The present invention relates to a core molding method and a core molding apparatus, in which a core (sand mold) having a complicated shape required for casting a product having a twisted shape, such as a male rotor or a female rotor in a screw compressor, is molded by use of a core mold.
A product having a twisted shape, such as a male rotor or a female rotor in a screw compressor, is manufactured by a method in which a casting formed in a near net shape (a shape close to a final product shape due to a reduced machining margin) is produced by casting, and finished.
Patent Literature 1 discloses a core molding method for molding a core required for producing a casting formed in a near net shape by use of a core mold. In Patent Literature 1, the core mold is extracted in a horizontal direction from the core formed of a cured self-hardening sand while rotating the core mold disposed along a horizontal direction within a frame around its axis.
Patent Literature 1: JP-A-2015-128791
However, there is a problem in Patent Literature 1 as follows. That is, when the core mold is disposed along a vertical direction within the frame and the frame is filled with the self-hardening sand from the top of the frame, the frame filled with the self-hardening sand must be laid flat. Thus, with increase in weight, workability deteriorates. In addition, the position of the frame laid flat must be adjusted to align the axis of the core mold with the axis of a motor for rotating the core mold. Thus, with increase in weight, workability deteriorates.
On the other hand, when the core mold is disposed along a horizontal direction within the frame and the frame is filled with the self-hardening sand from the side of the frame, it is not necessary to change the posture of the frame. Accordingly, the motor and the core mold can be aligned with each other axially in advance. However, when the frame is filled with the self-hardening sand from the side of the frame, it is difficult to charge the self-hardening sand to a valley portion of the core mold having a twisted shape. Thus, a failure in shape may appear easily in a core molded.
An object of the present invention is to provide a core molding method and core molding apparatus which are capable of molding a core having an excellent shape with improved workability.
In the core molding method for molding a core having a twisted shape by use of a core mold in the present invention, the core molding method includes: a curing step in which after the core mold is disposed along a vertical direction within a frame whose top is open, a self-hardening sand formed of a kneaded mixture of a sand, a resin and a curing agent is charged into the frame from the top of the frame, and then cured; and a mold extracting step in which the core mold is extracted in the vertical direction from the core formed of the cured self-hardening sand while rotating the core mold and the frame relatively to each other around an axis of the core mold.
In addition, in the core molding apparatus for molding a core having a twisted shape by use of a core mold in the present invention, the core molding apparatus includes: a frame whose top is open and in which the core mold is internally disposed along a vertical direction, the frame configured to be filled with a self-hardening sand formed of a kneaded mixture of a sand, a resin and a curing agent from the top of the frame, the self-hardening sand being subjected to curing; and a rotary driving unit which rotates the core mold and the frame relatively to each other around an axis of the core mold so that the core mold is extracted in the vertical direction from the core formed of the cured self-hardening sand.
In the present invention, a core mold is disposed along a vertical direction within a frame, and a self-hardening sand is then charged into the frame from the top of the frame, and cured. The core mold is extracted in the vertical direction from a core formed of the cured self-hardening sand. Since the core mold disposed along the vertical direction is extracted in the vertical direction, it is not necessary to change the posture of the frame. It is therefore possible to align a motor with the core mold axially in advance. Thus, workability can be improved. In addition, since the self-hardening sand are charged into the frame from the top of the frame, the self-hardening sand can be sufficiently charged into a valley portion of the core mold having a twisted shape. It is therefore possible to mold the core with an excellent shape.
Preferred embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
(Core Molding Method)
A core molding method in the first embodiment of the present invention is a method in which a core (sand mold) having a complicated shape required for casting a product having a twisted shape, such as a male rotor or a female rotor in a screw compressor, is molded by use of a core mold. The core molding method includes a curing step and a mold extracting step.
(Curing Step)
The curing step is a step in which, after a core mold made of a wood, a metal or a resin and having a twisted shape is disposed within a frame, a self-hardening sand formed of a kneaded mixture of a sand, a resin and a curing agent is charged into the frame and cured.
In this embodiment, the core mold is disposed along a vertical direction within the frame whose top is open. Then, the self-hardening sand is charged into the frame from the top of the frame, and then cured.
