This disclosure relates to window blinds, specifically window blinds which do not use cords to move the slats.
Traditional Venetian window blinds operate with a draw cord and lift cords, which raise and lower the blind slats. Many window blinds use ladder cords, which raise, lower, and tilt the slats. Draw cords can be a strangulation hazard as well as detract from the aesthetic appeal of the window blind, so window blinds have been developed that operate without the use of draw cords. Lift cords can also be aesthetically unappealing, but few Venetian blinds have eliminated them. A window blind is needed which does not use any visible cords to raise and lower a window blind.
We disclose a cordless window covering system that may raise, lower, and tilt a plurality of slats without the use of lift cords. The cordless window covering system may include an external frame that includes two vertical sides and a headrail. The vertical sides of the external frame may each include a first rotatable belt which may be attached to a first axial shaft contained within the headrail and third axial shaft at the bottom of the external frame. A first motor may also be included in the headrail and may rotate the first axial shaft such that the first rotatable belt may also rotate. In some embodiments, the first axial shaft and first motor may be contained within a bottom rail. In such embodiments, the third axial shaft may be contained within the headrail. In some embodiments of the invention, the first motor may be powered by a battery and actuated by a controller. The headrail may also contain a second axial shaft, which may be attached to a second motor. The second motor may reversibly rotate the second axial shaft across a 180° angle.
The cordless window covering system may also include a plurality of slats, each of which may include pegs extending from each of a first and a second lateral side of each slat. The peg may connect fixedly to an inner race of one of a plurality of bearings. Each of the plurality of slats may also be connected to at least one string. The at least one string may be connected to each slat approximately along the first and second lateral sides of each slat and may attach each of the plurality of slats to an adjacent slat. The at least string may be attached at the top to the headrail such that the plurality of slats may hang from the headrail.
Each of the plurality of bearings may also include an outer race. The outer race may be fixedly attached to a bearing connector such that the outer race may remain stationary with respect to the bearing connector and the inner race. Each bearing connector may be attached to one of the plurality of slats and may freely rotate.
The external frame may also include a guide shaft on each of the two vertical sides. The guide shaft may be vertically oriented. The guide shaft may slidably guide the bearing connectors. This may allow each of the bearing connectors to raise and lower each of the plurality of slats in a vertical direction. In some embodiments of the disclosed cordless window covering system, a bottom bearing connector may interface with the first rotatable belt such that the bottom bearing connector may raise or lower as the first rotatable belt rotates. This may allow the bottom bearing connector to raise the slat to which it is attached, and consequently, the slats above the slat attached to the bottom bearing connector may also be raised.
The cordless window covering system may also include a top bearing that may have an inner bearing which may interface with a second rotatable belt at the bottom of the second rotatable belt. The second rotatable belt may interface at the top with a second axial shaft which may be contained in the headrail. This may allow the second axial shaft to rotate the inner race of the top bearing, and thus a slat to which the top bearing is attached, up to 180°. Since the slat to which the top bearing is attached may be attached by the at least one string on both the first and second lateral sides, as the axial shaft rotates the top bearing, each of the plurality of slats may also rotate.
Window blind, as used herein, means a blind that covers an opening in a building, including a window or door.
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, which will herein be described in detail, several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principals of the invention and is not intended to limit the invention to the illustrated embodiments.
We disclose a cordless window covering system that may raise, lower, and tilt a plurality of slats without the use of lift cords. The cordless window covering system may include a frame which may be two vertical sides attached to a headrail. Each of the two vertical sides may also include a first drive belt which may be attached at the top to a first horizontal shaft. The first drive belt may be attached at the bottom to a third horizontal shaft, which in some embodiments may be a short horizontal shaft. The first horizontal shaft may be contained within the headrail and may be attached to a first motor. In some embodiments of the invention, the first motor may be powered by a first battery. Additionally, in some embodiments of the invention, the first battery may be connected to a first motor controller. The first motor controller may allow the first horizontal shaft to be actuated remotely. The first motor may fully and reversibly rotate the first horizontal shaft. In some embodiments, the first horizontal shaft may be contained within a bottom rail. In such embodiments, the bottom rail may also contain the first motor, first battery, and first motor controller. In such embodiments, the first horizontal belt may be attached at the bottom to the first horizontal shaft and at the top to the third horizontal shaft, the latter of which may be contained in the headrail.
The headrail may also contain a second horizontal shaft, which may be attached to a second motor. The second motor may reversibly rotate the second horizontal shaft across a 180° angle. In some embodiments of the invention, the second motor may be powered by the first battery and actuated by the first motor controller. Alternatively, a second battery may power the second motor. The second battery may also be connected to a second motor controller.
The cordless window covering system may also include a plurality of slats, each of which may include a first and a second peg on a first and a second lateral side of each slat, respectively. The pegs may extend laterally from the first and second lateral sides of each slat. The first and second pegs may each attach to the center of an inner race of one of a plurality of bearings. The first and second lateral sides of each of the plurality of slats may also each be attached to at least one string. The at least one string may attach each of the plurality of slats to an adjacent slat. The at least string on or near the first and second lateral side of each slat may be attached at the top to the headrail such that the plurality of slats may hang from the headrail.
Each of the plurality of bearings may also include an outer race. The outer race may be fixedly attached to a bearing connector such that the outer race may remain stationary with respect to the bearing connector and the inner race. Each bearing connector may be attached to one of the plurality of slats and may freely rotate. In some embodiments, each of the plurality of bearings may be a ball bearing. In other embodiments, each of the plurality of slats may be a needle bearing. Other embodiments may include other types of bearings known in the art.
The frame may also include a guide channel on each of the two vertical sides. The guide channel may be vertically oriented. The guide channel may slidably guide the bearing connectors. This may allow each of the bearing connectors to raise and lower each of the plurality of slats in a vertical direction.
In some embodiments of the disclosed invention, a bottom bearing connector may interface with the first drive belt such that the bottom bearing connector may raise or lower as the first drive belt rotates. This may allow the bottom bearing connector to raise the slat to which it is attached. In some embodiments, the bottom bearing connector may interface with one or more of a plurality of grooves within the first drive belt. In other embodiments, the bottom bearing connector may be attached to the first drive belt. The bottom bearing connector may be attached to the first drive belt by means that include adhesion, hooks, screws, or any other connection mechanism known in the art.
The cordless window covering system may also include a top bearing that may have an inner bearing which may interface with a second drive belt at the bottom of the second drive belt. The second rotatable belt may interface at the top with the second horizontal shaft. This may allow the second horizontal shaft to rotate the inner race of the top bearing, and thus a slat to which the top bearing is attached, up to 180°. Since the slat to which the top bearing is attached may be attached by at least one string on both the first and second lateral sides, as the horizontal shaft rotates the top bearing, each of the plurality of slats may also rotate.
In order to facilitate controlled tilting of the slats, each of the lateral sides of each slat may be attached to two strings. Alternatively, each slat may be attached to at least four strings, where two strings are attached to each of the two lateral sides of each slat and also attached to the adjacent slat above it. In this embodiment, the four strings of a top slat may be attached to the headrail.
Referring now to the drawings,
While specific embodiments have been illustrated and described above, it is to be understood that the disclosure provided is not limited to the precise configuration, steps, and components disclosed. Various modifications, changes, and variations apparent to those of skill in the art may be made in the arrangement, operation, and details of the methods and systems disclosed, with the aid of the present disclosure.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the present disclosure to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and exemplary and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein.