The invention relates to a window furnishing and more particularly a cordless blind.
Venetian blinds are well known and typically include a head rail, a bottom rail, and a plurality of slats arranged between the headrail and the bottom rail. The slats are typically made from a variety of materials, such as metal, wood, plastic or other materials and supported by ladders.
Such blinds also typically include a tilt mechanism to enable the slats to move from a horizontal position to a nearly vertical position to open and close the blinds to affect the passage of light. As is also conventional with such systems, flexible line members or lift cords are coupled to the bottom rail, pass through the slats and into mechanisms within an upper headrail. The cords are employed to raise the bottom rail, accumulating individual slats as the bottom rail is raised. Because of gravity, the natural tenancy of the bottom rail and accumulated slat weight is to free fall. In many instances in the prior art, cord lock mechanisms are employed to lock the cord, thereby setting bottom rail, and the slats stacked thereon at a height determined by the user. Pleated and other types of shades also include a bottom rail and include similar raising, lowering and line member or cord lock mechanisms.
Spring motors are known to be provided to assist the elevating and lowering of a variable load such as that provided by a venetian blind type window covering. Spring motors conventionally comprise a flat ribbon of spring metal which is pre-stressed and coiled so as to have a natural or relaxed state in which the spring forms a tightly wound coil disposed on or in a spring storage or take up drum. The extended free end of the coil is attached to the hub of an output or spring drive drum onto which the spring is backwound by rotating the output drum in a direction to back or reverse wind the spring thereon. When the load to which the output drum is connected is released, the curling property of the spring causes it to rewind onto or into the storage drum toward its natural or relaxed state. Such spring motors as descried above can be of constant or variable force, depending upon the intended use of the motor. The characteristics of a variable force spring motor can be obtained in varying ways, but varying the radius of curvature of the spring member along the length thereof is conventionally the preferred method.
In connection with the use of such a spring motor and a venetian blind, as an example, a control drum or spool is mounted co-axially with the output drum for rotation therewith, and the flexible member or cord is wound onto the spool in a direction which provides for the unwinding of the cord to rotate the spring output drum in the direction for winding the spring member thereon from the spring storage drum. When the force necessary for such unwinding is relaxed, the spring member returns to its naturally coiled position whereby the spring output drum is rotated by the spring member in a direction to rewind the cord or belt onto the spool. In those blinds with locking mechanism, such rewinding of the cord onto the control drum is inhibited.
When raising or lowering a load such as the bottom rail and slats of a venetian blind accumulating on the bottom rail, a pair of cords may be wound on the spool in opposite directions with the free ends of the cords attached at the opposite ends of the bottom rail. When the bottom rail is lowered, the two cords unwind from the spool thus driving the spring output drum to wind the spring member thereon. Upward displacement of the bottom rail from a lowered position results in the spring member rewinding on the spring storage drum to rotate the spring output drum and thus the control drum in the direction to rewind the two cords. In elevating the lowering a suspended load of the foregoing example type, which is too heavy to provide desire displacement characteristics in connection with the upward and downward movement of the bottom rail, and using a single spring motor, many times it is necessary to provide a larger spring motor or operate two or more spring motors in tandem.
When it is desired, the spring motor may be designed to allow the balancing of the gravitational pull on the bottom rail and accumulated slats and the resisting force of the spring motor so that the weight, even though increasing, as additional slats are accumulated on the bottom rail as it is raised, the bottom rail may be released and stay at a predetermined height. However, this is difficult under many conditions.
A variety of factors may cause the blind to have different performance characteristics upon installation, including using different materials of slats, changing the size of the blind or the amount of window covering, the number of slats in the blind, the weight of the drive actuator, the weight of the bottom rail, etc. Without the blind being configured to be adjusted at the point of sale or by the consumer after the point of sale, it may be difficult to utilize the same motors on different types and sizes of blinds, particularly when the blind is customized at the point of sale per the consumer's requirements (e.g., size dimensions, etc.).
Accordingly, it would be advantageous to provide a blind in which lifting cords and cord mechanisms are eliminated from shades or blinds and relate to window covering systems which, inter alia, employ one or more spring motors to balance the weight of the accumulated window covering material, independent of the extent to which the blind or shade is raised or lowered. It would also be advantageous to provide a blind that utilizes an adjustable drive actuator to permit the adjustment of the blind's performance characteristics at the point of sale, after the blind has been customized, at the point of installation, or the like. It would also be advantageous to provide a cordless blind which a spring motor is used to eliminate conventional pull cord and cord lock mechanism and which is adjustable so that it is suitable for encountering a wide variety of loads making it unnecessary to design a specific motor for a specific end use.
It would be desirable to provide a blind with or providing anyone or more of these or other advantageous features.
The present invention relates to a cordless blind. The cordless blind includes a headrail, a bottom rail suspended from the headrail by a first cord and a second cord, a window covering disposed between the headrail and the bottom rail, and a drive actuator. The drive actuator includes a spring motor, a spool coupled to the spring motor, a first tensioning mechanism, and a second tensioning mechanism. The first and second tensioning mechanisms are configured to impact a resistant force on movement of the first and second cords, respectively.
The present invention also relates to a cordless blind. The cordless blind includes a headrail, a bottom rail suspended from the headrail by a first cord and a second cord, a window covering disposed between the headrail and the bottom rail, and a drive actuator. The drive actuator includes a spool, a spring motor coupled to the spool, a biasing element coupled to the spring motor and configured to provide a force biased against movement of the bottom rail, a bias relief mechanism coupled to the biasing element, the bias relief mechanism being configured to provide for selective application and relief of the biasing force by the biasing element.
The present invention further relates to a cordless blind. The cordless blind includes a headrail, a bottom rail suspended from the headrail, a window covering disposed between the headrail and the bottom rail, and a drive actuator. The drive actuator includes a pair of spring motors mounted in the headrail, a pair of pulleys mounted in the bottom rail, each spring motor includes a pair of flexible members coupled to the pair of pulleys and attached at one end to the headrail.
The present invention further relates to a drive actuator for a cordless blind having a headrail, a bottom rail suspended from the headrail, and a plurality of slats disposed between the headrail and the bottom rail. The drive actuator includes a constant biasing element, a generally rigid strap having a plurality of apertures, and a traction wheel. The traction wheel includes a plurality of cogs spaced apart a predetermined distance and extending from the circumference of the traction wheel. The cogs are configured to engage the apertures of the strap. The spacing between the cogs correspond to a plurality of apertures on strap so that movement of the of the strap rotates the traction wheel. The drive actuator also includes a biasing member, and a mandrel coupled to the traction wheel by the biasing member. The biasing member and mandrel are configured to bias the traction wheel in a certain position.
The present invention further relates to a drive actuator for a blind having a headrail, a bottom rail suspended from the headrail by a first and second cord, and a plurality of slats disposed between the headrail and the bottom rail. The drive actuator includes a storage drum having a first axis, an output drum mounted for rotation about a second axis parallel and spaced from the first axis, a perforated biasing member coupled to the storage drum and the output drum, and a spool having a plurality of cogs extending from an outer surface of the spool and configured to engage the perforated biasing member. The spool is rotated by movement of the perforated spring member between the storage drum and output drum. The spool includes a first and second slot which receive first and second cords, respectively.
The present invention further relates to a blind including a headrail, a bottom rail suspended from the headrail, a plurality of slats disposed between the headrail and the bottom rail, means for selective cordless manipulation of the bottom rail, and means for modifying the weight of the bottom rail.
The present invention further relates to a drive actuator for a cordless blind having a headrail, a bottom rail suspended from the headrail by a first and second cord, and a plurality of slats disposed between the headrail and the bottom rail. The drive actuator includes a slat actuator, a first ladder member coupled to the slat actuator and having a first arm and a second arm, a first ladder configured to support the plurality of slats and configured to the first and second arm of the first ladder member, and an actuator interface coupled to the slat actuator.
The present invention further relates to a method of customizing a blind. The method includes providing the blind to a customer at a retail outlet, the blind having an initial weight and including a head rail, a bottom rail coupled to the head rail, a window covering disposed between the head rail and the bottom rail, and a drive actuator with a spring motor operably coupled to the bottom rail; operating the drive actuator to observe performance characteristics of the blind; and adjusting one of weight, spring force, and friction of the blind to attain a particular performance characteristic.
The present invention further relates to a method of selling a customized blind. The method includes providing a blind having a head rail, a bottom rail coupled to the head rail, a window covering disposed between the head rail and the bottom rail and a drive actuator with a spring motor operably coupled to the bottom rail; altering the blind according to a customers preferences by altering the width of the blind or the amount of window covering; operating the blind to determine whether the bottom rail will move relative to the top rail when released by the operator; and adjusting one of the weight, spring force, and friction of the blind so that the bottom rail will not move relative to the top rail when released.
The present invention further relates to a method of in-store adjustment of a blind including a head rail, a bottom rail coupled to the head rail and having an initial weight, a window covering disposed between the head rail and the bottom rail, and a drive actuator. The method includes providing the blind; operating the blind to determine its performance characteristics; and adjusting the performance characteristics of the blind by increasing or decreasing the weight of the bottom rail.
The present invention further relates to various features and combinations of features shown and described in the disclosed embodiments.
The exemplary embodiments shown in the FIGURES relate generally to the art of drive actuators with spring motors useful for a variety of applications, including window coverings such as venetian blinds and window shades. More specifically, the present exemplary embodiments relate to a drive actuator that may be adjusted to attain one or more desired performance characteristics. Performance characteristics of a blind may include the effort necessary to raise or lower the bottom rail, the speed of which the bottom rail may be raised or lowered, whether the bottom rail remains in a static position relative to the head rail when released (i.e., “balanced”), etc. The performance characteristics of the blinds and drive actuators shown in the FIGURES may depend on the customers preferences, and are intended to be variable, selectable, and adjustable by a retail sales associate, the installer, and/or the customer.
As shown in the FIGURES, according to any preferred embodiment, the blind is configured to be “balanced” at any of a variety of times (e.g., after a test operation at a retail sales location, after customization which may be done at the point of sale or prior to installation or the like after installation, periodically during its life, etc). A “balanced” blind is one that maintains its set position or arrangement when released by the operator after the bottom rail is raised or lowered relative to the head rail (i.e., to uncover/cover the window with window covering).
The performance characteristics, particularly whether a blind is “balanced,” depends on a number of variables (including weight of the bottom rail plus any accumulated window covering (“ΣW”), force of the spring motor (“Fs”), and frictional force (both “naturally” occurring friction and friction “added” to the system collectively referred to as f). A blind is balanced when the friction force is greater than the absolute value of the difference of the weight and the spring motor force (i.e., f>|ΣW−Fs|).
As shown in the FIGURES, the drive actuators allow for an adjustment of one or more of the variables (e.g., weight adjustment, spring force adjustment, a friction adjustment, etc.). For example, a member may be provided that is engageable with one of a coupled drive and drive actuator for a spring motor so as to permit adjustment of the force necessary to affect movement of motion of the coupled drive. In this manner, adjustment of the adjustable friction member so that a single spring motor design (and under heavy loads or severe conditions even a coupled pair of spring motors) may be employed for a variety of uses such as window blinds and shades of differing sizes, weights and material composition, is facilitated.
Referring to
Spring motor 20 includes a storage drum 24 and an output drum 26 mounted for rotation about a first and second axis 28, 30, respectively. Storage drum 24 and output drum 26 are connected by a spring member 32. Spring member 32 is tightly wound on storage drum 24 and is connected to output drum 26. Storage and the output drums 24, 26 are coupled to head rail 12 at the first and second axis 28, 30, respectively. A first and second cord spool 34, 36 are also coupled to head rail 12. As shown, lift cords 16, 17 are wound about the first and second spools 34, 36.
A coupled drive 38, includes a first and second gear 40, 42 connected respectively to the first and second spool 34, 36. Coupled drive 38 further includes a third and fourth gear 44, 46 connected respectively to storage drum 24 and output drum 26. The coupling of the drive by the gears forces rotation of storage drum 24 or output drum 26 in a first direction about its axis and the other of storage drum 24 or output drum 26 in an opposite direction, which allows winding and unwinding of spring member 32 between the drums 24, 26. Because the third and fourth gears 44, 46 form part of coupled drive 38, it is easy to ascertain that if first cord 16 is moving to the left, second cord 17 is moving to the right, and bottom rail 14 is lowering. Further, because of coupled drive 38, as first cord 16 is pulled to the left, spring member 32 starts winding on output drum 24 and unwinding from storage drum 26.
