The present invention relates to a core component that is used in a reactor used for a constituent component or the like of an in-vehicle DC-DC converter or a power conversion device installed in an electric vehicle such as a hybrid automobile, a method for manufacturing the core component, and a reactor using the core component.
Magnetic components, such as reactors and motors, are used in various fields. As such a magnetic component, for example, Patent Document 1 discloses a reactor used for a converter of a hybrid automobile.
Patent Document 1 discloses a reactor used for a converter installed in a vehicle such as a hybrid automobile, the reactor including a coil that is formed by helically winding a wire and a magnetic core that is formed into a ring shape by combining together a plurality of powder compacts (core pieces for the reactor) obtained by compression molding a raw material powder containing a soft magnetic powder. Also, Patent Document 1 discloses a core component in which powder compacts are individually covered with respective insulating coating layers (resin-molded portions), a core component in which a plurality of powder compacts are collectively covered with a resin-molded portion, and the like.
Patent Document 1: JP 2012-119454A
There is a demand for a core component having excellent joinability between a powder compact and a resin-molded portion.
A coil included in a magnetic component such as a reactor generates heat through Joule heating when energized and does not generate heat when not energized. In particular, when the energizing current value is large as in the case of a reactor or the like used in an in-vehicle converter, the coil generates a large amount of heat. Accordingly, a powder compact and a resin-molded portion that are disposed near the coil thermally expand and contract due to heat cycles caused by the coil. Since the powder compact, which is mainly composed of a metal such as iron, and a resin have different coefficients of thermal expansion, there is a risk that the thermal expansion and contraction may cause the resin-molded portion to peel from the powder compact. If the resin-molded portion peels, for example, there is a possibility that insulation between the powder compact and the coil will become insufficient, and there is a possibility that the gap length provided between powder compacts will change. If such a problem occurs, the magnetic characteristics of the reactor are impaired. Moreover, if the resin-molded portion peels, and the plurality of powder compacts are not sufficiently integrated, there is a risk that the resonance frequency may change prior to and after peeling, and thus vibration and noise may increase compared with those prior to peeling.
The present invention was made in view of the above-described circumstances, and an object thereof is to provide a core component in which a powder compact and a resin-molded portion are strongly joined to each other. Another object of the present invention is to provide a method for manufacturing a core component in which the joinability to a resin-molded portion is excellent. Moreover, another object of the present invention is to provide a reactor that uses a core component in which the joinability to a resin-molded portion is excellent.
A reactor[KY1] according to an aspect of the present invention is a core component including a powder compact that is obtained by compression molding a raw material powder containing a soft magnetic powder and a resin-molded portion that is formed on a surface of the powder compact, and constituting a part of a magnetic core to be disposed inside and outside a coil included in a reactor, wherein an intermediate layer formed of a silane coupling agent is provided between the powder compact and the resin-molded portion.
A method for manufacturing a core component according to an aspect of the present invention includes a step α of preparing a powder compact that is obtained by compression molding a raw material powder containing a soft magnetic powder, a step β of treating a surface of the powder compact with a silane coupling agent, and a step γ of forming a resin-molded portion on the surface of the powder compact that has been treated with the silane coupling agent.
A reactor according to an aspect of the present invention is a reactor including a combined product having a coil and a magnetic core, wherein the magnetic core includes the core component according the aspect of the present invention.
The above-described core component has excellent joinability between the powder compact and the resin-molded portion formed on the surface of the powder compact.
With the above-described method for manufacturing a core component, a core component in which the joinability to the resin-molded portion is excellent can be produced.
The above-described reactor uses a core component in which the joinability to the resin-molded portion is excellent.
First, aspects of the present invention will be listed and described.
<1> A core component according to an embodiment is a core component including a powder compact that is obtained by compression molding a raw material powder containing a soft magnetic powder and a resin-molded portion that is formed on a surface of the powder compact, and constituting a part of a magnetic core to be disposed inside and outside a coil included in a reactor, wherein an intermediate layer formed of a silane coupling agent is provided between the powder compact and the resin-molded portion.
