was taken out from the thermostatic chamber, and cooled to room temperature; then, the test pieces were taken out from the sample bottle. The electrolytic solution remaining after the test pieces were taken out was allowed to be air-dried in the sample bottle put in a room controlled to be a temperature of 25° C. for 24 hours; and 2 g of ultrapure water was added. The obtained aqueous solution was transferred to a measuring cell of an ion chromatosystem; and the amount of fluorine ions in the aqueous solution was measured by an ion chromatograph system (manufactured by Thermo Fisher Scientific Inc., Dionex ICS-2100) .


Dielectric Loss Tangent

By melt forming the pellets, a cylindrical test piece of 2 mm in diameter was prepared. The prepared test piece was set in a cavity resonator for 6 GHz, manufactured by KANTO Electronic Application and Development Inc., and the dielectric loss tangent was measured by a network analyzer, manufactured by Agilent Technologies Inc. By analyzing the measurement result by analysis software “CPMA”, manufactured by KANTO Electronic Application and Development Inc., on PC connected to the network analyzer, the dielectric loss tangent (tanδ) at 20° C. at 6 GHz was determined.


Abrasion Test

By using the pellets and a heat press molding machine, a sheet-shape test piece of approximately 0.2 mm in thickness was prepared and cut out into a test piece of 10 cm × 10 cm. The prepared test piece was fixed on a test bench of a Taber abrasion tester (No. 101-H Taber type abrasion tester, manufactured by YASUDA SEIKI SEISAKUSHO, LTD.) and the abrasion test was carried out under the conditions of at a load of 500 g, using an abrasion wheel CS-10 (rotationally polished in 20 rotations with an abrasive paper #240) and at a rotation rate of 60 rpm by using the Taber abrasion tester. The weight of the test piece after 1,000 rotations was measured, and the same test piece was further subjected to the test of 10,000 rotations and thereafter, the weight thereof was measured. The abrasion loss was determined by the following formula.






Abrasion loss




mg


=
M1

M2






  • M1: the weight of the test piece after the 1,000 rotations (mg)

  • M2: the weight of the test piece after the 10,000 rotations (mg)



Crack Test

By using the pellets and a heat press molding machine, a sheet-shape test piece of 1.8 mm in thickness and 5 mm in width was prepared. The obtained sheet-shape test piece was folded at 90° and allowed to stand as it was at 150° C. for 2 hours. The surface of the cooled sheet-shape test piece was visually observed and the evaluation was made according to the following criteria.

  • Good: no crack was observed
  • Poor: a crack(s) was observed





TABLE 4





















Water vapor permeability
Water vapor leak amount
Amount of recovery

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed

Surface resistance

text missing or illegible when filed

Metal corrosion test
Microscopic
Dielelectric
Abrassion loss

text missing or illegible when filed



(g·m2/hr)
(g·1000 hrs)
(mm)
180° C.text missing or illegible when filed
10 (m)

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed

Capacitance

text missing or illegible when filed


text missing or illegible when filed

Amount of
(mg)




Example 1
68
-
0.031
1.50
80
-
153
Good
Good
-
Good
Good
0.9
0.00038
28.7
Good


Example 2
67
-
0.029
1.51
81
-
158
Very Good
Good
-
Poor
Poor
1.8
0.00100
38.5
Good


Example 3

-
0.031
1.84
83
81
180
Very Good
Good
-
Good
Good
0.8
-
31.7
Good


Example 4
0.8
0.0026
0.030
1.37
86
86
187
Very Good
Good
-
Good
Good
0.8
-
30.7
Good


Example 5
-
-
-
1.47
87
-

Very Good
Good
-
Good
Good
0.8
-
31.8
Good


Comperative Example 1
6.4
-
0.027
1.43
91
100
159
Very Good
Good
-
Good
Good
0.8
-
33.8
Poor


Comperative Example 2
-
-
-
-
-
-
-
-
-
-
-
-
1.6
-
33.8
Poor


Comperative Example 3
-
-
-
-
72
-
-
Poor
Poor
Poor
Poor
Poor
1.8
-
25.8
Good


Comperative Example 4
-
0.0029
0.027
1.26
80
-
-
Very Good
Good
Good
Good
Good
0.8
0.0
29.0
Good



text missing or illegible when filedindicates text missing or illegible when filed















REFERENCE SIGNS LIST





10

TEST JIG



1

CUP



2

water



3

GASKET COMPRESSION JIG



4

LID



5

BOLT



6

SPACER



7

GASKET





Claims
  • 1. A copolymer, comprising tetrafluoroethylene unit and a perfluoro(propyl vinyl ether) unit, wherein the copolymer has a content of the perfluoro(propyl vinyl ether) unit of 2.0 to 2.8% by mass with respect to the whole of the monomer units, and a melt flow rate of 23 to 30 g/10 min.
  • 2. The copolymer according to claim 1, wherein the copolymer has the number of functional groups of —CF═CF2, —CF2H, —COF, —COOH, —COOCH3, —CONH2 and —CH2OH of 50 or less per 106 main-chain carbon atoms.
  • 3. An injection molded article, comprising the copolymer according to claim 1.
  • 4. A member to be compressed, comprising the copolymer according to claim 1.
  • 5. A coated electric wire, comprising a coating layer comprising the copolymer according to claim 1.
  • 6. The copolymer according to claim 1, wherein the copolymer has a melting point of 305 to 315° C.
Priority Claims (1)
Number Date Country Kind
2020-166524 Sep 2020 JP national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Rule 53(b) Continuation of International Application No. PCT/JP2021/036302 filed Sep. 30, 2021, which claims priority based on Japanese Patent Application No. 2020-166524 filed Sep. 30, 2020, the respective disclosures of all of which are incorporated herein by reference in their entirety.

Continuations (1)
Number Date Country
Parent PCT/JP2021/036302 Sep 2021 WO
Child 18191461 US