This present disclosure relates to a core network node, a network node, a method for a core network node and a method for a network node.
Network slicing feature was defined in the 3GPP release 15 and release 16 normative specifications. GSMA 5GJA has introduced in NPL 6 the concept of Generic Slice Template (GST) from which several Network Slice Types descriptions can be derived. Some of these parameters in the GST point explicitly to the definition of parameters and bounds on the service delivered to the end customer. For instance, the GST aims at the limitation of the number of PDU sessions/PDN connections per network slice, or the number of devices supported per network slice, or the maximum UL or DL data rate per network slice. NPL 5 identified and addressed the gaps that needed to be filled in providing support for the GST parameters enforcement and the suitable solutions to address these gaps. However, there are still outstanding issues related to EPS and 5GS interworking and mobility.
The Network Slice Admission Control (NSAC) procedure is defined in 5GS to manage the number of UEs registered to a network slice and also the number of PDU sessions established on the network slice. This procedure also defines a procedure to manage a scenario when a network receives a request from a UE to register for the network slice and the number of the UEs registered to the network slice meets or exceeds the quota of total number of the UEs that can be registered with the network slice at one point of time. Similar procedure is also defined for the scenario when the network receives a request from the UE to establish a PDU session on the network slice and the total number of the PDU sessions established on the network slice already meets or exceeds the quota of total number of the PDU sessions that can be established on the network slice.
For a UE supporting N1 mode and S1 mode, a PDN Connection established in the EPS can also interwork in 5GS or a PDU session established in 5GS can interwork in EPS during the inter-system mobility procedure. Various aspects of the NSAC procedure are not defined when the PDN connection procedure is established on the EPS which supports interworking with 5GS. This disclosure identifies such scenarios and provides solutions to the identified scenarios.
In an aspect of the present disclosure, a core network node includes means for requesting a network node for a network slice management to update the number of user equipment (UE) registered to the network slice, means for requesting the network node for network slice management to update the number of Protocol Data Unit (PDU) sessions for a specific network slice and means for receiving, information indicating failure related to the number of the PDU sessions update.
In an aspect of the present disclosure, a network node for a network slice management includes means for receiving a request, from a core network node, to update of the number of user equipment (UE) registered to the network slice, means for receiving a request, from a core network node, to update the number of Protocol Data Unit (PDU) for a specific network slice; and means for sending, to a core network node, information indicating failure related to the number of PDU update.
In an aspect of the present disclosure, a method for a core network node includes requesting the network node for a network slice management, to update the number of a user equipment (UE) registered to the network slice, requesting the network node for network slice management, to update the number of a Protocol Data Unit (PDU) for a specific network slice, and receiving, from the network node for network slice management, information indicating failure related to the number of PDU update.
In an aspect of the present disclosure, a method for a network node for a network slice management includes receiving a request, from a core network node, to update of the number of user equipment (UE) registered to the network slice, receiving a request, from a core network node, to update the number of Protocol Data Unit (PDU) for a specific network slice, and sending, to a core network node, information indicating failure related to the number of PDU update.
<Description of Disclosure with Aspects>
The disclosure relates to a method of a core network apparatus, a method of a User Equipment (UE), a method of a first core network apparatus, a core network apparatus, a User Equipment (UE) and a first core network apparatus.
For the purposes of the present document, the abbreviations given in NPL 1 and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in NPL 1.
For the purposes of the present document, the terms and definitions given in NPL 1 and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in NPL 1.
Those skilled in the art will appreciate that elements in the figures are illustrated for simplicity and may not have necessarily been drawn to scale. Furthermore, in terms of the construction of the device, one or more components of the device may have been represented in the figures by conventional symbols, and the figures may show only those specific details that are pertinent to understanding the Aspects of the present disclosure so as not to obscure the figures with details that will be readily apparent to those skilled in the art having the benefit of the description herein.
For the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to the Aspect illustrated in the figures and specific language will be used to describe them. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Such alterations and further modifications in the illustrated system, and such further applications of the principles of the disclosure as would normally occur to those skilled in the art are to be construed as being within the scope of the present disclosure.
The terms “comprises”, “comprising”, or any other variations thereof, are intended to cover a non-exclusive inclusion, such that a process or method that comprises a list of steps does not include only those steps but may include other steps not expressly listed or inherent to such a process or method. Similarly, one or more devices or entities or sub-systems or elements or structures or components preceded by “comprises . . . a” does not, without more constraints, preclude the existence of other devices, sub-systems, elements, structures, components, additional devices, additional sub-systems, additional elements, additional structures or additional components. Appearances of the phrase “in an Aspect”, “in another Aspect” and similar language throughout this specification may, but not necessarily do, all refer to the same Aspect.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. The system, methods, and examples provided herein are only illustrative and not intended to be limiting.
In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings. The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
As used herein, information is associated with data and knowledge, as data is meaningful information and represents the values attributed to parameters. Further knowledge signifies understanding of an abstract or concrete concept. Note that this example system is simplified to facilitate description of the disclosed subject matter and is not intended to limit the scope of this disclosure. Other devices, systems, and configurations may be used to implement the Aspects disclosed herein in addition to, or instead of, a system, and all such Aspects are contemplated as within the scope of the present disclosure.
The
In one example, the UDM in a supporting HPLMN may optionally keep a record of the PEIs or Type Allocation Codes values regarding UE ability to support NSAC feature. The UDM may, based on configuration or the optional PEI records, indicate the AMF that the UE supports NSAC feature. The UDM indicates whether the UE supports NSAC feature based on the PEI to an AMF in both HPLMN and VPLMN case.
Each of Aspects and elements included in the each Aspects described below may be implemented independently or in combination with any other. These Aspects include novel characteristics different from one another. Accordingly, these Aspects contribute to achieving objects or solving problems different from one another and contribute to obtaining advantages different from one another.
<Aspect 1: UE Maintains the Back-Off Timer when PDN Connection Establishment Fails Due to Network Slice Admission Control in EPS>
One of the outstanding problems is how to control the number of UEs registered with a network slice and the number of the PDU Sessions/PDN connections established on a network slice in the case of EPS and 5GS interworking and mobility.
In case that the PDN connection establishment fails due to Network slice admission control in EPS, it is unclear on network behavior and the UE behavior in NPL 4. For example, it is unclear what the SMF+PGW-C is supposed to do if the NSACF accepts the admission control for the UE but not for the PDU session.
The Aspect 1 discloses a message flow in a case where the PDN connection establishment fails due to Network slice admission control in EPS.
There are two cases where the PDN connection establishment fails in the EPS. One case is that the number of UEs allowed to use the network slice reaches or exceeds the pre-defined limitation of the quota for the maximum number of UEs registered with the network slice. Another case is that the number of PDN connections allowed to be established that associates with the network slice reaches or exceeds the pre-defined limitation of the maximum number of PDN connections quota for the network slice. The pre-defined limitation of the quota for the network slice may be called as the maximum number of UEs allowed to use a network slice or threshold value for the number of UEs allowed to use a network slice. The pre-defined limitation of the maximum number of PDN connections quota for the network slice may be called as the maximum number of PDN connections allowed to be established on the network slice or threshold value for the number of PDN connections allowed to be established on the network slice.
This Aspect discloses the SMF+PGW-C interacting with the NSACF in a case where either one procedure out of the UE registration to the NSACF for a network slice and the PDU Session registration (or PDN connection registration) to the NSACF for a network slice fails.
The
0. The UE initiates either the ATTACH procedure (step 0-1) or the UE requested PDN connectivity procedure (step 0-2). During the procedure, the NAS message sent by the UE during the procedure may include the UE capability information. The UE capability information may be “N1 mode supported” in the UE network capability parameter. The UE capability information may be “N1 mode not supported” in the UE network capability parameter. If “N1 mode supported” is indicated, the UE can interwork with the 5GS. For example, “N1 mode supported” indicates that the UE can interwork with the 5GS.
The UE may include another capability information in the UE network capability parameter to indicate whether the UE is capable to handle the Network Slice Admission Control related procedure, i.e. whether the UE supports the NSAC functionality (e.g. NSAC procedure). For example, the capability information indicates whether the UE can receive and handle the Network Slice Admission Control related parameters from the EPC. The UE sends this capability information to the MME in a NAS message during ATTACH procedure or in an EPS session management message (e.g. PDN Connectivity Request) during the PDN connectivity establishment procedure. In one example, the UE includes this capability information in the PCO parameter on the NAS message intending to send it to the PGW-C. The MME forwards this capability information to the S-GW (e.g. SGW-C) in a Create Session Request message, and the S-GW (e.g. the SGW-C) further sends this capability information to the P-GW (e.g. SMF/PGW-C) in a Create Session Request message. The P-GW (e.g. the SMF/PGW-C) stores this capability information. The P-GW (e.g. the SMF/PGW-C) performs at least one of number of UEs per network slice availability check and update and number of PDUs per network slice availability check and update if the UE capability information indicates that the UE supports NSAC procedure (or if the UE indicates the another capability information). If the UE capability information is not present or it is present and indicates UE does not support NSAC procedure, then the P-GW (e.g. the SMF/PGW-C) shall not initiate number of UEs per network slice availability check and update and number of PDUs per network slice availability check and update.
In one example, the SMF/PGW-C may perform NSAC procedure for the UE (i.e. check availability for the number of UEs registered for a network slice and the number of PDU sessions established on the network slice with NSACF) which does not support NSAC feature.
1. The MME selects the SGW-C and PGW-C. Then, the MME sends, to the SGW-C, the Create Session Request message including the APN and N1 mode parameter. The N1 mode parameter is included if the MME receives “N1 mode supported” in the UE network capability parameter in step 0. The N1 mode parameter may indicate that the UE is capable to handle the Network Slice Admission Control related procedure or the UE can receive and handle the Network Slice Admission Control related parameters or procedures for the EPS. For example, during the ATTACH procedure or the UE requested PDN connectivity procedure, the MME selects the SGW-C and the PGW-C, and sends the Create Session Request message to the SGW-C. The Create Session Request message may be sent during the ATTACH procedure or the UE requested PDN connectivity procedure. For example, the APN may be related to the ATTACH procedure or the UE requested PDN connectivity procedure. The APN may be called as information indicating the APN or information related to the APN.
2. The SGW-C sends, to the SMF/PGW-C, the Create Session Request message including the APN and the N1 mode parameter. For example, the SGW-C sends the Create Session Request message to the SMF/PGW-C in a case where the SGW-C receives the Create Session Request message from the MME.
3. The SMF/PGW-C finds an associated S-NSSAI to the received APN based on the received APN and local configuration. The SMF/PGW-C may be called as SMF+PGW-C in this disclosure. For example, the SMF/PGW-C finds an associated S-NSSAI to the received APN in a case where the SMF/PGW-C receives the Create Session Request message from the SGW-C. Then the SMF/PGW-C sends Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to the NSACF with the update flag set to “increase”. This update flag set to “increase” may be called as information indicating to increase the number of UEs for NSAC or a request to increase the number of UEs for NSAC.
For example, the SMF/PGW-C sends the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to check if the attachment or registration of the UE is allowed.
For example, in a case where N1 mode is indicated in the Create Session Request message in step 2 (e.g. in a case where the SMF/PGW-C determines that the N1 mode parameter is included in the received Create Session Request message in step 2), the SMF/PGW-C sends the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to the NSACF. The Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request may include UE ID (identity or identifier for the UE) and the S-NSSAI associated to the received APN. For example, the SMF/PGW-C stores mapping information of S-NSSAIs and APNs, hence the SMF/PGW-C can determine the associated S-NSSAI to the received APN based on the received APN from the SGW-C.
The Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request may be called as an Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request message in this disclosure.
4. Upon reception of Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request message, if the update flag parameter from the SMF/PGW-C indicates “increase”, the following processes apply:
The NSACF sends Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate response which indicates that the UE is registered successfully for the S-NSSAI. For example, the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate response includes information indicating that registration of the UE is allowed.
Nnsacf_NumberOfUEsPerSliceAvailability Check AndUpdate response which indicates that the UE is registered successfully for the S-NSSAI.
The Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response may be called as an Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response message in this disclosure.
5. The SMF/PGW-C sends Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to the NSACF with update flag set to “increase”. This update flag set to “increase” may be called as information indicating to increase the number of PDU sessions for NSAC or a request to increase the number of PDU sessions for NSAC.
The Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request may include the UE ID and the S-NSSAI associated to the received APN.
The Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request may be called as an Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request message in this disclosure.
For example, in a case where the SMF/PGW-C sends the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to the NSACF, the SMF/PGW-C may send the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to the NSACF.
For example, in a case where the SMF/PGW-C receives the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response from the NSACF, the SMF/PGW-C may send the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to the NSACF.
6. Upon reception of Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request message, if the update flag parameter from the SMF/PGW-C indicates “increase”, the following processes apply:
7. Upon reception of the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response, the SMF/PGW-C sends, to the NSACF, the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate request message containing update flag set to “decrease”. This message is sent to the network to decrease the number of UE count for the S-NSSAI. I.e., this message is sent to the network to decrease the number of UEs for the S-NSSAI. This update flag set to “decrease” may be called as information indicating to decrease the number of UEs for the NSAC. The Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request may include the UE ID and the S-NSSAI associated to the received APN.
8. Upon reception of the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate request, if the update flag parameter from the SMF/PGW-C indicates “decrease”, the following processes apply:
9. The SMF/PGW-C sends, to the SGW-C, the Create Session Response message including new reject cause and PCO parameter. The new reject cause may have a value “Unsuccessful PDN connection establishment due to Quota control”, “Unsuccessful PDN connection establishment due to UE Quota control”, “Unsuccessful PDN connection establishment due to PDN connection Quota control” or other notation of a reject cause with the purpose to reject the PDN connection establishment due to the number of the PDN connections associated with the network slice has reached or exceeded the maximum quota. The PCO parameter includes the Back off timer (BOT) for PDU session and the S-NSSAI that is associated with the APN. As mentioned above, the S-NSSAI is related to or associated to the received APN in step 2, hence the BOT for PDU session may be related to the APN. The BOT in this disclosure may means that a value or a period of the BOT. The PCO parameter may be called as PCO. The BOT for PDU session may be called as BOT for PDU.
10. The SGW-C sends, to the MME, the Create Session Response message including the new reject cause and the PCO parameter as included by the SMF/PGW-C in step 9.
For example, the SGW-C sends the Create Session Response message in a case where the SGW-C receives the Create Session Response message of the step 9 from the SMF/PGW-C.
11. The MME sends, to the UE, the NAS message including a new NAS reject cause and the PCO parameter. The MME creates the new NAS reject cause based on the reject cause value that is received in step 10 from the SGW-C.
The NAS reject cause may have a same or corresponding value to the reject cause value that is received in step 10 from the SGW-C. The NAS message may be called as a N1 message.
The new NAS reject cause may have a value “Unsuccessful PDN connection establishment due to Quota control”, “Unsuccessful PDN connection establishment due to UE Quota control”, “Unsuccessful PDN connection establishment due to PDN connection Quota control” or other notation of reject cause with the purpose to reject the PDN connection establishment due to the number of the PDN connections associated with the network slice has reached or exceeded the maximum quota.
If the MME recognizes the UE as neither capable to interwork with 5GS nor capable to handle Network Slice Admission Control based on information received in step 0 or based on the IMEISV value of the UE, the MME may send, to the UE, another NAS message indicating unsuccessful PDU connection establishment by using the existing message, existing cause value and existing parameters. In one example, the MME sends at least one of existing parameters, Back-off timer value IE, T3442 value, T3346 value and T3448 value.
12. Based on the parameters in the NAS message in step 11, the following processes may apply to the UE:
In step 6, when the SMF/PGW-C receives the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response, the SMF/PGW-C decides to keep the UE registered in the NSCAF for the number of the UEs for the S-NSSAI. I.e., SMF/PGW-C does not send Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate request with the update flag set to “decrease”. When the SMF/PGW-C receives a Create session Request message for the APN which is associated with the S-NSSAI, the SMF/PGW-C only sends Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request message to increment the number of PDU session for the S-NSSAI.
In steps 3 to 8, instead of the SMF/PGW-C sends three request messages in steps 3, 5 and 7, the SMF/PGW-C sends only one combined message. For example, the SMF/PGW-C sends, to the NSACF, Nnsacf_NumberOfUEsandPDUsPerSliceAvailabilityCheckUpdate request message requesting to register both the UE and the PDU session. Upon reception of the Nnsacf_NumberOfUEsandPDUsPerSliceAvailability CheckUpdate request message, the NSACF may take following actions:
If the SMF/PGW-C finds more than one S-NSSAIs associated with the APN, then the SMF/PGW-C sends, to the NSACF, Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request with update flag set to “increase” for the first network slice associated with the APN as per step 3 of
If the NSACF returned unsuccessful result in step 4, the SMF/PGW-C sends, to the NSACF, another Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request with update flag set to “increase” for the next associated network slice (e.g. second network slice associated with the APN).
If the NSACF returned successful result for the another Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request, the SMF/PGW-C continues with the PDN connection registration with the NSACF for the second network slice and sends, to the NSACF, Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request with update flag set to “increase” for the second network slice as per step 5 of
If the NSACF returned unsuccessful result for the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request, the SMF/PGW-C sends, to the NSACF, another Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request with update flag set to “increase” for the next associated network slice (e.g. third network slice associated with the APN). When multiple network slices are associated with the APN, the SMF/PGW-C may try UE registration with the NSACF and or the PDN connections registration with the NSACF with each one in turn if previous attempts are unsuccessful.
In one example, if multiple S-NSSAIs are associated with the APN, then the SMF+PGW-C first selects S-NSSAI for which EPS counting is not required in the EPS to establish the PDN connection. If the PDN connection procedure fails all S-NSSAIs for which the EPS counting is not required, then the SMF+PGW-C selects the S-NSSAI for the PDN connection for which EPS counting is required.
In one example, in step 2 if more than one S-NSSAIs are mapped to the APN and one of the S-NSSAIs is not subject to the NSAC procedure, the SMF/PGW-C first selects the S-NSSAI which is not subject to the NSAC and associates the S-NSSAI to the PDN connection. If the PDN connection fails (for example, if the SMF/PGW-C receives the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response indicating that the UE is not allowed to use the S-NSSAI due to limitation of the quota) then the network shall select another S-NSSAI which is subject to the NSAC for the PDN connection establishment.
For example, the Aspect 1 and the variants of the Aspect 1 can provide solutions for various situations that the NSAC procedure is not defined when the PDN connection procedure is established on the EPS which supports interworking with 5GS.
For example, the Aspect 1 and the variants of the Aspect 1 can solve the outstanding problems how to control the number of UEs registered with a network slice and the number of the PDU Sessions/PDN connections established on a network slice in the case of EPS and 5GS interworking and mobility.
For example, the Aspect 1 and the variants of the Aspect 1 can solve the problem, in case that the PDN connection establishment fails due to Network slice admission control in EPS, that it is unclear on network behavior and the UE behavior in NPL 4.
For example, the Aspect 1 and the variants of the Aspect 1 can solve the problem what the SMF+PGW-C is supposed to do if the NSACF accepts the admission control for the UE but not for the PDU session.
<Aspect 2: Handling of Network Slice Admission Control when N1 Mode Capability is Disabled after Successful PDN Connection Establishment in EPS.>
When the UE supporting N1 mode and S1 mode establishes a PDN connection for an APN in the EPS, the SMF/PGW-C entity (or the SMF/PGW-C) maps the APN to a network slice based on local configuration. The SMF/PGW-C entity performs NSAC procedure for the network slice to perform the number of UEs per network slice availability check and update and to perform the number of PDU sessions per network slice availability check and update. However, the network behavior and the UE behavior are not defined with respect to the NSAC procedure when the UE disables N1 mode capability.
The Aspect 2 discloses a behavior of the UE and a behavior of the network in a case where the UE disables N1 mode capability after successful PDN connection establishment with SMF+PGW-C in EPS.
In this Aspect, two procedures are illustrated.
0. The UE initiates either the ATTACH procedure (step 0-1) or the UE requested PDN connectivity procedure (step 0-2). During the procedure, the NAS message sent by the UE during the procedure may include the UE capability information. The UE capability information may be “N1 mode supported” in the UE network capability parameter. If “N1 mode supported” is indicated, the UE can interwork with the 5GS. The MME stores “N1 mode supported” in the MM context of the UE. For example, the MME receives, from the UE, the UE capability information during the ATTACH procedure or the UE requested PDN connectivity procedure.
