The present invention relates to a fabric formed by crocheting yarns through knitting needles and particularly to a corduroy fabric fabricated by a circular knitting machine.
Corduroy fabrics generally have a greater thickness and a desirable warm-keeping characteristic, thus are suitable for making autumn and winter overcoats, and ornamental articles such as outer layers of shoes and hats, draperies, curtains, surface fabrics of sofas, and the like. There are many types of corduroy fabrics. Depending on the size of pile strips, they can be divided into extra fine strip, fine strip, medium strip, coarse strip, and broad strip. Other types also are available, such as with coarse strips and fine strips spaced alternatively, without cutting piles on a portion of the strips, or having the piles cut in a bias manner to form alternative heights on the strips, or the like. In general, the corduroy fabric is formed by weaving medium yarns. The ground fabric can adopt plain weave, twill weave, altered weft plain weave or the like.
The conventional corduroy fabric is fabricated by shuttle weaving. The fabric consists of one set of warp yarns and two sets of weft yarns woven manually or through semi-automatic machines. Referring to
The fabric shown in
Refer to
In short, the conventional corduroy fabrics fabricated by shuttle weaving, either with V-shaped or W-shaped piles, still have common problems remained to be overcome, notably:
1. the piles easily loosen off; and
2. production efficiency is too low.
Therefore the primary object of the present invention is to solve the aforesaid problems by providing a corduroy fabric that has piles fastened more securely and can be fabricated at a higher production efficiency.
To achieve the foregoing object the corduroy fabric according to the invention is fabricated through a circular knitting machine. Its structure includes a plurality of transverse weft yarn sets consisting of at least three yarns. Each of the transverse weft yarn sets includes a plurality of pile yarn warp loops consisting of at least two yarns in which at least one yarn in the pile yarn warp loops has at least one pile end, and a plurality of binding yarn warp loops consisting of at least two yarns. Each binding yarn warp loop is located at two sides of a selected number of the pile yarn warp loops. At least one common yarn winds around the selected number of pile yarn warp loops to form a binding yarn woven with the pile end in a staggered fashion. The pile yarn warp loop and the binding yarn warp loop of the transverse weft yarn set further are woven consecutively with the pile yarn warp loop and the binding yarn warp loop of a longitudinal neighboring transverse weft yarn set to form a plurality of longitudinal warp loop pile zones.
The foregoing, as well as additional objects, features and advantages of the invention will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
The corduroy fabric of the present invention is fabricated through a circular knitting machine. The operation principle and techniques of the circular knitting machine is known in the art, and form no part of the invention. Thus their details are not shown in the drawings and also not marked or discussed hereinafter.
Refer to
As shown in the drawings, the transverse weft yarn set 3 includes three yarns 31, 32 and 33, and is crocheted separately by needles of a circular knitting machine to form a plurality of pile yarn warp loops 4312 and 5312, and a plurality of binding yarn warp loops 4323 and 5323. In one longitudinal warp loop pile zone 9 one pile yarn warp loop 4312 and another pile yarn warp loop 5312 have two yarns 31 and 32. The two yarns 31 and 32 of the pile yarn warp loop 4312 is obtained by two crochets of one needle, while the two yarns 31 and 32 of the pile yarn warp loop 5312 is obtained by two crochets of another needle. The yarn 31 has a pile end 311. The binding yarn warp loops 4323 and 5323 also have two yarns 32 and 33 located respectively on the left side of the pile yarn warp loop 4312 and the right side of another pile yarn warp loop 5312. The two yarns 32 and 33 of the binding yarn warp loop 4323 are obtained by two crotches of a needle different from the one of the pile yarn warp loops 4312 and 5312. And the two yarns 32 and 33 of another binding yarn warp loop 5323 are obtained by two crotches of one needle different the ones previously discussed. The binding yarn warp loops 4323 and 5323 have a common yarn 33, winding the pile yarn warp loops 4312 and 5312 to form a binding yarn 333 cross with its own pile end 311.
Another transverse weft yarn set 6 also includes three yarns 61, 62 and 63, and is crocheted separately by needles of the circular knitting machine to form a plurality of pile yarn warp loops 4612 and 5612, and binding yarn warp loops 4623 and 5623. As previously discussed, in the same longitudinal warp loop pile zone 9 mentioned above, one pile yarn warp loop 4612 and another pile yarn warp loop 5612 have two yarns 61 and 62. The two yarns 61 and 62 of the pile yarn warp loop 4612 is obtained by two crochets feeding under the transverse weft yarn set 6 through the same needle which forms the pile yarn warp stitch 4312 previously discussed, while the two yarns 61 and 62 of another pile yarn warp loop 5612 is obtained by two crochets feeding under the transverse weft yarn set 6 through the same needle which forms another pile yarn warp loop 5312 previously discussed. The yarn 61 also has a pile end 611. The binding yarn warp loops 4623 and 5623 also have two yarns 62 and 63 located respectively on the left side of the pile yarn warp loop 4612 and the right side of another pile yarn warp loop 5612. The two yarns 62 and 63 of the bind yarn warp stitch 4623 are obtained by two crotches feeding under the transverse weft yarn set 6 through the same needle which forms the binding yarn warp loop 4323 previously discussed. And the two yarns 62 and 63 of another binding yarn warp loop 5623 are obtained by two crotches feeding under the transverse weft yarn set 6 through the same needle which forms the binding yarn warp loop 5323 previously discussed. The binding yarn warp loops 4623 and 5623 have a common yarn 63, winding the pile yarn warp loops 4612 and 5612 to form a binding yarn 633 cross with its own pile end 611.
It is to be noted that the two yarns 61 and 62 of the pile yarn warp loop 4612 are obtained through the same needle forming the pile yarn warp loop 4312, that receives yarn feeding while being moved to a yarn outlet of the transverse weft yarn set 6 and crochets two times, then the needle releases the yarns 31 and 32 of the pile yarn warp loop 4312 from a yarn release ring. Hence the yarns 61 and 62 of the pile yarn warp loop 4612 pass through the yarns 31 and 32 of the pile yarn warp loop 4312 to form a consecutive cross weaving fashion. And the two yarns 61 and 62 of the pile yarn warp loop 5612 are obtained by the same needle forming the pile yarn warp loop 5312, that receives yarn feeding while being moved to a yarn outlet of the transverse weft yarn set 6 and crochets two times, then the needle releases the yarns 31 and 32 of the pile yarn warp loop 5312 from a yarn release ring. Hence the yarns 61 and 62 of the pile yarn warp loop 5612 pass through the yarns 31 and 32 of the pile yarn warp loop 5312 to form a consecutive cross weaving fashion. Thus, the needles are continuously moved to the next yarn outlet to feed the yarns and crochet the yarns separately. As a result, a consecutive cross weaving is proceeded to form a plurality of longitudinal warp pile zones 9 to become the corduroy fabric of the invention.
Compared with the conventional techniques the present invention provides the following advantages:
1. The pile end of the pile yarn warp loop of the corduroy fabric of the invention is bound by the binding yarn of the binding yarn warp loop, hence the problem of pile loosening occurred to the conventional corduroy fabric does not take place.
2. The corduroy fabric of the invention is fabricated through a circular knitting machine, thus production speed is faster and the production efficiency is higher than the conventional shuttle weaving.
Refer to
Refer to
In the drawings the fabric formed by two transverse weft yarn sets 3 and 6 also are marked for discussion. The transverse weft yarn set 3 includes three yarns 31, 32 and 33, and is crocheted separately by needles of a circular knitting machine to form a plurality of pile yarn warp loops 9312 and a plurality of binding yarn warp stitches 4323 and 5323. In one longitudinal warp loop pile zone 91, one pile yarn warp loop 9312 has two yarns 31 and 32 formed by two crochets of one needle. One yarn 31 has two pile ends 311. The bind yarn warp loops 4323 and 5323 also have two yarns 32 and 33 located respectively on the left and right sides of the pile yarn warp loop 9312. The two yarns 32 and 33 of the binding yarn warp loop 4323 are obtained by two crotches of one needle different from the one of the pile yarn warp loop 9312. The two yarns 32 and 33 of the binding yarn warp stitch 5323 are obtained by two crotches of one needle different the ones previously discussed. The binding yarn warp loops 4323 and 5323 have a common yarn 33, winding the pile yarn warp loop 9312 to form a binding yarn 333 cross with the two pile ends 311.
Another transverse weft yarn set 6 also includes three yarns 61, 62 and 63, and is crocheted separately by needles of the circular knitting machine to form a plurality of pile yarn warp loops 9612, and binding yarn warp loops 4623 and 5623. Like those previously discussed, in one longitudinal warp loop pile zone 91 one pile yarn warp loop 9612 has two yarns 61 and 62. The two yarns 61 and 62 of the pile yarn warp loop 9612 are obtained by two crochets feeding under the transverse weft yarn set 6 through the same needle which forms the pile yarn warp loop 9312 previously discussed. One yarn 61 has two pile ends 611. The binding yarn warp loops 4623 and 5623 also have two yarns 62 and 63 located respectively on the left and right sides of the pile yarn warp loop 9612. The two yarns 62 and 63 of the binding yarn warp stitch 4623 are obtained by two crochets feeding under the transverse weft yarn set 6 through the same needle of the binding yarn warp stitch 4323 previously discussed. The two yarns 62 and 63 of the binding yarn warp stitch 5623 are obtained by two crochets feeding under the transverse weft yarn set 6 through the same needle of the binding yarn warp loop 5323 previously discussed. The two binding yarn warp loops 4623 and 5623 have a common yarn 63, winding the pile yarn warp loop 9612 to form a binding yarn 633 cross with the two pile ends 611.
It is to be noted that the two yarns 61 and 62 of the pile yarn warp loop 9612 are obtained by the same needle forming the pile yarn warp loop 9312, that receives yarn feeding at a yarn outlet of the transverse weft yarn set 6 and crochets two times, then the needle releases the yarns 31 and 32 of the pile yarn warp stitch 9312 from a yarn release ring. Hence the yarns 61 and 62 of the pile yarn warp stitch 9612 pass through the yarns 31 and 32 of the pile yarn warp loop 9312 to form a consecutive cross weaving fashion. Thus, the needles are continuously moved to the next yarn outlet to feed the yarns and crochet the yarns. As a result, a consecutive cross weaving is proceeded to form a plurality of longitudinal warp pile zones 91 to become the corduroy fabric of the invention.
Refer to
While the preferred embodiments of the invention have been set forth for the purpose of disclosure, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to those skilled in the art.
Accordingly, the appended claims are intended to cover all embodiments which do not depart from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3365918 | Hughes | Jan 1968 | A |
3769816 | Ploch et al. | Nov 1973 | A |
3835512 | Piller et al. | Sep 1974 | A |
5271983 | Ise et al. | Dec 1993 | A |
5422153 | Miyamoto | Jun 1995 | A |
5428969 | Day et al. | Jul 1995 | A |
5855125 | Lohmueller et al. | Jan 1999 | A |
6094944 | Schmidt | Aug 2000 | A |
6096667 | Rhode | Aug 2000 | A |
6745600 | Weiqing et al. | Jun 2004 | B2 |