The self-hardening sand is new sand or reborn sand whose grain shape is polygonal or spherical and whose grain size is 130 or less in AFS number. The resin used as a bonding agent in the self-hardening sand is an acid-curable furan resin containing furfuryl alcohol. The addition proportion of the resin to the sand is 0.8%. The curing agent used as a curing catalyst in the self-hardening sand is a curing agent for the furan resin. The curing agent is a mixture of a xylenesulfonic acid based curing agent and a sulfuric acid based curing agent. The addition proportion of the curing agent to the furan resin is 40%. When the sand, resin and curing agent are used in the self-hardening sand, the core can be suitably molded.
For the kneaded mixture of the sand, the resin and the curing agent, it is preferable that the sand and the curing agent are first kneaded, and the resin is then added thereto and the mixture is further kneaded. A general-purpose household mixer may be suitably used for the kneading. By the household mixer, the sand and the curing agent are kneaded for 45 seconds, and the resin is then added and further kneaded for 45 seconds. Thus, the self-hardening sand is obtained. The self-hardening sand is charged into the frame from the top of the frame. Inside the frame which is made of a wood, a metal or a resin, the core mold has been disposed along the vertical direction. On this occasion, the self-hardening sand is charged into the frame along the axial direction of the core mold while vibrating the self-hardening sand. Due to irreversible dehydration condensation reaction produced between the resin and the curing agent, the self-hardening sand is cured and contracted with time.
(Mold Extracting Step)
The mold extracting step is a step in which the core mold is extracted from the core formed of the self-hardening sand which has been cured, while rotating the core mold and the frame relatively to each other around the axis of the core mold. After a predetermined curing time has passed, the core mold and the frame are rotated relatively to each other around the axis of the core mold, so that the core mold is extracted in the vertical direction from the core. Here, the curing time is an elapsed time since the termination of the kneading among the sand, the resin and the curing agent.
In this embodiment, the core mold is fixed not to be rotated, and the frame is rotated in a horizontal direction. In addition, the frame is rotated in the horizontal direction while pulling the core mold in an upper direction with a tension not lower than a load of the core mold. When the frame is rotated in the horizontal direction, the core mold having a screw shape is extracted from the core along the vertical direction. On this occasion, the rotating direction of the frame is set so that the core mold can be extracted in the upper direction. Thus, the core mold is extracted in the upper direction from the core.
(Core Molding Apparatus)
In a core molding apparatus in the first embodiment of the present invention, the aforementioned core molding method is performed. The core molding apparatus 1 includes a frame 2 whose top is open and which is made of a wood, a metal or a resin, as shown in
Correspondingly to each of the four side surfaces of the frame 2, the frame bed 3 has side plates 3a which can move forward and backward in the horizontal direction relatively to the frame 2. When the side plates 3a are brought respectively into contact with the four side surfaces of the frame 2 mounted on the frame bed 3, the frame 2 is fixed onto the frame bed 3. On this occasion, the frame 2 is fixed onto the frame bed 3 so that the central axis of the frame 2 is aligned with the central axis of a motor 7 which will be described later.
The shaft retainer 5 which retains the shaft 4a of the core mold 4 is made movable in the vertical direction along a rail 12 laid on a side surface of a stand 11 along the vertical direction.
The core molding apparatus 1 also includes a rotary driving unit 6 which rotates the core mold 4 and the frame 2 relatively to each other around the axis of the core mold 4. The rotary driving unit 6 includes the motor 7, a power source 8 and an inverter 9. The motor 7 is fixed to the stand 11 through a motor fixture 10.
The motor 7 is electrically connected to the power source 8 through the inverter 9. The rotational speed of the motor 7 is adjusted by the inverter 9.
The core molding apparatus 1 also includes a pulling unit 13. The pulling unit 13 pulls and winds up a wire 14 connected to the shaft retainer 5. The pulling unit 13 pulls the shaft retainer 5 and hence the core mold 4 in the upper direction with a tension not lower than the load of the core mold 4. More specifically, the pulling unit 13 pulls the shaft retainer 5 in the upper direction with the tension equal to or higher than the total load of the core mold 4, the shaft retainer 5 and the wire 14. In this embodiment, the pulling unit 13 is a balancer.
The motor 7 rotates the frame bed 3 in the horizontal direction. Thus, the frame 2 fixed onto the frame bed 3 is rotated in the horizontal direction. Here, the rotating direction of the frame 2 is set so that the core mold 4 can be extracted in the upper direction from a core 15.