In
Referring to
Spool 80 is mounted for rotation about first axis 92 and includes a first outer wall 98, a second outer wall 100, and a middle wall 102. First outer wall 98 and middle wall 102 form a first slot 104, and second outer wall 100 and middle wall 102 form a second slot 106. As shown, first cord 72 is wound upon spool 88 in the first slot 104. Second cord 73 is wound upon spool 80 in second slot 106. Cords 72, 73 are wound in separate slots 104, 106 upon the same spool so that if first cord 72 is wound clockwise on spool 80, second cord 73 is wound clockwise on spool 80.
Bottom rail 70 has a closed construction such that there is bottom wall 94, a top wall 108, side walls 110, and end walls 112. Top wall 108 of bottom rail 70 includes a first and second aperture 114, 116 through which first and second cords 72, 73 pass therethrough. First winding member 82 is located intermediate the first aperture 114 and spool 80. First cord 72 is wound upon first winding member 82. Second winding member 84 is located intermediate second aperture 116 and spool 80. Second cord 73 is wound around second winding member 84. First and second winding member 82, 84 is mounted to bottom wall 94 of bottom rail 70 at second axis and third axes 96, 118.
Placing drive actuator 76 and [slat adjustment in a horizontal configuration] in the bottom rail is intended to reduce the profile of head rail 68 and bottom rail 70, apportion weight in the blind, and increase structural rigidity.
First and second winding members 82, 84 are configured to provide tension or friction to the system so that the bottom rail rests in a static position after being released by the user. The diameter of first and second winding members 82, 84 can be varied in size according to the size of blind 106 and the blind material (i.e., weight of slats 74). By varying the diameter material, or configuration of winding members 82, 84, the friction in the system can be adjusted.
Referring now to
Referring to
Spring motor 126 includes a storage drum 140 and an output drum 142. Storage drum 140 is coupled to spool 124 and output drum 142 is coupled to rail 120. A spring member 144 connects storage drum 140 and output drum 142. Spring member 144 can be wound about storage drum 140 and output drum 142 in identical directions or spring member 144 can be wound about storage drum 140 and output drum 142 in opposite directions.
Spring motor 178 includes a storage drum 192 and an output drum 194. Storage drum 192 is mounted on second axle 188 and output drum 194 is mounted on third axle 190.
Spool 180 includes a first outer wall 196, a second outer wall 198, and a middle wall 200 located intermediate first and second outer walls 196, 198. A first slot 202 is formed by first outer wall 196 and the middle wall 200. A second slot 204 is formed by second outer wall 198 and the middle wall 200. Spool 180 is mounted on second axle 188 adjacent to storage drum 192. First tensioning pulley 182 is rotatably coupled to first axle 186 and second tensioning pulley 184 is rotatably coupled to third axle 190. A first cord 206 is wound on first tensioning pulley 182 and then is wound on spool 180 in first slot 202. A second cord 208 is wound on second tensioning pulley 186 and is then wound on spool 180 in second slot 204. If first cord 206 is wound around spool 180 in a clockwise direction, second cord 208 is also wound around spool 180 in a clockwise direction.
First and second tensioning pulleys 182, 184 are intended to provide friction to drive actuator 176. The amount of friction that the pulleys provide can be varied according to the size of the spring, the size of the miniblind, and the miniblind material type.
Referring to
Spring motor 210 includes a storage drum 232 and an output drum 234. A spring member 236 is connected to storage drum 232 and output drum 234 to form spring motor 210. Storage drum 232 is positioned adjacent spool 218 and intermediate spring 214 and spool 218. A spacer 238 is inserted on third axle 230 and is positioned between spring 214 and knob 220. Knob 220 is threadably coupled to third axle 230. As the operator rotates knob 220 onto third axle 230, knob 220 presses spacer 238 against spring 214, thereby transferring pressure to storage drum 232 of spring motor 210. Drive actuator 216 can also be configured so that the spring pressure also applies pressure to the spool.
First tensioning pulley 222 is rotatably mounted to first axle 226. Second tensioning pulley 224 is rotatably mounted to second axle 228. First and second axles 226, 228 are mounted to one wall and can also be attached to an opposing wall.
