The present invention relates to a copy protection technique applied to various types of optical disks, such as CD (Compact Disc), VCD (Video Compact Disc), DVD (Digital Versatile Disc) and BD (Blu-ray Disc); and more particularly, to a copy protection method, in which a photosensitive, a light-degradable or a periodically changeable polarizing material is added to an optical storage disc to influence the data codes that can be read by an optical reading device from the optical storage disc.
Optical storage discs have become available for more than 15 years. Most general users request for the right to reasonably copy optical storage discs, and many countries have established laws on protection of general users' right to the use of optical storage discs within a legally permitted scope. However, the so-called “reasonably copy” also causes the problem of “illegal reproduction” and serious loss to copyrighters.
In the past ten years, many copy protection techniques had been developed and announced. Most of the existing copy protection techniques involve damaging of the optical disc surface, including logical damage developed based on the optical disc specification or physical damage produced during the optical disc manufacturing process. Recently, some special copy software programs have become available. They utilize the reset time of the optical disc drive or check the actual time used to read the optical disc to circumvent the logical damage or the physical damage formed on the optical disc. As a result, either the logical or the physical damage on the optical disc surface fails to effectively prevent the optical disc from being illegally copied.
Optical discs adopting the conventional hybrid copy protection technique that combines encryption, logical damage and physical damage can be now arbitrarily copied simply using some application programs. Even if the software disassembling and the software reverse engineering are clearly prohibited by the existing copyright law, it is still very difficult to completely stop dishonest users from copying optical discs illegally.
Even some big international manufacturers, who use non-formal optical disc burning software and at the same time manufacture non-formal optical disc drives for reading a “unique mark” on the optical discs, also encounter with the threat of software disassembling or software reverse engineering; and their copy protection means are finally cracked by some firmware or plug-in. In fact, this is not because the unique mark is a wrong idea but because the unique mark is something that just can be read out by the non-formal optical disc drive. A cracker can easily crack the copy protection by circumventing the reading of the unique mark.
However, in the event every optical disc is provided with a really unique mark that must be correctly read to achieve the purpose of decoding, it would be very difficult for the crackers to crack the copy protection by using some plug-in or by circumventing the reading of the unique mark. Only in this way, it is possible to largely suppress illegal reproduction.
Currently, all the commercially available copy software programs or apparatuses are able to quickly read various copy protection means provided on the optical discs. In addition, the currently available optical disc drives all are of highly advanced. In the past, a physical damage (bad sectors) was utilized as a copy protection means for optical discs. Now, since the newest optical disc drives can be reset at a very quick speed, such physical damage could not be found with any software program. Contents the same as the original data can still be read out from a fake optical disc. In view of these adverse conditions, it is necessary to develop a creative copy protection technique for optical storage devices so as to eliminate the serious problem of illegal reproduction.
A primary object of the present invention is to provide a copy protection method for optical storage device, according to which a polarizing structure is formed on an optical storage disc, such that different contents will be obtained by an optical reading device when the optical storage disc is repeatedly read different numbers of times by the optical reading device. With this characteristic, the optical storage device with the polarizing structure manufactured according to the copy protection method of the present invention is completely different from the write-once discs and the rewritable discs that are currently available in the market, and its characteristic as described above could not be reproduced with any kind of copying method. Therefore, the copy protection method of the present invention functions to effectively protect an author's copyright.
Another object of the present invention is to provide a copy protection method for optical storage device, according to which a photosensitive or a light-degradable material subject to permanent polarization is added to a surface of a data structure layer on an optical storage disc during manufacturing thereof for affecting the data codes that can be read out from the optical storage disc by an optical reading device, so that an optical storage device can be determined as a legal copy or not according to the existence of such polarizing structure.
A further object of the present invention is to provide a copy protection method for optical storage device, according to which a material subject to periodically temporary polarization is added to a surface of a data structure layer on an optical storage disc during manufacturing thereof for affecting the data codes that can be read out from the optical storage disc by an optical reading device, so that illegal copying of the optical storage disc by dishonest users can be stopped.
To achieve the above and other objects, the copy protection method for optical storage device according to the present invention includes the following steps: providing an optical storage device that includes a substrate layer and a data structure layer coated on a top of the substrate layer and containing a set of raw data codes; forming on a top of the data structure layer at least one polarizing layer capable of causing a change in a beam of light irradiated thereon by an optical reading device; and forming on a top of the polarizing layer a protective layer for protecting the polarizing layer and the data structure layer against scratches. Whereby, when using the optical reading device to access the data structure layer on the optical storage device, the polarizing layer is located between the data structure layer and the optical reading device to influence the light beam irradiated onto the data structure layer by the optical reading device, so that the set of raw data codes contained in the data structure layer being optically accessed is conditionally converted into a different set of physical data codes.
According to the present invention, the optical storage device can be an optical storage disc specification selected from the group consisting of CD (Compact Disc), VCD (Video Compact Disc), DVD (Digital Versatile Disc), EVD (Enhanced Versatile Disc), FVD (Forward Versatile Disc), HVD (High-definition Versatile Disc), VMD (Versatile Multilayer Disc), UMD (Universal Media Disc), and BD (Blu-ray Disc); and the polarizing layer is formed on the data structure layer by spray coating, attaching or plating to cover a whole area of the data structure layer.
However, to prevent dishonest users from easily finding the provision and the locations of the polarizing layer on the optical storage device, the polarizing layer can be otherwise formed on a partial area of the data structure layer. Further, the partial area of the data structure layer may be in the form of one single block or multiple discontinuous areas.