In another UE capability information, the UE may also indicate whether the UE is capable to handle the Network Slice Admission Control related procedure, i.e. whether the UE supports the NSAC functionality (or NSAC procedure). For example, the another UE capability information indicates whether the UE can receive and handle the Network Slice Admission Control related parameters from the EPC. The UE sends, to the MME, this capability in a NAS message during ATTACH procedure or in an EPS session management message (e.g. PDN Connectivity Request) during the PDN connectivity establishment procedure. In one example, the UE includes this capability information in the PCO parameter on the NAS message intending to send it to the PGW-C. The MME sends this capability information to the S-GW (e.g. SGW-C) in a Create Session Request message, and then the S-GW (e.g. the SGW-C) further sends this capability information to the P-GW (e.g. SMF/PGW-C) in a Create Session Request message. The P-GW (e.g. the SMF/PGW-C) stores this UE capability for NSAC support information. The P-GW (e.g. the SMF/PGW-C) performs at least one of number of UEs per network slice availability check and update, and number of PDUs per network slice availability check and update if the capability information indicates that the UE supports NSAC procedure (e.g. if the capability information indicates that the UE is capable to handle the Network Slice Admission Control related procedure). If the capability information is not present or it is present and indicates that the UE does not support NSAC procedure, then the P-GW (e.g. the SMF/PGW-C) shall not initiate number of UEs per network slice availability check and update, and number of PDUs per network slice availability check and update.
1. The MME selects the SGW-C and PGW-C. Then, the MME sends, to the SGW-C, the Create Session Request message including the APN, N1 mode parameter, Registered S-NSSAI list and PCO parameter.
For example, during the ATTACH procedure or the UE requested PDN connectivity procedure, the MME selects the SGW-C and the PGW-C, and sends the Create Session Request message to the SGW-C. The Create Session Request message may be sent during the ATTACH procedure or the UE requested PDN connectivity procedure. For example, the APN may be related to the ATTACH procedure or the UE requested PDN connectivity procedure. The APN may be called as information indicating the APN or information related to the APN.
The N1 mode parameter is included if the MME receives “N1 mode supported” in the UE network capability parameter in step 0.
The PCO parameter includes the UE support of NSAC handling capability that is received in step 0 from the UE. For example, the UE support of NSAC handling capability may be called as NSAC UE or NSAC UE parameter. For example, NSAC UE indicates that the UE supports the NSAC functionality (or NSAC procedure).
If the MME holds or stores a registered S-NSSAI(s) for the UE registrations count in the NSACF from the previous PDN connection establishment procedure, the MME includes the registered S-NSSAI(s) in the Registered S-NSSAI list parameter. For example, the Registered S-NSSAI list parameter includes one or more pairs of S-NSSAIs with their associated APNs.
For example, the Registered S-NSSAI list parameter includes a list of a pair of S-NSSAI and APN corresponding to the S-NSSAI and the MME includes the Registered S-NSSAI list in the Create Session Request message.
For example, during the previous PDN connection establishment procedure (e.g. the previous ATTACH procedure related to APN or the previous UE requested PDN connectivity procedure related to the APN), the MME communicates with the SMF/PGW-C or the NSACF via the SGW-C, and receives, from the SMF/PGW-C or the NSACF via the SGW-C, S-NSSAI corresponding to the APN if the NSAC for the S-NSSAI is completed successfully (e.g. if the maximum number of UEs registered with the network slice related to the S-NSSAI has not been reached yet and the maximum number of PDU sessions established on the network slice related to the S-NSSAI has not been reached yet). In this case, the MME associates the APN with the received S-NSSAI, and stores a pair of the APN and the received S-NSSAI in the Registered S-NSSAI list parameter. For example, the Registered S-NSSAI list includes a pair of the S-NSSAI that the NSAC is completed and the APN corresponding to the S-NSSAI.
2. The SGW-C sends, to the SMF/PGW-C, the Create Session Request message including the APN, the Registered S-NSSAI list, the N1 mode parameter and the PCO parameter. For example, the SGW-C sends the Create Session Request message to the SMF/PGW-C in a case where the SGW-C receives the Create Session Request message from the MME.
3. The SMF/PGW-C finds an associated S-NSSAI to the received APN based on the received APN and local configuration. For example, the SMF/PGW-C finds an associated S-NSSAI to the received APN in a case where the SMF/PGW-C receives the Create Session Request message from the SGW-C. Then the SMF/PGW-C sends, to the NSACF, Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request with the update flag set to “increase” and the NSAC UE parameter if the received Registered S-NSSAI list parameter includes the associated S-NSSAI with another APN pair. For example, the SMF/PGW-C may not send the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request with the update flag set to “increase” and the NSAC UE parameter if the received Registered S-NSSAI list parameter does not include the associated S-NSSAI with another APN pair.
For example, in a case where the received Registered S-NSSAI list parameter includes a pair of S-NSSAI 1 and APN 1 and the SMF/PGW-C finds that the S-NSSAI 1 is associated with received APN 2 based on the local configuration in step 3, then the SMF/PGW-C determines that the received Registered S-NSSAI list parameter includes a pair of the associated S-NSSAI (i.e. S-NSSAI 1) and another APN (i.e. APN 1), and sends, to the NSACF, the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request including the update flag which is set to “increase” and the NSAC UE parameter. For example, the SMF/PGW-C may determine whether a pair of S-NSSAI and the received APN in step 2 is included in the received Registered S-NSSAI list parameter. If the SMF/PGW-C determines that the pair of S-NSSAI and the received APN in step 2 is not included in the received Registered S-NSSAI list parameter, the SMF/PGW-C may send, to the NSACF, the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request.
For example, the SMF/PGW-C sends the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to check if the attachment or registration of the UE is allowed.
The Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request may include UE ID and the S-NSSAI associated to the received APN. For example, the SMF/PGW-C stores mapping information of S-NSSAIs and APNs, hence the SMF/PGW-C can determine the associated S-NSSAI to the received APN based on the received APN from the SGW-C.
4. Upon reception of the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request message, if the update flag parameter from the SMF/PGW-C indicates “increase”, the following processes apply:
5. The SMF/PGW-C sends, to the NSACF, Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request with update flag set to “increase”. In addition, the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request includes the NSAC UE parameter if the received Registered S-NSSAI list parameter includes the associated S-NSSAI with another APN pair. For example, the SMF/PGW-C may determine whether the received Registered S-NSSAI list parameter includes the associated S-NSSAI with another APN pair in the same manner as step 3. Further, the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request may include the UE ID and the S-NSSAI associated to the received APN.
For example, in a case where the SMF/PGW-C sends the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to the NSACF, the SMF/PGW-C may send the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to the NSACF.
For example, in a case where the SMF/PGW-C receives the Nnsacf_NumberOfUEsPerSliceAvailability Check Update response from the NSACF, the SMF/PGW-C may send the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to the NSACF.
6. Upon reception of the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request message, if the update flag parameter from the SMF/PGW-C indicates “increase”, the following processes apply:
For example, upon receiving the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response or the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response, the SMF/PGW-C may store information indicating that the UE has been registered to the NSACF with the APN corresponding to the S-NSSAI. For example, upon receiving the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response or the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response, the SMF/PGW-C may store information indicating a pair of the APN and the S-NSSAI that the UE has been registered.
7. The SMF/PGW-C sends, to the SGW-C, the Create Session Response message including PCO parameter, Registered S-NSSAI and NSAC parameter set to “Yes”. The Registered S-NSSAI indicates that the S-NSSAI associated with the APN is registered with the NSACF for the UEs registered with a network slice count. For example, the Registered S-NSSAI indicates that the S-NSSAI associated with the APN is registered successfully to the NSACF for NSAC.
The PCO parameter includes the S-NSSAI that is associated with the APN. In one example of
The SMF/PGW-C includes the NSAC parameter which is set to “Yes” if the SMF/PGW-C performs the Network Slice Admission Control for the PDN connection. For example, the NSAC parameter which is set to “Yes” may indicate that the SMF/PGW-C performs the Network Slice Admission Control for the PDU session for the S-NSSAI corresponding to the APN. For example, the NSAC parameter which is set to “Yes” may indicate that the SMF/PGW-C completes the Network Slice Admission Control for the PDN connection successfully. For example, the NSAC parameter which is set to “Yes” may indicate that the SMF/PGW-C performs the Network Slice Admission Control for the received APN in step 2. For example, the NSAC parameter which is set to “Yes” may indicate that the SMF/PGW-C performs the Network Slice Admission Control for the S-NSSAI corresponding to the received APN in step 2.
For example, the NSAC parameter which is set to “Yes” may indicate that the network slice associated with the APN is subject to NSAC, i.e. the active PDN connection has been already counted in the number of the PDN connections established on the associated network slice.
8. The SGW-C sends, to the MME, the Create Session Response message including the PCO parameter, the Registered S-NSSAI and the NSAC parameter as included by the SMF/PGW-C in step 7. If the Registered S-NSSAI is received, the MME adds the received S-NSSAI and the APN pair to the Registered S-NSSAI list in the MME context. For example, the MME may manage the MME context on a per-UE basis. For example, if the Registered S-NSSAI is received, the MME may add a pair of the received S-NSSAI in the PCO parameter and the APN corresponding to the S-NSSAI to the Registered S-NSSAI list in the MME context. The APN corresponding to the S-NSSAI may be the APN sent in the step 1.
9. The network and UE complete the PDN connection establishment procedure.
10. The MME sends, to the UE, the NAS message including the PCO parameter. The MME stores the NSAC parameter as “Yes” in the SM context to the PDN connection.
11. Based on the parameters in the NAS message in step 10, the following process may apply to the UE:
0. The UE has at least one PDN connection established as illustrated in
1. The UE disables the N1 mode capability. For example, the UE changes the UE capability information from “N1 mode supported” to “N1 mode not supported” based on local configuration. For example, the UE may be in CM-IDLE mode.
2. The UE sends, to the MME, the TAU Request indicating the N1 mode not supported in UE network capability IE. For example, the UE sends, to the MME, the TAU Request including the UE network capability IE indicating that the N1 mode is not supported. The TAU Request may include information for identifying the UE. The TAU Request may be called as a TAU Request message.
3. The MME checks the MM context of the UE and confirms whether the UE has support N1 mode. If the MME determines that the UE has the MM context indicating that the UE supports the N1 mode and the TAU Request message includes N1 mode not supported in the UE network capability IE and the MME finds, based on the SM context for an already active PDN connection to the APN, that the network slice associated with the APN is subject to NSAC, i.e. the active PDN connection has been already counted in the number of the PDN connections established on the associated network slice, then the MME proceeds with step 4. Otherwise, the MME proceeds with step 12.
4. The MME sends, to the SGW-C, the Modify Session Request message including the N1 mode parameter set as “not supported”. The N1 mode parameter set as “not supported” may indicate that the UE does not support the N1 mode or the UE cannot interwork with the 5GS. The Modify Session Request message may include information identifying the UE.
5. The SGW-C sends, to the SMF/PGW-C, the Modify Session Request message including the N1 mode parameter which is set to “not supported”. For example, The SGW-C sends, to the SMF/PGW-C, the Modify Session Request message in a case where the SGW-C receives the Modify Session Request message from the MME.
6. The SMF/PGW-C finds an associated S-NSSAI based on the received information from the SGW-C and local configuration. Then the SMF/PGW-C sends Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to the NSACF with the update flag set to “decrease”.
The Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request may include the UE ID and the S-NSSAI associated to the APN.
For example, the MME may determine the APN based on the UE network capability IE indicating that the N1 mode is not supported in the UE, the information identifying the UE and the MME context for the UE. In detail, for example, the MME may determine the APN for the UE based on the MME context and the information identifying the UE. Then the MME sends, to the SMF/PGW-C via SGW-C, the Modify Session Request including the N1 mode parameter which is set to “not supported” and the determined APN.
Upon receiving the Modify Session Request, the SMF/PGW-C may determine the S-NSSAI corresponding to the received APN based on the local configuration (e.g. mapping information of S-NSSAI(s) and the APNs). Then the SMF/PGW-C may send, to the NSACF, the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request including the update flag which is set to “decrease”, the UE ID and the S-NSSAI associated to (or associated to) the received APN.
7. Upon reception of the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request message, if the update flag parameter from the SMF/PGW-C indicates “decrease”, the following processes apply:
8. The SMF/PGW-C sends, to the NSACF, Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request with update flag set to “decrease”.
The Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request may include the UE ID and the S-NSSAI associated to the APN.
For example, in a case where the SMF/PGW-C sends the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request to the NSACF, the SMF/PGW-C may send the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to the NSACF.
For example, in a case where the SMF/PGW-C receives the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response from the NSACF, the SMF/PGW-C may send the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to the NSACF.
For example, the SMF/PGW-C may determine the S-NSSAI associated to (or corresponding to) the APN based on the local configuration (e.g. mapping information of S-NSSAI(s) and the APNs) in the same manner as step 6.
9. Upon reception of the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request message, if the update flag parameter from the SMF/PGW-C indicates “decrease”, the following processes apply:
10. The SMF/PGW-C sends, to the SGW-C, the Modify Session Response message including NSAC parameter set to “No”. For example, the NSAC parameter which is set to “No” may indicate that the network slice associated with the APN is not subject to NSAC, i.e. the active PDN connection has not been counted in the number of the PDN connections established on the associated network slice.
11. The SGW-C sends, to the MME, the Modify Session Response message including the NSAC parameter.
12. The MME sends the TAU Accept message to the UE. The MME stores the NSAC parameter set as “No” in the SM context for the PDN connection based on the received NSAC parameter in step 11. TAU Accept message may be called as TAU Accept.
Step 4, 5, 10 and 11 may be Modify Bearer Request message, Modify Bearer Request message, Modify Bearer Response message and Modify Bearer Response message respectively.
For example, in step 4, a Modify Bearer Request message may be sent instead of the Modify Session Request message.
For example, in step 5, a Modify Bearer Request message may be sent instead of the Modify Session Request message.
For example, the parameters sent in the Modify Bearer Request message may be same to the parameters in the Modify Session Request message.
For example, in step 10, a Modify Bearer Response message may be sent instead of the Modify Session Response message.
For example, in step 11, a Modify Bearer Response message may be sent instead of the Modify Session Response message.
For example, the parameters sent in the Modify Bearer Response message may be same to the parameters in the Modify Session Response message.
Step 4, 5, 10 and 11 may be Remote UE Report Notification message, Remote UE Report Notification message, Remote UE Report Acknowledge message and Remote UE Report Acknowledge message respectively.
For example, in step 4, a Remote UE Report Notification message may be sent instead of the Modify Session Request message.
For example, in step 5, a Remote UE Report Notification message may be sent instead of the Modify Session Request message.
For example, the parameters sent in the Remote UE Report Notification message may be same to the parameters in the Modify Session Request message.
For example, in step 10, a Remote UE Report Acknowledge message may be sent instead of the Modify Session Response message.
For example, in step 11, a Remote UE Report Acknowledge message may be sent instead of the Modify Session Response message.
For example, the parameters sent in the Remote UE Report Acknowledge message may be same to the parameters in the Modify Session Response message.
Step 4, 5, 10 and 11 may be Change Notification Request message, Change Notification Request message, Change Notification Response message and Change Notification Response message respectively.
For example, in step 4, a Change Notification Request message may be sent instead of the Modify Session Request message.
For example, in step 5, a Change Notification Request message may be sent instead of the Modify Session Request message.
For example, the parameters sent in the Change Notification Request message may be same to the parameters in the Modify Session Request message.
For example, in step 10, a Change Notification Response message may be sent instead of the Modify Session Response message.
For example, in step 11, a Change Notification Response message may be sent instead of the Modify Session Response message.
For example, the parameters sent in the Change Notification Response message may be same to the parameters in the Modify Session Response message.
Step 4, 5, 10 and 11 may be Delete Session Request message, Delete Session Request message, Delete Session Response message and Delete Session Response message respectively. The For example, in step 4, a Delete Session Request message may be sent instead of the Modify Session Request message.
For example, in step 5, a Delete Session Request message may be sent instead of the Modify Session Request message.
For example, the parameters sent in the Delete Session Request message may be same to the parameters in the Modify Session Request message.
For example, in step 10, a Delete Session Response message may be sent instead of the Modify Session Response message.
For example, in step 11, a Delete Session Response message may be sent instead of the Modify Session Response message.
