The present application claims priority from Japanese Patent application serial no. 2022-088176, filed on May 31, 2022, the content of which is hereby incorporated by reference into this application.
The present invention relates to a core for a stationary electromagnetic apparatus.
A stationary electromagnetic apparatus such as a transformer that is used for the conversion of a voltage for power transmission and distribution in an electric power system and the electrical insulation between electric wires of two systems has the following configuration. The stationary electromagnetic apparatus is formed by winding the windings of two systems on a high voltage side and a low voltage side to magnetic leg portions of a core made of a directional silicon steel plate that contains iron as a main component, a conductive soft magnetic material such as an amorphous alloy or a nanocrystal alloy or a non-conductive soft magnetic material such as ferrite. Currently, in forming the magnetic leg portion of the core of a distribution transformer that has a power capacity (rated capacity) of more than approximately 2 MVA and is used in a distribution substation or the like, mainly a directional electromagnetic steel plate is adopted by taking into account a balance between a mechanical strength, a cost and power efficiency. On the other hand, an amorphous core formed by laminating amorphous alloys each containing iron as a main component and having a thin strip shape has a magnetic loss that is half of a magnetic loss of the directional electromagnetic steel plate. Accordingly, the amorphous core is extremely useful in realizing a high efficiency of the stationary electromagnetic apparatus. Currently, the amorphous core is mainly adopted by a stationary electromagnetic apparatus having a small capacity of 2 MVA or less.
Japanese Unexamined Patent Application Publication No. 2000-124035 (patent literature 1) discloses an example of a core for a stationary electromagnetic apparatus that uses an amorphous core. In the Japanese Unexamined Patent Application Publication No. 2000-124035, there is disclosed an amorphous winding core transformer that includes: an amorphous winding core that is formed by winding an amorphous material thin strip in multiple layers; and a plurality of coils into which the amorphous winding core is inserted, in which, in the amorphous winding core, a space factor of the core portion is higher than a space factor of a yoke portion. According to the Japanese Unexamined Patent Application Publication No. 2000-124035, in the winding core, the space factor of the core portion 1a is higher than the space factor of the yoke portion and hence, an iron loss of the core portion 1a can be reduced. Further, an increased amount of an iron loss caused by lowering of the space factor of the yoke portion 1b can be cancelled by a reduced amount of the iron loss.
In recent years, from a viewpoint of the protection of an environment around an electrical power substation, the noise regulation applied to respective facilities is becoming stricter. As one of noises that a transformer generates, an excitation noise is named, and magnetostrictive vibration of a core is considered as a main cause of the excitation noise. A magnetic strain is a phenomenon where, when a magnetic flux in a steel plate that forms a core changes, a shape of the steel plate changes in accordance with the change of the magnetic flux. Due to this phenomenon, when the core is subjected to an alternating-current excitation, the core is excited so that the core vibrates and a noise is generated. A magnetic strain of an amorphous thin strip is approximately 27 ppm, and is approximately 10 times as large as a magnetic strain of a silicon steel plate of a general core material.
Further, the amorphous thin strip is sensitive to a stress and hence, with respect to an amorphous core formed by laminating several thousands of thin strips, when a compression is applied to the core in the laminating direction, magnetostrictive vibrations that are generated in the respective thin strips are synthesized thus generating a large noise. Accordingly, it is necessary to adopt the core structure where a compressive stress is not applied in the laminating direction of the thin strips of the amorphous core. However, in the manufacture of the core in the past, the higher a space factor (=(the number of the thin strips×the thickness of thin strip)/(the width of the core in the laminating direction), the smaller the manufactured transformer becomes. Accordingly, a method for manufacturing a core is adopted where a space factor is increased, that is, the compression is generated in the thin strip direction. For example, in the above-mentioned Japanese Unexamined Patent Application Publication No. 2000-124035, to set the space factor of the magnet leg of the amorphous core higher than the space factor of the yoke of the amorphous core, amorphous metal thin strips are fastened in the laminating direction using a forming mold 3 and a fastening jig 4. Further, even when a fastening jig or the like is not used, since it is necessary to fix the core after inserting the core in a transformer tank, in general, an insulating material or the like is inserted between the core wirings. Accordingly, in steps of manufacturing the transformer, there is no ways but to apply a compressive stress to the amorphous core in the laminating direction of the amorphous core. Further, the larger a capacity of the transformer, the larger the above-mentioned compressive stress becomes and hence, the increase of noise becomes conspicuous.
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a core for a stationary electromagnetic apparatus provided with an amorphous core, in which a compressive stress load applied in the laminating direction of amorphous thin strips that form the amorphous core is suppressed so that noise generated by magnetostrictive vibration is reduced while maintaining a space factor of the amorphous core.
To overcome the above-mentioned drawbacks, according to a first aspect of the present invention, there is provided a core for a stationary electromagnetic apparatus that includes a laminated body formed of amorphous metal strips and a holding member that holds the laminated body. In the core for a stationary electromagnetic apparatus, a width of the holding member is equal to or more than a width of the amorphous metal strips in a laminating direction.