In an operable embodiment of the present invention, the polarizing layer is formed of a photosensitive or a light-degradable paint that is subject to a permanent change after being read a preset number of times. In this case, when the optical reading device reads the optical storage device and obtains the set of raw data codes, it is determined the optical storage device is being legally accessed; and on the other hand, when the optical reading device reads the optical storage device and obtains the set of physical data codes, it is determined the optical storage device is being illegally accessed.
In another operable embodiment of the present invention, the polarizing layer is formed of a paint that is subject to a periodically temporary change after being read a preset number of times. In this case, when the optical reading device reads the optical storage device and obtains the set of raw data codes, it is determined the optical storage device is being illegal accessed; and on the other hand, when the optical reading device reads the optical storage device and obtains the set of physical data codes, it is determined the optical storage device is being legally accessed. Moreover, in this case, the set of physical data codes will be converted back into the set of raw data codes when the optical storage device is not irradiated by a light beam again within a preset period of time.
The present invention is characterized in forming a polarizing layer on an optical storage device for influencing the light beam irradiated thereon, so that different data contents will be obtained by an optical reading device when it repeatedly reads the optical storage device different numbers of times. As it is known, the conventional copy software programs help users to exactly write the values or results read out from a legal copy to another disc. When a dishonest user uses a copy software program, which is not a particularly designed source program, to copy an optical storage device manufactured according to the copy protection method of the present invention, the copy software program would be unable to know which section that has been repeatedly read is assigned as a copy protection area, and the copied disc is not executable. Even if a recognizer program has been exactly copied to another optical disc, it is still possible to know the copied optical disc being played is not a legal copy.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
The present invention will now be described with some preferred embodiments thereof and with reference to the accompanying drawings.
Please refer to
In the illustrated embodiment, the optical storage device 10 can have an optical disc specification selected from the group consisting of CD (Compact Disc), VCD (Video Compact Disc), DVD (Digital Versatile Disc), EVD (Enhanced Versatile Disc), FVD (Forward Versatile Disc), HVD (High-definition Versatile Disc), VMD (Versatile Multilayer Disc), UMD (Universal Media Disc), and BD (Blu-ray Disc).
The optical storage device 10 includes a round substrate layer 13 having a center hole 14. The data structure layer 12 is coated on a top of the substrate layer 13 and contains a set of raw data codes 16 (see
According to operable embodiments of the present invention, the polarizing layer 11 can be formed on the top of the data structure layer 12 by spray coating, attaching, plating or other different ways to change the light beam irradiated thereon. With the effect of the polarizing layer 11, two different sets of data codes can be obtained from one single optical storage device 10 being accessed by the optical reading device 20.
Please refer to
Based on this design, the number of times the optical storage device 10 is read can be restricted to a preset value for using as a reference in determining whether the optical storage device 10 is accessed under legal authorization. In the case the number of times the optical storage device 10 is read does not exceed the value preset for the paint forming the polarizing layer 11 to change, the optical reading device 20 determines according to an application program thereof the set of raw data codes 16 is legally obtained data. However, in the case the number of times the optical storage device 10 is read exceeds the value preset for the paint forming the polarizing layer 11 to change, the polarizing layer 11 would change to influence the light beam projected by the optical reading device 20 onto the optical storage device 10, and the optical reading device 20 determines according to the application program thereof the set of physical data codes 17 is illegally obtained data.
Please refer to
Therefore, through programming, it is possible for the optical reading device 20 to access the optical storage device 10 and obtain the set of physical data codes 17 that contains correct data when the number of times the optical storage device 10 is read by the optical reading device 20 exceeds the value preset for the polarizing layer 11 of the optical storage device 10 to change. Since general optical copying devices are not able to know the optical storage device 10 is provided with a protection mechanism, i.e. the polarizing layer 11, they are not able to obtain correct data from the optical storage device 10 via the special multi-reading mechanism mentioned above. That is, what is copied or reproduced by the general optical copying devices is the set of raw data codes 16 that contains incorrect data and could not be executed by a general optical reading device. Therefore, the optical storage device 10 is protected against illegal copying by dishonest users and the author's copyright is effectively guarded.
Please refer to
Please refer to
On the other hand, as shown in
Therefore, when the optical reading device 20 reads the optical storage device 10 repeatedly, either the set of raw data codes 16 or the set of physical data codes 17 is decoded. The optical reading device 20 checks and finds the difference between the raw data codes 16 and the physical data codes 17 via a relevant application program to determine whether there is a polarizing layer 11 on the optical storage device 10. Since the optical discs illegally copied by the dishonest users do not include any polarizing structure provided according to the present invention, an optical storage device 10 can be easily determined as a legal or illegal product simply by checking whether there is any polarizing layer 11 formed on the optical storage device 10.
In summary, the present invention provides a technology for protecting optical storage devices against illegal copying. According to the present invention, a photosensitive, a light-degradable or a periodically changeable paint or attachable sheet, or any other polarizing material capable of causing a change in a light beam is added to the surface of an optical storage device during the manufacturing process thereof, so that the same one block of the optical storage device that is read multiple times in a normal way would produce some polarizing effect, such as becoming transparent, reflective or refractive, after being irradiated by an intensive light beam to thereby influence the reading result. As a result, illegally copied optical storage devices can be easily recognized because they fail to include the polarizing structure provided according to the present invention.
The present invention has been described with some preferred embodiments thereof and it is understood that many changes and modifications in the described embodiments can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101121683 | Jun 2012 | TW | national |