As shown in
Spool 218 includes a first outer wall 240, a second outer wall 242, and a middle wall 244 located intermediate of first and second outer walls 240, 242. A first slot 246 is formed by first outer wall 240 and the middle wall 244. A second slot 248 is formed by second outer wall 242 and the middle wall 244. A first cord 250 enters drag brake system 216 and winds on first tensioning pulley 222, preferably wrapping around the pulley once. First cord 250 then wraps on spool 218 in first slot 246. A second cord 252 enters drag brake system 216 and winds on second tensioning pulley 224, preferably wrapping around the second tensioning pulley at least once. Second cord 252 is then wound on spool 218 in second slot 248. Because first and second cords 250, 252 wrap in first and second slots 246, 248 on a single spool 218, it is easy to ascertain that if the first cord wraps on the spool in a clockwise direction, the second cord also wraps on the spool in a clockwise direction.
The rail (e.g., head rail or bottom rail) that drive actuator 268 is mounted in includes a first side wall 286, a bottom wall 288, and a second side wall 290. Axle 280 extends between first side wall 286 and second side wall 290. Adjacent first side wall 286, spool 272 is coupled to axle 280. Between spool 272 and second side wall 290 and adjacent to spool 272, constant force spring motor 274 is also mounted on axle 280. Spring 278 is located between second side wall 290 and constant force spring motor 274. Spring 278 is configured to be in a compressive state and therefore creating sufficient friction such that spool 272 and the constant force spring are maintained in a static position without regard to the position of the bottom rail. Brake pad 276 is disposed between spring 278 and constant force spring motor 274, and configured to transmit the compressive force from spring 278 to constant force spring motor 274 and spool 272.
Release button 270 is coupled to drive actuator 268 and extends through an aperture 292 in first side wall 286 of the head rail or bottom rail. When release button 270 is depressed, the compressive force, and therefore the frictional force, is relieved or unloaded from spool 272 and constant force spring motor 274. When the compressive force is relieved from spool 272 and spring motor 274, the user can adjust the elevated position of the bottom rail.
The compressive force of spring 278 operates as a friction brake acting on the spring motor 274, which can be relieved by pressing release button 270 on the front of the rail. Preferably, drive actuator 268 and the spring motor 274 are mounted in the same rail and preferably mounted in the bottom rail.
According to an alternative embodiment, shown in
According to a preferred embodiment, squeeze release brake 304 is located in a bottom rail 316 and acts as a friction brake on spool 296. Brake 304 is mounted adjacent an outside surface 320 of spool 296 and is coupled to a bottom wall 322 of bottom rail 316. Brake 304 includes first and second portions 324, 326 that project away from spool 296 and through an aperture 328 in a side wall of bottom rail 316, a friction surface 318 configured to engage outer surface 320 of the spool 296, a hinge 332 that connects first and second portions 324, 326 of brake 304, and an aperture 334 configured to receive an axle 336 that is connected to bottom wall 322 of bottom rail 316. First and second portions 324, 326 are symmetrical about a plane and about slot 338. First and second portions 324, 326 each include a flange 340 and a base 342, wherein a slot 338 extends from aperture 334 to friction surface 318 and separates the first and second portions 324, 326.
The friction force on spool 296 by friction surface 318 is relieved by operating brake 304. Brake 304 is operated by squeezing flange 340 together. When flanges 340 are squeezed together, brake 304 flexes about hinge 332 and axle 308. When brake 304 flexes, the amount of surface area of friction surface 318 in contact with spool 296 decreases. At a point, the friction caused by the contact of friction surface 318 to spool 296 is relieved enough for spool 296 and spring motor 298 to rotate. When brake 304 system is in a reduced friction brake status, bottom rail 316 can be raised or lowered by the user. When the user places bottom rail 316 in the desired position, the user releases the squeezing pressure from the flanges 340 of brake 340, thereby reengaging friction surface 318 to spool 296.
First and second follower pulleys 370, 372 provide a constant frictional force that maintains bottom rail 374 in a stationary position. The frictional force from first and second pulleys 370, 372 is overcome by the user lifting or lowering bottom rail 374 of the blind. When bottom rail 374 of the blind is lifted, the first and second spring members 376, 378 wrap around first and second storage drums 382, 384 in the first and second spring motors. Likewise, when the bottom rail is lowered, first and second storage drums 382, 384 rotate, allowing first and second flexible spring members 376, 378 to unwind.
In an exemplary embodiment, first and second spring motors 364, 366 include a constant torque spring that is attached to first and second spool 382, 384. According to a preferred embodiment, a ladder 386 is configured to support the plurality of louvers 388. According to a particularly preferred embodiment, ribbon 386 is translucent or transparent. The ladder is attached to the head rail and is wound on the follower pulleys.