With the above-described core component, the powder compact and the resin-molded portion can be strongly joined to each other via the intermediate layer formed of the silane coupling agent. The silane coupling agent not only binds chemically to the surface of the powder compact but also binds chemically to the resin-molded portion, and therefore, the joining between the powder compact and the resin-molded portion via the intermediate layer is extremely strong.
<2> With respect to the core component of the embodiment, it is also possible that the resin-molded portion contains a binding aid that strengthens joining between the intermediate layer and the resin-molded portion, and the binding aid has at least one functional group selected from epoxy groups, carboxyl groups, acid anhydride groups, amino groups, and isocyanate groups.
When a resin forming the resin-molded portion contains a binding aid having a functional group capable of chemically binding to the silane coupling agent, the joining between the intermediate layer and the resin-molded portion can be strengthened. As a result, the joining between the powder compact and the resin-molded portion via the intermediate layer can be made even stronger. The binding aid contained in the resin remains in the resin-molded portion.
<3> A method for manufacturing a core component according to an embodiment includes a step α of preparing a powder compact that is obtained by compression molding a raw material powder containing a soft magnetic powder, a step β of treating a surface of the powder compact with a silane coupling agent, and a step γ of forming a resin-molded portion on the surface of the powder compact that has been treated with the silane coupling agent.
With the above-described method for manufacturing a core component, it is possible to produce a core component of an embodiment in which an intermediate layer is formed between the powder compact and the resin-molded portion, the intermediate layer strongly joining the powder compact and the resin-molded portion to each other.
<4> A reactor according to an embodiment is a reactor including a combined product having a coil and a magnetic core, wherein the magnetic core includes the core component according to the embodiment.
In the above-described reactor, the powder compact and the resin-molded portion, of the core component are strongly joined to each other, and thus, problems such as peeling of the resin-molded portion from the powder compact are unlikely to occur. Accordingly, in the above-described reactor, problems due to peeling of the resin-molded portion are unlikely to occur.
Hereinafter, embodiments of a reactor of the present invention will be described based on the drawings. In the drawings, like reference numerals denote objects having like names. It should be understood that the present invention is not to be limited to configurations described in the embodiments, but rather is to be defined by the appended claims, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
The powder compact 11 included in the core component 10 is obtained by compression molding a raw material powder containing a soft magnetic powder. The soft magnetic powder is an aggregate of magnetic particles composed of an iron-group metal, such as iron, an alloy thereof (a Fe—Si alloy, a Fe—Ni alloy, or the like), or the like. Preferably, the magnetic particles have an average particle diameter (D50) of, for example, between 1 μm and 1000 μm inclusive, and particularly between 10 μm and 500 μm inclusive. An insulating coating of between 10 nm and 1 μm inclusive composed of a phosphate or the like may also be formed on the surface of the magnetic particles. Moreover, in addition to the soft magnetic powder, the raw material powder may also contain a lubricant, such as stearamide, and a binder, such as a silicone resin. The lubricant and the binder may disappear during heat treatment of the powder compact, which will be described later.
The overall shape of the powder compact 11 may typically be, but not limited to, a rectangular parallelepiped shape shown in
It is sufficient if the resin-molded portion 12 covers at least a portion of the outer periphery of the powder compact 11, but preferably, the resin-molded portion 12 covers the entire periphery of the powder compact 11. However, depending on the position where the core component 10 is disposed in the magnetic core, a configuration may also be adopted in which a portion of the outer periphery of the powder compact 11 is not covered with the resin-molded portion 12 on purpose. For example, a second core component 320 (see
Unlike the configuration shown in
With regard to the resin composing the resin-molded portion 12, for example, thermoplastic resins such as polyphenylene sulfide (PPS) resins, polytetrafluoroethylene (PTFE) resins, liquid crystal polymers (LCPs), polyamide (PA) resins such as nylon 6 and nylon 66, polybutylene terephthalate (PBT) resins, and acrylonitrile-butadiene-styrene (ABS) resins can be used. In addition, thermosetting resins such as unsaturated polyester resins, epoxy resins, urethane resins, and silicone resins can also be used. Moreover, it is also possible to improve heat dissipation properties of the resin-molded portion 12 by mixing a ceramic filler such as alumina, silica, or the like in these resins.