Here, as shown in
When the shaft 4a of the core mold 4 has a conical end as shown in
In such a configuration, as shown in
Next, the core mold 4 is disposed along the vertical direction inside the frame 2, the shaft 4a of the core mold 4 is retained by the shaft retainer 5. On this occasion, the shaft 4a of the core mold 4 is fitted into the concave portion 2b to align the central axis of the core mold 4 with the central axis of the frame 2. Thus, the central axis of the core mold 4 is aligned with the central axis of the motor 7. Accordingly, when the frame 2 is rotated by the motor 7, the friction coefficient of friction force generated between the core 15 and the core mold 4 can be minimized. As a result, the core 15 can be rotated so stably that the core 15 can be molded without internal damage and with a reduced variation in shape.
Next, the self-hardening sand is charged into the frame 2 from the top of the frame 2. Each side surface of the frame 2 is hit by a hammer to charge the self-hardening sand into the frame 2 along the axial direction of the core mold 4 while vibrating the self-hardening sand.
After a predetermined curing time has passed, the frame bed 3 is rotated in the horizontal direction by the motor 7 to thereby rotate the frame 2 in the horizontal direction. The frame 2 is rotated while pulling the shaft retainer 5 by the pulling unit 13 in the upper direction with the tension not lower than the load of the core mold 4. When the frame 2 is rotated not to rotate the core mold 4, the core mold 4 having a screw shape is extracted from the core 15 along the vertical direction. Here, the rotating direction of the frame 2 is set so that the core mold 4 can be extracted in the upper direction. Thus, the core mold 4 is extracted in the upper direction from the core 15. During the extraction, the shaft retainer 5 moves in the upper direction along the rail 12, and the wire 14 is wound up by the pulling unit 13. When the core mold 4 is completely extracted from the core 15 in this manner, the core mold 4 in a state of being suspended by the shaft retainer 5 stops above the core 15.
In this manner, the core mold 4 is disposed along the vertical direction within the frame 2, and the self-hardening sand is then charged into the frame 2 from the top of the frame 2, and cured. The core mold 4 is extracted in the vertical direction from the core 15 formed of the cured self-hardening sand. Since the core mold 4 disposed along the vertical direction is extracted in the vertical direction, it is not necessary to change the posture of the frame 2. Accordingly, the motor 7 can be axially aligned with the core mold 4 in advance. As a result, workability can be improved. In addition, since the self-hardening sand is charged into the frame 2 from the top of the frame 2, the self-hardening sand can be sufficiently charged into a valley portion of the core mold 4 having a twisted shape. As a result, the core 15 can be molded with an excellent shape.
In addition, the frame 2 is rotated in the horizontal direction so that the core mold 4 is extracted in the vertical direction from the core 15. If the core mold 4 is rotated in the horizontal direction, the core mold 4 will move in the vertical direction relatively to the core 15. Thus, the motor for rotating the core mold 4 must be moved in the vertical direction, and a mechanism for moving the motor or a space for retracting the motor must be provided. Thus, the apparatus will be complicated and increased in size. Therefore, the frame 2 is rotated in the horizontal direction so that the core mold 4 can be extracted from the core 15 without moving the frame 2 in the vertical direction. Thus, it is not necessary to provide any mechanism for moving the motor 7 or any space for retracting the motor 7. It is therefore possible to simplify and miniaturize the apparatus.
In addition, the core mold 4 is extracted in the upper direction from the core 15 while pulling the core mold 4 in the upper direction with the tension not lower than the load of the core mold 4. Thus, the core mold 4 is prevented from moving downward during the extraction of the core mold 4 or after the extraction of the core mold 4. It is therefore possible to prevent the load of the core mold 4 from applying to the core 15 to thereby deform the core 15 axially.
Further, since the central axis of the core mold 4 is aligned with the central axis of the frame 2 when the core mold 4 is disposed within the frame 2, the central axis of the core mold 4, the central axis of the frame 2 and the central axis of the motor 7 can be aligned with one another when the core mold 4 and the frame 2 are rotated relatively to each other.
[Modification]
It is not limited to the configuration in which the core mold 4 is pulled in the upper direction by the pulling unit 13 with the tension not lower than the load of the core mold 4. As shown in
(Effect)
As described above, in the core molding method and the core molding apparatus in the embodiment, the core mold 4 is disposed along the vertical direction within the frame 2, and the self-hardening sand is then charged into the frame 2 from the top of the frame 2, and cured. Then the core mold 4 is extracted in the vertical direction from the core 15 formed of the cured self-hardening sand. Since the core mold 4 disposed along the vertical direction is extracted in the vertical direction, it is not necessary to change the posture of the frame 2. Accordingly, the motor 7 can be axially aligned with the core mold 4 in advance. As a result, workability can be improved. In addition, since the self-hardening sand is charged into the frame 2 from the top of the frame 2, the self-hardening sand can be sufficiently charged into a valley portion of the core mold 4 having a twisted shape. As a result, the core 15 can be molded with an excellent shape.