The more specific configurations of the present invention are described in claims.
According to the configuration of the present invention, with respect to a core for an stationary electromagnetic apparatus that uses an amorphous core, it is possible to provide a core for a stationary electromagnetic apparatus that can suppress a compressive stress load applied to amorphous thin strips that form the amorphous core in a laminating direction thus reducing noise caused by magnetostrictive vibration while maintaining a space factor of the amorphous core.
Other objects, configurations and advantageous effects besides the above-mentioned objects, configurations and advantageous effects will become apparent by the description of the embodiments made hereinafter.
Hereinafter, embodiments of the present invention are described in detail with reference to drawings. It must be noted that the present invention is not limited by the following embodiments.
Silicon steel plates 4a, 4b are disposed on a surface on an innermost peripheral side and a surface on an outermost peripheral side of the amorphous core 10. The silicon steel plates 4a, 4b protect the amorphous metal thin strips that are likely to be easily chipped. The amorphous core 10 is formed into a substantially rectangular shape by laminating a plurality of amorphous metal thin strips that are magnetic materials having a thin plate shape. A closed magnetic circuit is formed by joining both ends of the amorphous metal thin strips in an overlapping manner at an overlapping portion 3.
To fix the holding members 2 to the laminated body 1, it is preferable that the holding members 2 be made to adhere to a silicon steel plate 4a of the amorphous core 10 on an innermost peripheral side and to a silicon steel plate 4b of the amorphous core 10 on an outermost peripheral side by a resin. A contact surface between the holding member 2 and the silicon steel plate 4 may adopt a bellows structure so that the holding member 2 and the silicon steel plate 4 get caught with each other. Further, as illustrated in
In this manner, in the present embodiment, the holding member 2 is provided for protecting the laminated body 1 from a compressive stress. Accordingly, the holding member 2 differs, in purpose and advantageous effects, from a member that is provided for fastening the laminated body 1 for increasing a space factor.
The amorphous core is, after the amorphous metal thin strips are laminated to each other, annealed so as to eliminate a residual stress. At the time of annealing the amorphous core, it is necessary to support the amorphous core and hence, the core is fixed with a fitting. Assuming a case where the space factor of the core is x at this point of time, as illustrated in
the width of the holding member=(the number of the thin strips×the thickness of one thin strip)/(the space factor of the core after annealing÷1.02)
The higher the space factor of the amorphous core, the smaller the size of the amorphous core becomes. Accordingly, by setting the width of the holding member to a value larger than the width of the core as described above, the noise can be reduced while maintaining the space factor.
Also in the configuration of the embodiment 2, in the same manner as the configuration of the embodiment 1, it is possible to form the core without applying a compressive stress to the amorphous core in the laminating direction of the amorphous metal thin strips while maintaining a space factor of the amorphous core 10.
The stationary electromagnetic apparatus includes the structure where patch plates 8 are disposed on outer sides of the silicon steel plate laminated core 7, and the amorphous core 10 and the silicon steel plate laminated cores 7 are fastened to each other by a fastening jig 9 by way of the patch plates 8.
The holding members 2 are disposed in a U shape such that a beam is formed in a laminated layer end surface direction of the amorphous metal thin strip laminated body 1. With such a configuration, even when the entirety of the hybrid core is fastened, the holding members 2 directly receive a stress and hence, it is possible to avoid applying of a compressive stress to the amorphous metal thin strip laminated bodies 1 by fastening. Accordingly, with the provision of such a structure, while maintaining a space factor of the amorphous core 10, a compressive stress applied to the amorphous core 10 can be reduced and hence, it is possible to acquire an advantageous effect that noise generated in the amorphous core can be reduced. Further, with the provision of such a structure, a space factor of the amorphous core 10 can be maintained and hence, the structure contributes to the increase of power efficiency of the stationary electromagnetic apparatus.
As has been described above, it has been proven that, according to the present invention, it is possible to provide a stationary electromagnetic apparatus provided with an amorphous core, in which a compressive stress load in the laminating direction of amorphous thin strips that form the amorphous core is suppressed so that noise generated by magnetostrictive vibration is reduced while maintaining a space factor of the amorphous core.
According to the present invention, it is possible to provide a core for a stationary electromagnetic apparatus that can reduce noise while maintaining a space factor at a high value using an amorphous core having a low iron loss.
The present invention is not limited to the above-mentioned embodiments, and includes various modifications. For example, the above-mentioned embodiments have been described in detail for facilitating the understanding of the present invention, and the present invention is not always limited to the stationary electromagnetic apparatus provided with the entire configuration described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to one embodiment. Further, with respect to a part of the configuration of each embodiment, the addition, the deletion and the replacement of other configurations may be allowed.
Number | Date | Country | Kind |
---|---|---|---|
2022-088176 | May 2022 | JP | national |