The resin-molded portion 12 may further contain a binding aid that strengthens the joining between the intermediate layer 13, which will be described later, and the resin-molded portion 12. The binding aid will be described again in the section of the intermediate layer 13 below.
The intermediate layer 13 included in the core component 10 is disposed between the surface of the powder compact 11 and the resin-molded portion 12 and strongly joins the powder compact 11 and the resin-molded portion 12 to each other. The intermediate layer 13 is formed of a silane coupling agent, and not only binds chemically to the surface of the powder compact 11 but also binds chemically to the resin-molded portion 12.
Here, the joining between the intermediate layer 13 and the resin-molded portion 12 can be further strengthened if the resin-molded portion 12 contains a binding aid including a functional group that can easily bind chemically to the reactive functional group of the silane coupling agent, which forms the intermediate layer 13. Examples of the functional group that can easily bind chemically to the reactive functional group of the silane coupling agent include epoxy groups, carboxyl groups, acid anhydride groups, amino groups, isocyanate groups, and the like. This means that it is preferable to use a binding aid having at least one of the above-described functional groups as the binding aid.
Examples of the binding aid include a maleic anhydride-modified ethylene-based copolymer, a glycidyl methacrylate-modified ethylene-based copolymer, a glycidyl ether-modified ethylene copolymer, an epoxy resin, an isocyanate compound, and the like.
The above-described core component 10[KY2] includes a step α of preparing a powder compact 11 that is obtained by compression molding a raw material powder containing a soft magnetic powder, a step β of treating the surface of the powder compact 11 with a silane coupling agent, and a step γ of forming the resin-molded portion 12 on the surface of the powder compact 11 that has been treated with the silane coupling agent.
The powder compact 11 can be obtained by using a known method for manufacturing a powder compact. That is to say, the powder compact 11 can be obtained by filling a raw material powder containing a soft magnetic powder into a cavity of a mold and compression molding the raw material powder. The raw material powder that has already been described in the section of the powder compact 11 above can be used as the raw material powder. The pressure of compression molding of the raw material powder can be set between 390 MPa and 1500 MPa inclusive.
Preferably, the powder compact 11 after compression molding is subjected to predetermined heat treatment. The reason for this is that, during compression molding, strain is introduced into the magnetic particles contained in the raw material powder. This strain may increase the hysteresis loss of the powder compact 11 but can be removed through heat treatment. The heat treatment can be performed under the following conditions: between 400° C. and 700° C. inclusive, and between 30 minutes and 60 minutes inclusive.
To treat the surface of the powder compact 11 with the silane coupling agent, for example, a treatment solution containing the silane coupling agent can be applied to the surface of the powder compact 11, or the powder compact 11 can be immersed in the treatment solution. The solvent in which the silane coupling agent is dissolved may be water or may be a water-soluble organic solvent, such as ethanol or acetone, or the like.
The concentration of the silane coupling agent in the solution can be selected as appropriate. For example, the content of the silane coupling agent in the treatment solution can be set between 0.05 mass % and 2.0 mass % inclusive, or between 0.1 mass % and 1.5 mass % inclusive. If the content of the silane coupling agent is less than 0.05 mass %, the intermediate layer 13 cannot be sufficiently formed. Moreover, if the content of the silane coupling agent is more than 2.0 mass %, the silane coupling agent layer is formed as a multilayer, and thus, there is a risk that peeling may occur between the silane coupling agent layers.
Prior to treating the surface of the powder compact 11 with the silane coupling agent, it is preferable to pre-treat the surface of the powder compact 11 with an alkaline solution or an acidic solution. The pre-treatment is performed in order to generate a functional group (hydroxyl group) that is beneficial in the reaction with the silane coupling agent on the surface of the powder compact 11. An aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, or the like can be used as the alkaline solution. Also, a solution of hydrochloric acid, nitric acid, phosphoric acid, or sulfuric acid, or the like can be used as the acidic solution.