In addition, the frame 2 is rotated in the horizontal direction so that the core mold 4 is extracted in the vertical direction from the core 15. If the core mold 4 is rotated in the horizontal direction, the core mold 4 will move in the vertical direction relatively to the core 15. Thus, the motor for rotating the core mold 4 must be moved in the vertical direction, and a mechanism for moving the motor or a space for retracting the motor must be provided. Thus, the apparatus will be complicated and increased in size. Therefore, the frame 2 is rotated in the horizontal direction so that the core mold 4 can be extracted from the core 15 without moving the frame 2 in the vertical direction. Thus, it is not necessary to provide any mechanism for moving the motor 7 or any space for retracting the motor 7. It is therefore possible to simplify and miniaturize the apparatus.
In addition, the core mold 4 is extracted in the upper direction from the core 15 while pulling the core mold 4 in the upper direction with the tension not lower than the load of the core mold 4. Thus, the core mold 4 is prevented from moving downward during the extraction of the core mold 4 or after the extraction of the core mold 4. It is therefore possible to prevent the load of the core mold 4 from applying to the core 15 to thereby deform the core 15 axially.
Further, since the central axis of the core mold 4 is aligned with the central axis of the frame 2 when the core mold 4 is disposed within the frame 2, the central axis of the core mold 4, the central axis of the frame 2 and the central axis of the motor 7 can be aligned with one another when the core mold 4 and the frame 2 are rotated relatively to each other.
[Second Embodiment]
(Core Molding Method)
Next, a core molding method in the second embodiment of the present invention will be described. Constituent elements which are the same as the aforementioned constituent elements are referenced correspondingly, and description thereof will be omitted. The core molding method in this embodiment is the same as the core molding method in the first embodiment, except that in the curing step, after a large amount of the self-hardening sand enough to overflow from a frame is charged into the frame, the self-hardening sand overflowing from the frame is removed to flatten the upper end surface of the self-hardening sand within the frame.
(Curing Step)
When the self-hardening sand is charged into the frame from the top of the frame, the self-hardening sand within the frame may be insufficient due to a change in bulk density or the like of the self-hardening sand. Therefore, in the curing step, a large amount of the self-hardening sand enough to overflow from the frame is charged into the frame. Although there is no fear that the self-hardening sand is insufficient, the upper end surface of the core may be not flat when the self-hardening sand overflowing from the frame is cured as it is. Thus, there is a fear that a shape error may occur when the core is placed in a main mold. Therefore, before the mold extracting step is performed, the self-hardening sand overflowing from the frame is removed to flatten the upper end surface of the self-hardening sand within the frame. As a result, the upper end surface of the core can be formed with high accuracy.
It can be considered that a proper amount of the self-hardening sand to be charged is grasped in advance, and the proper amount is measured and charged into the frame. However, an unnecessary part or a risk of insufficiency may occur due to a change in bulk density or the like of the self-hardening sand. It is therefore more reasonable that a large amount of the self-hardening sand enough to overflow from the frame is charged into the frame, and the self-hardening sand overflowing from the frame is then removed.
The unnecessary self-hardening sand may be removed during the curing of the self-hardening sand or after the curing of the self-hardening sand as long as the mold extracting step has not been performed yet. If the upper end surface of the core is taken care after the extraction of the core mold, a locally thinned part such as a part around a hole formed after the extraction of the core mold may be damaged easily. Therefore, the upper end surface of the self-hardening sand within the frame is flattened before the extraction of the core mold. In addition, in order to avoid damage on the self-hardening sand with a slight external force, it is preferable that the upper end surface of the self-hardening sand within the frame is flattened after the self-hardening sand has some degree of strength.
The unnecessary self-hardening sand is removed by a removal unit whose lower end abuts against the upper end surface of the core mold disposed within the frame. When the removal unit is rotated around the axis of the core mold, the self-hardening sand overflowing from the frame is scraped off by a spatulate member included in the removal unit.
(Core Molding Apparatus)
In a core molding apparatus in the second embodiment of the present invention, the aforementioned core molding method is performed. The core molding apparatus 301 includes a removal unit 31 as shown in
The removal unit 31 is attached to the shaft 4a of the core mold 4. The removal unit 31 can rotate around the shaft 4a of the core mold 4.