Traction wheel 394 further includes a first side 406 and a second side 408. Constant torque spring 392 couples to first side 406 of traction wheel 394. A knob 410, preferably multisided, projects from second side 408 of traction wheel 394. Spring steel member 398 is attached to two sides of a multisided knob 410. Block and mandrel 400 are coupled to the spring steel member 398 and configured to freely hang from traction wheel 394.
According to a preferred embodiment, the difference between the starting torque of the brake lock release (not shown) and the constant torque of the spring determines the tension or compression of the strap.
Cordless system 412 further includes a first and second tensioning pulley 444, 446. First tensioning pulley 444 is connected to output drum 422. First cord 440 is wound on first tensioning pulley 444, preferably at least once, and is wound on spool 416 in first slot 436. Second cord 442 is wrapped around second tensioning pulley 446 and is wound on spool 416 in second slot 438. First and second cord 440, 442 may be attached to either the head rail (not shown) or the bottom rail (not shown). When the bottom rail is raised by the user, which relieves the weight of the bottom rail and the accumulated slats, the spring force overcomes the friction force from first and second tensioning pulleys 444, 446 and the weight of the bottom rail and accumulated slats. As drive spring motor 414 rotate, the perforated constant force spring 426 rotates spool 416 and therefore wind or unwind first and second cords 440, 442.
Spool 450 includes a first outer wall 464, a second outer wall 466, and a middle wall 468 disposed between first outer wall 464 and second outer wall 466. First outer wall 464 and middle wall 468 are spaced apart to form a first slot 470 wherein a first cord 472 is wound on spool 450. Second outer wall 466 and middle wall 468 are spaced apart to form a second slot 474 wherein a second cord 476 is wound on spool 450.
Spring 452 is mounted on axle 460 between spool 450 and a first wall 478. Spring 452 applies a tortional force to first axle 460 that would rotate axle 480 in a counterclockwise direction. Spring 456 is coupled to second axle 462 adjacent first wall 478. Spring 456 applies a force to second axle 462 that would rotate axle 462 in a clockwise direction. First and second axles 460, 462 are parallel with each other.
First conical section 454 is mounted on first axle 460 between spool 450 and a second wall 480. First conical section 454 includes a small end 482 and a wide end 484, which has a larger diameter than small end 482. A third cord 486 is attached to first conical section 454 at wide end 484. Second conical section 458 is rotatably coupled to second axle 462.
Second conical section 458 also includes a wide end 488 and a small end 490. Wide end 488 is nearest second wall 480, and small end 490 is nearest first wall 478. In first conical section 454, wide end 488 is nearest first wall 478, and small end 490 is nearest second wall 480. Third cord 486 is attached to the second conical section 458 adjacent wide end 488.
First conical section 454 is placed a short distance from second conical section 458 but in a reversed position, that is, small end 482 of first conical section 454 is opposite wider end 488 of second conical section 458. Thus, wide end 484 of first conical section 454 and smaller end 490 of second conical section 458 are nearest first wall 478, and smaller end 482 of the first conical section 454 and wide end 488 of second conical section 458 are nearest to second wall 480.
As the blind moves upward, the spring force pulling the bottom rail diminishes in strength, but this diminution is compensated for by third cord 486 which gradually passes to smaller end 482 of first conical section 454. When the blind is fully raised and all the slats rest upon the bottom rail, the weight of the blind and the power of the spring will be substantially equal.
Conical sections 454, 458 are configured to compensate for the decreasing spring force by varying the diameter of the winding surface as the bottom rail is raised and lowered. As the bottom rail is raised, the spring force diminishes and the weight on the bottom rail increases. The cordless mechanism uses a connection cord winding and unwinding of a conical spool to make nonlinear energy delivery into a constant force to length ratio. Tension springs are wound in opposite directions, one way to spool in, the other way to spool out.
According to an alternative embodiment shown in
As actuator interface 520 is rotated, slat actuator 516 rotates first extension member 518. Slat adjustment system 512 further includes an axle 530 that extends from at least first extension member 518 and a second ladder member (not shown).
A first ladder 532 includes a first and second cord 534, 536. First cord 534 is connected to first arm 524 of first extension member 518, and second cord 536 is connected to second arm 525 of first extension member 518. Similarly, a first cord of the second ladder is connected to a first arm of a second extension member, and a second cord of the second ladder is connected to the second arm of the second extension member (not shown).
As actuator stem 520 is rotated, slat actuator 516 rotates axle 530 such that first extension member 518 and the second ladder member rotate. When first ladder member 518 rotate counterclockwise, first cord 534 of first ladder 532 and the first cord of the second ladder lower relative to second cord 536 of first ladder 532 (and the second cord of the second ladder) such that slats 522 rotate.
Referring to
According to an exemplary embodiment, the performance of the blind may be adjusted by a retail sales associate at a retail outlet (e.g., retail sales location such as window covering stores, department stores, discount stores, home improvement stores, etc.). For example, the blind may need to be adjusted if the blind arrives out of adjustment from the factory. Alternatively, the blind may be customized (e.g., cutting to fit a width dimension, cut to length, sized in store, removal of slats or window covering, shortened, etc.) at a point of sale, at the retail outlet by the retail sales associate, or at the installation site by the installer, the consumer, etc. Such customization may alter weight and/or alter the performance characteristics of the blind. Altered weight may have an effect on the performance characteristics of the blind (e.g., the bottom rail does not stay in a desired, static, or “placed position”). After the retail sales associate “customizes” the blind, he/she can adjust the performance or operation of the blind so that the bottom rail may be selectively raised or lowered to a desired position (e.g., height) relative to the head rail and maintain a constant or static position when released. Such adjustment may be any of a variety techniques. According to a preferred embodiment, the retail associate employs any of the techniques disclosed herein and as shown in the FIGURES. For example, weight of the bottom rail may be altered (e.g., added, removed, repositioned, etc.). Alternatively, the bias member (e.g., spring) used in the drive actuator or spring motor may be replaced, exchanged, altered, adjusted, etc. Also, after the blind is installed, the customer or user may further adjust the performance or operation (e.g., fine tune, etc.) by changing the weight in the bottom rail, varying the friction adjusting the biasing force in the drive actuator, etc.
It is important to note that the use of the term “cordless blind” is not meant as a term of limitation, insofar as any “blind” or like apparatus having a decorative or functional use or application as a window covering or furnishing is intended to be within the scope of the term. The use of the term “cordless blind” is intended as a convenient reference for any “blind” or structure that does not have cords (e.g., pull cords) hanging freely for manipulation by the user. It is also important to note that the use of the term “cordless” is meant to cover any use of any type of cord that can be associated with a blind. It is also important to note that the term “window covering” is intended to include any of a variety of blind arrangements, including horizontal or vertical vanes or slats, roller shades, cellular shades, pleated shades, etc.
Although only a few exemplary embodiments of the present invention have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible in the exemplary embodiments (such as variations in sizes, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, or use of materials) without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of the invention as defined in the appended claims. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of preferred embodiments without departing from the spirit of the invention as expressed in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
13251 | Bixler | Jul 1855 | A |
322732 | Lang | Jul 1885 | A |
350429 | Griswold | Oct 1886 | A |
842401 | Goodell | Jan 1907 | A |
927090 | Anderson | Jul 1909 | A |
948239 | McManus | Feb 1910 | A |
1636601 | Givens | Jul 1927 | A |
1669255 | Landry | May 1928 | A |
1721501 | McKee | Jul 1929 | A |
1731124 | Carper | Oct 1929 | A |
1789655 | Toshi-Ko Iwata | Jan 1931 | A |
1863620 | Carouso | Jun 1932 | A |
1951659 | Kesner | Mar 1934 | A |
2037393 | Roberts | Apr 1936 | A |
2049518 | Schier | Aug 1936 | A |
2110983 | Carver | Mar 1938 | A |
2175549 | Nardulli et al. | Oct 1939 | A |
2250106 | Lorentzen | Jul 1941 | A |
2260101 | De Falco | Oct 1941 | A |
2266160 | Burns | Dec 1941 | A |
2276716 | Cardona | Mar 1942 | A |
2324536 | Pratt | Jul 1943 | A |
2325992 | Wirthman | Aug 1943 | A |
2350094 | Butts | May 1944 | A |
2390826 | Cohn | Dec 1945 | A |
2410549 | Olson | Nov 1946 | A |
2420301 | Cusumano | May 1947 | A |
2509033 | Carver | May 1950 | A |
2520629 | Esposito | Aug 1950 | A |
2535751 | Nardulli | Dec 1950 | A |
2598887 | Burns | Jun 1952 | A |
2609193 | Foster | Sep 1952 | A |
2687769 | Gershuny | Aug 1954 | A |
2824608 | Etten | Feb 1958 | A |
2874612 | Luboshez | Feb 1959 | A |
3141497 | Griesser | Jul 1964 | A |
3194343 | Sindlinger | Jul 1965 | A |
3308247 | Doersam et al. | Mar 1967 | A |
3358612 | Bleuer | Dec 1967 | A |
3371700 | Romano | Mar 1968 | A |
3485285 | Anderle | Dec 1969 | A |
3487875 | Shukat et al. | Jan 1970 | A |
3756585 | Mihalcheon | Sep 1973 | A |
3817309 | Takazawa | Jun 1974 | A |
4055038 | Conklin, Jr. | Oct 1977 | A |
4157108 | Donofrio | Jun 1979 | A |
4205816 | Yu | Jun 1980 | A |
4223714 | Weinreich et al. | Sep 1980 | A |
4326577 | Tse | Apr 1982 | A |
4344474 | Berman | Aug 1982 | A |
4398585 | Marlow | Aug 1983 | A |
4487243 | Debs | Dec 1984 | A |
4574864 | Tse | Mar 1986 | A |
4610292 | Hausmann et al. | Sep 1986 | A |
4623012 | Rude et al. | Nov 1986 | A |
4625786 | Carter et al. | Dec 1986 | A |
4631217 | Anderson | Dec 1986 | A |
4647488 | Schnebly et al. | Mar 1987 | A |
4726410 | Fresh | Feb 1988 | A |
4852627 | Peterson et al. | Aug 1989 | A |
4856574 | Minami et al. | Aug 1989 | A |
4862941 | Colson | Sep 1989 | A |
4877075 | Markowitz | Oct 1989 | A |
4880045 | Stahler | Nov 1989 | A |
4886102 | Debs | Dec 1989 | A |
4955421 | Torti | Sep 1990 | A |
4984617 | Corey | Jan 1991 | A |
5054162 | Rogers | Oct 1991 | A |
5067541 | Coslett | Nov 1991 | A |
5083598 | Schon | Jan 1992 | A |
5103888 | Nakamura | Apr 1992 | A |
5105867 | Coslett | Apr 1992 | A |
5133399 | Hiller et al. | Jul 1992 | A |
5141041 | Katz et al. | Aug 1992 | A |
5157808 | Sterner, Jr. | Oct 1992 | A |
5170830 | Coslett | Dec 1992 | A |
5176192 | Judkins et al. | Jan 1993 | A |
5184660 | Jelic | Feb 1993 | A |
5228491 | Rude et al. | Jul 1993 | A |
5274357 | Riordan | Dec 1993 | A |
5313998 | Colson et al. | May 1994 | A |
5318090 | Chen | Jun 1994 | A |
5320154 | Colson et al. | Jun 1994 | A |
5363898 | Sprague | Nov 1994 | A |
5391967 | Domel et al. | Feb 1995 | A |
5413161 | Corazzini | May 1995 | A |
5482100 | Kuhar | Jan 1996 | A |
5485875 | Genova | Jan 1996 | A |
5531257 | Kuhar | Jul 1996 | A |
5706876 | Lysyj | Jan 1998 | A |
5855235 | Colson et al. | Jan 1999 | A |
6003584 | Weinreich | Dec 1999 | A |
6012506 | Wang et al. | Jan 2000 | A |
6024154 | Wang et al. | Feb 2000 | A |
6029734 | Wang et al. | Feb 2000 | A |
6056036 | Todd et al. | May 2000 | A |
6079471 | Kuhar | Jun 2000 | A |
6095222 | Voss | Aug 2000 | A |
6097471 | Kuhr et al. | Aug 2000 | A |
6135189 | Weinreich | Oct 2000 | A |
6149094 | Martin et al. | Nov 2000 | A |
6234236 | Kuhar | May 2001 | B1 |
Number | Date | Country |
---|---|---|
40 03 218 | Aug 1991 | DE |
1 039 092 | Sep 2000 | EP |
883 709 | Jul 1943 | FR |
2 337 809 | Aug 1977 | FR |
13798 | Jul 1893 | GB |
2 262 324 | Jun 1993 | GB |