To form the resin-molded portion 12 on the surface of the powder compact 11, for example, a mold 6 for molding shown in
Here, as already described above, it is preferable that the resin composing the resin-molded portion 12 contains the binding aid. Due to the resin containing the binding aid, the joining between the intermediate layer 13 and the resin-molded portion 12 can be strengthened when the resin has cured. The optimal content of the binding aid in the resin varies depending on the type of the resin, the type of the binding aid, and the type of the silane coupling agent, and therefore cannot be determined in a generalized manner. For example, when the total mass of the resin and the binding aid is taken as 100, the content of the binding agent in the resin may be set between 1 mass % and 50 mass % inclusive, or between 2 mass % and 25 mass % inclusive.
A plurality of powder compacts 11 were provided, and specimens 1 to 7 (core components 10) were produced in which resin-molded portions 12 were formed on the surface of the respective powder compacts 11. The powder compacts 11 used for the respective specimens 1 to 7 had the same configuration. The following materials were used to form the resin-molded portions 12 of the specimens 1 to 7. Table 1 shows the compositions of the respective specimens 1 to 7.
Resin Composing the Resin-Molded Portion 12
A PPS resin or a PA9T resin (polyamide resin manufactured by Kuraray Co., Ltd.)
Binding Aid
A glycidyl methacrylate-modified ethylene-based copolymer (hereinafter referred to as “compound I”) or a maleic anhydride-modified ethylene-based copolymer (hereinafter referred to as “compound II”)
Coupling Agent
A silane coupling agent (hereinafter referred to as “amino-based coupling agent”) having an amino group as the reactive functional group or a silane coupling agent (hereinafter referred to as “epoxy-based coupling agent”) having an epoxy group as the reactive functional group
The produced specimens 1 to 7 were subjected to a peel test (JIS K 6850) with respect to the resin-molded portion 12. According to the results of the peel test, the specimens were evaluated as A, B, or C in decreasing order of joining strength between the powder compact 11 and the resin-molded portion 12. The specimens evaluated as A were those in which the powder compact 11 was broken or the surface of the powder compact 11 peeled off when the resin-molded portion 12 was peeled off, and the specimens evaluated as C were those in which no specific damage to the powder compact 11 occurred. Moreover, the specimens evaluated as B were those in which, although the powder compact 11 was not as damaged as were those of the specimens evaluated as A, the resin-molded portion 12 was hard to peel off. Table 1 also shows the results of the peel test.
As shown in Table 1, the joinability of the specimens 1 to 3, in which the resin-molded portion 12 contained a binding aid, and the surface of the powder compact 11 was treated with a silane coupling agent, were evaluated as A. The joinability of the specimens 5 and 7, in which, although the resin-molded portion 12 contained no binding aid, the surface of the powder compact 11 was treated with a silane coupling agent, were evaluated as B. On the other hand, the joinability of the specimens 4 and 6, in which, although the resin-molded portion 12 contained a binding aid, the surface of the powder compact 11 was not treated with a silane coupling agent, were evaluated as C. These results made it clear that treating the surface of the powder compact 11 with a silane coupling agent improves the joinability between the powder compact 11 and the resin-molded portion 12. It also was made clear that the joinability between the powder compact 11 and the resin-molded portion 12 further improve if, in addition to the surface treatment of the powder compact 11 with a silane coupling agent, the resin-molded portion 12 contains a binding aid.
In Embodiment 2, an example of a reactor 1 using the core component 10 described in Embodiment 1 will be described with reference to
The reactor 1 shown in
The combined product 1α in which the coil 2 and the magnetic core 3 are mechanically combined will be described with reference mainly to the exploded perspective view of
The coil 2 of the present embodiment includes a pair of winding portions 2A and 2B and a connecting portion 2R that connects the two winding portions 2A and 2B to each other. The winding portions 2A and 2B are formed into hollow tube shapes having the same number of turns and the same winding direction and are arranged side-by-side such that their axial directions are parallel to each other. The connecting portion 2R is a portion that connects the two winding portions 2A and 2B to each other and that is bent into a U-shape. The coil 2 may be formed by helically winding a single wire having no joint portion, or may be formed by producing the winding portions 2A and 2B using separate wires and joining wire end portions of the respective winding portions 2A and 2B to each other through welding, crimping, or the like.