As shown in
As shown in
As shown in
As shown by the solid line in
When the self-hardening sand is charged into the frame 2 from the top of the frame 2, the self-hardening sand within the frame 2 may be insufficient due to a change in bulk density or the like of the self-hardening sand. Therefore, in this embodiment, a large amount of the self-hardening sand enough to overflow from the frame 2 is charged into the frame 2. Thus, there is no fear that the self-hardening sand is insufficient. However, the upper end surface of the core 15 may be not flat when the self-hardening sand overflowing from the frame 2 is cured as it is. Thus, there is a fear that a shape error may occur when the core 15 is placed in a main mold. Therefore, before the core mold 4 is extracted, the self-hardening sand overflowing from the frame 2 is removed to flatten the upper end surface of the self-hardening sand within the frame 2. As a result, the upper end surface of the core 15 can be formed with high accuracy.
In addition, the removal unit 31 is rotated around the shaft 4a of the core mold 4 so that the self-hardening sand overflowing from the frame 2 is scraped off by the removal members 31b included in the removal unit 31. Thus, the upper end surface of the self-hardening sand within the frame 2 can be flattened suitably.
As shown in
In addition, as shown in
(Effect)
As described above, in the core molding method and the core molding apparatus in the embodiment, a large amount of the self-hardening sand enough to overflow from the frame 2 is charged into the frame 2, and the self-hardening sand overflowing from the frame 2 is then removed by the removal unit 31 whose lower end abuts against the upper end surface of the core mold 4 disposed within the frame 2. Thus, the upper end surface of the self-hardening sand within the frame 2 is flattened. When the self-hardening sand is charged into the frame 2 from the top of the frame 2, the self-hardening sand may be insufficient due to a change in bulk density or the like of the self-hardening sand. Therefore, a large amount of the self-hardening sand enough to overflow from the frame 2 is charged into the frame 2. Thus, there is no fear that the self-hardening sand is insufficient. However, the upper end surface of the core 15 may be not flat when the self-hardening sand overflowing from the frame 2 is cured as it is. Thus, there is a fear that a shape error may occur when the core 15 is placed in a main mold. Therefore, before the core mold 4 is extracted, the self-hardening sand overflowing from the frame 2 is removed to flatten the upper end surface of the self-hardening sand within the frame 2. As a result, the upper end surface of the core 15 can be formed with high accuracy.
In addition, the removal unit 31 is rotated around the shaft 4a of the core mold 4 so that the self-hardening sand overflowing from the frame 2 is scraped off by the spatulate removal members 31b included in the removal unit 31. Thus, the upper end surface of the self-hardening sand within the frame 2 can be flattened suitably.
The embodiments of the present invention which have been described above illustrate specific examples merely. The embodiments do not limit the present invention particularly, but specific configurations or the like can be changed in design suitably. In addition, in the operations and effects described in the embodiments of the invention, most preferred operations and effects produced by the present invention are merely described. Operations and effects by the present invention are not limited to those in the embodiments of the present invention.
The present application is based on Japanese patent application No. 2015-240504 filed on Dec. 9, 2015, and Japanese patent application No. 2016-098736 filed on May 17, 2016, the contents of which are incorporated herein by reference.
1, 201, 301 Core molding apparatus
2 Frame
2
a Bottom plate
2
b,
2
c Concave portion
3 Frame bed
3
a Side plate
4 Core mold
4
a Shaft
5 Shaft retainer
6 Rotary driving unit
7 Motor
8 Power source
9 Inverter
10 Motor fixture
11 Stand
12 Rail
13 Pulling unit
14 Wire
15 Core
21 Weight
22 Wire
23, 24 Pulley
Number | Date | Country | Kind |
---|---|---|---|
2016-098736 | May 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/086089 | 12/5/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/099040 | 6/15/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20150231692 | Tsutsumi | Aug 2015 | A1 |
20160303645 | Tsutsumi et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
102909321 | Feb 2013 | CN |
0212459 | Mar 1987 | EP |
1164303 | Sep 1969 | GB |
2015-128791 | Jul 2015 | JP |
Entry |
---|
International Search Report; issued in PCT/JP2016/086089; dated Feb. 28, 2017. |
Number | Date | Country | |
---|---|---|---|
20180361468 A1 | Dec 2018 | US |