Each of the winding portions 2A and 2B of the present embodiment is formed into a rectangular tube shape. The winding portions 2A and 2B having a rectangular tube shape refer to winding portions whose end surfaces have a quadrangular shape (including a square shape) with rounded corners. It goes without saying that the winding portions 2A and 2B can also be formed into a cylindrical tube shape. A cylindrical tube-shaped winding portion refers to a winding portion whose end surfaces have a closed curve shape (elliptical shape, perfect circle shape, racetrack shape, or the like).
The coil 2 including the winding portions 2A and 2B can be constituted by a coated wire including a conductor, such as a rectangular wire, a round wire, or the like, made of a conductive material, such as copper, aluminum, magnesium, or an alloy thereof, and an insulating coating made of an insulating material and provided on an outer circumference of the conductor. In the present embodiment, each winding portion 2A, 2B is formed by winding a coated rectangular wire edgewise, the coated rectangular wire being constituted by a rectangular wire made of copper, which serves as the conductor, and the insulating coating made of enamel (typically, polyamideimide).
Both end portions 2a and 2b of the coil 2 are drawn out from the winding portions 2A and 2B and connected to respective terminal members 7. An external device such as a power supply that supplies power to the coil 2 is connected via the terminal members 7.
The magnetic core 3 of the present example includes a pair of first core components 310 that are formed into a column shape and a pair of second core components 320 that connect end surfaces 310e of the first core components 310. The first core components 310 and the second core components 320 are connected together in a ring shape, thereby forming the magnetic core 3.
The first core components 310 are members each including an inner core portion 31 that is disposed inside the winding portion 2A (2B) of the coil 2 and a resin-molded portion 310m that covers the outer periphery of the inner core portion 31. The inner core portion 31 is constituted by a plurality of split core pieces 31m and a plurality of gap materials 31g that are alternately stacked one on top of another (see also an exploded perspective view of the inner core portion 31 within the dashed and double-dotted line at the lower right). The split core pieces 31m are powder compacts that are each obtained by compression molding a raw material powder containing a soft magnetic powder. That is to say, each of the first core components 310 is a core component into which a plurality of powder compacts (split core pieces) are integrated by using the resin-molded portion 310m, and adopts the same configuration as the core component 10 of Embodiment 1. The gap materials 31g are members for adjusting the magnetic characteristics of the inner core portion 31, and can be composed of alumina or the like, for example.
To produce the above-described first core component 310, the inner core portion 31 in which the split core pieces 31m and the gap materials 31g are stacked one on top of another is immersed in a treatment solution containing a silane coupling agent, and then the resin-molded portion 310m can be formed on the surface of the inner core portion 31. As a result, the intermediate layer 13 (see
Here, the first core component 310 can also have a form shown in the vertical cross-sectional view of
The second core components 320 are members in each of which the outer periphery of the corresponding outer core portion 32, which is disposed outside the winding portions 2A and 2B, is covered with a resin-molded portion 320m. The outer core portions 32 are each constituted by a substantially semi-cylindrical shaped split core piece 32m, which is a powder compact. The same configuration as that of the core component 10 of Embodiment 1 is applied to each second core component 320.
To produce the above-described second core component 320, the split core piece 32m is immersed in a treatment solution containing a silane coupling agent, and then the resin-molded portion 320m can be formed on the surface of the split core piece 32m. As a result, the intermediate layer 13 (see
The first core components 310 and the second core components 320 of the present example are connected together through mechanical fitting of thin portions 311 that are formed at axial end portions of the first core components 310 to frame portions 321 that are formed in the second core components 320. The thin portions 311 are formed by reducing the thickness of the resin-molded portions 310m compared with that in the other portions, and the frame portions 321 are formed by making the resin-molded portions 320m protrude. Inside the frame portions 321, the outer core portions 32 are exposed without being covered by the resin-molded portions 320m.
In the configuration of the present example in which the first core components 310 and the second core components 320 are connected together, end surfaces 310e of the first core components 310 come into contact with end surfaces 32e of the outer core portions 32 (split core pieces 32m) of the second core components 320. An adhesive may also be used between the end surfaces 310e and the end surfaces 32e. Here, the end surfaces 310e are composed of the resin-molded portions 310m that cover end surfaces 31e of the inner core portions 31. Therefore, in the present example, the resin-molded portions 310m function as gap materials between the end surfaces 31e of the inner core portions 31 and the end surfaces 31e[KY3] of the outer core portion 32
The reactor 1 of Embodiment 1 includes the mount plate 9, the coupling layer 8, and the like as shown in
The mount plate 9 is a member that functions as a base when the reactor 1 is fixed to an installation target such as a cooling base. For this purpose, the mount plate 9 is required to have excellent mechanical strength. Moreover, the mount plate 9 is required to serve to release heat generated in the combined product la during use of the reactor 1 to the installation target. For this purpose, the mount plate 9 is required to have excellent heat dissipation properties in addition to mechanical strength. To meet these requirements, the mount plate 9 is composed of a metal. For example, aluminum and its alloys and magnesium and its alloys can be used as the material composing the mount plate 9. These metals (alloys) have advantages of being excellent in mechanical strength and thermal conductivity, lightweight, and non-magnetic.
The coupling layer 8 is formed between the above-described mount plate 9 and the combined product 1α, the coupling layer 8 joining the combined product 1[KY4] and the mount plate 9 to each other. The coupling layer 8 also has the function of conducting heat generated in the combined product 1α during use of the reactor 1 to the mount plate 9.
A material having insulating properties is used as the material composing the coupling layer 8. Examples thereof include thermosetting resins such as epoxy resins, silicone resins, and unsaturated polyesters and thermoplastic resins such as PPS resins and LCPs. The heat dissipation properties of the coupling layer 8 may be improved by these insulating resins containing the above-described ceramic filler and the like. The coupling layer 8 preferably has a thermal conductivity of, for example, 0.1 w/m·K or more, more preferably 1 w/m·K or more, and particularly preferably 2 w/m·K or more.
The coupling layer 8 may be formed by applying an insulating resin, which may be a resin containing a ceramic filler, or may be formed by bonding a sheet material made of an insulating resin onto the mount plate 9. The use of a sheet-like material as the coupling layer 8 is preferable because this makes it easy to form the coupling layer 8 on the mount plate 9.
In the reactor 1 that is configured as described above, the resin-molded portions 310m and 320m of the magnetic core 3 are unlikely to peel off even when thermal expansion and contraction of the magnetic core 3 occur due to use of the reactor 1. Accordingly, problems due to peeling of the resin-molded portions 310m and 320m, such as a deterioration of the magnetic characteristics of the reactor 1, vibration and noise, and other problems, are unlikely to occur.
The reactor according to Embodiment 2 can be preferably applied to uses where the energization conditions are, for example, maximum current (direct current): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and working frequency: about 5 kHz to 100 kHz, and typically for a constituent component of an in-vehicle power conversion device installed in an electric automobile, a hybrid automobile, or the like. For these uses, it is expected that a reactor that satisfies the requirements that the inductance when the flowing direct current is 0 A is between 10 μH and 2 mH inclusive, and the inductance when the maximum current flows is 10% or more of the inductance at 0 A can be preferably used.
A core component of the present invention can be used in a reactor included in a power conversion device, such as a bidirectional DC-DC converter, installed in electric vehicles such as hybrid automobiles, electric automobiles, and fuel-cell electric automobiles.
10: Core component
11: Powder compact, 12: Resin-molded portion, 13: Intermediate layer
1: Reactor, 1α: Combined product
2: Coil
2A, 2B: Winding portion, 2R: Connecting portion, 2a, 2b: End portion
3: Magnetic core
310: First core component, 310m: Resin-molded portion, 310e: End surface
311: Thin portion
31: Inner core portion, 31m: Split core piece, 31g: Gap material
31
e: End surface
320: Second core component, 320m: Resin-molded portion
321: Frame portion
32: Outer core portion, 32m: Split core piece, 32e: End surface
6: Mold for molding
60: Retaining member, 61: Injection port
7: Terminal member
8: Coupling layer
9: Mount plate
Number | Date | Country | Kind |
---|---|---|---|
JP2015-004512 | Jan 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/050544 | 1/8/2016 | WO | 00 |