For example, the parameters sent in the Delete Session Response message may be same to the parameters in the Modify Session Response message.
The MME in
The message is step 4 or 11 is any existing message or a new message defined between the MME and S-GW (e.g. the SGW-C). The message is step 5 or 12 is any existing message or a new message defined between S-GW (e.g. the SGW-C) and the SMF/PGW-C.
In one example, in step 6, when the SMF/PGW-C determines that the UE no longer supports N1 mode, then the SMF/PGW-C does not send a neither Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request nor Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request to update the NSAC.
For example, in a case where the SMF/PGW-C determines that the UE no longer supports N1 mode, the SMF/PGW-C does not send the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request and the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request.
In one example, if the UE indicates that the UE supports N1 mode by sending an existing information element in the PCO to the PGW-C (e.g. the SMF/PGW-C), e.g. if the UE sends PDU session ID in the PCO during the PDN connection establishment to the PGW-C, then the PGW-C (e.g. the SMF/PGW-C) determines that the UE supports N1 mode.
If the UE does not support N1 mode, i.e. if the UE disables the N1 mode, then the UE initiates an ESM procedure and sends the PCO containing an indicator indicating that the PDU session ID (or a PDU session identified by the PDU session ID) is released for the PDN connection in a ESM message during the ESM procedure (or UE initiated EPS bearer context modification procedure). Upon receiving the PCO, the MME sends this PCO to the SGW-C using an existing procedure between the MME and the SGW-C. Then the SGW-C further sends, to the PGW-C (e.g. the SMF/PGW-C), the PCO using an existing procedure. When the P-GW (e.g. the SMF/PGW-C) receives the PCO and the indicator indicates the PDU session ID is released for the PDN connection, then the PGW-C (e.g. the SMF/PGW-C) determines that the UE does not support N1 mode.
In addition to the Create Session procedure in
In addition, the steps 1 to 11 in
Note that the Core Network Type Restriction data is transferred from the HSS to the MME over the S6a interface by the Update Location Ack message or the Insert Subscriber Data message.
In one example, the steps 4 to 11 in
In one example, the steps 3 to 6 in
Note that the SMF/PGW-C may receive, from the UDM, the Core Network Type Restriction parameter in the subscriber data by the Nudm_SDM_Get service or the Nudm_SDM_Notification service.
In one example, the steps 6 to 9 in
Note that the SMF/PGW-C may receive, from the UDM, the updated Core Network Type Restriction parameter in the subscriber data by the Nudm_SDM_Notification service.
For example, the Aspect 2 and the variants of the Aspect 2 can provide solutions for various situations that the NSAC procedure is not defined when the PDN connection procedure is established on the EPS which supports interworking with 5GS. For example, the Aspect 2 and the variants of the Aspect 2 can solve the problem that the network behavior and the UE behavior are not defined with respect to the NSAC procedure when the UE disables N1 mode capability.
When the UE supporting N1 mode and S1 mode establishes a PDN connection for an APN in the EPS, the SMF/PGW-C entity (or the SMF/PGW-C) maps the APN to a network slice based on local configuration. There can be a scenario when multiple APN maps to the same network slice. It is not clear in such a case when multiple PDN connections are associated with the same network slice how to perform NSAC procedure to check availability and update the number of UEs registered to the network slice and the number of the PDU sessions established on the network slice.
The Aspect 3 discloses a Network Slice Admission Control for multiple PDN connectivity to the same S-NSSAI.
The
Note that assumption in this Aspect is that there is at least one PDU session being established as illustrated in
0. The UE has at least one PDN connection established with APN1 corresponding to S-NSSAI as illustrated in
1. The UE is triggered by an application that new PDN Connection needs to be established with APN2.
2. The UE sends the PDN connectivity Request to the MME with APN2.
3. The MME performs the PGW-C (e.g. SMF/PGW-C) selection. As the result, the same SMF/PGW-C with APN2 is selected.
4. The MME sends the Create Session Request message to the SGW-C with APN2.
5. The SGW-C sends the Create Session Request message to the SMF/PGW-C with APN2.
6. The SMF/PGW-C finds an associated S-NSSAI based on the received APN2 and local configuration (e.g. mapping information of S-NSSAIs and APNs). For example, in this case, the associated S-NSSAI also corresponds to the APN1.
If the SMF/PGW-C finds that the UE has been registered to the NSACF with APN1 corresponding to the S-NSSAI, then the SMF/PGW-C does not register the UE to the NSAC, and registers the UE to the PDU Session.
In this case, the SMF/PGW-C sends, to the NSACF, Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request with update flag set to “increase”. The Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request may include the UE ID and the S-NSSAI associated to the APN 2.
For example, the SMF/PGW-C finds that the UE has been registered to the NSACF with APN1 based on the associated S-NSSAI and the information indicating a pair of the APN and the S-NSSAI that the UE has been registered.
For example, the SMF/PGW-C may send the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request including the update flag set to “increase”, the UE ID and the S-NSSAI associated to the APN 2 in a case where the SMF/PGW-C receives the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response in step 4 of
7. Upon reception of the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request message, if the update flag parameter from the SMF/PGW-C indicates “increase”, the following processes apply:
8. The SMF/PGW-C sends the Create Session Response message to the SGW-C. For example, upon reception of the Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response, the SMF/PGW-C sends the Create Session Response message to the SGW-C.
9. The SGW-C sends the Create Session Response message to the MME. For example, upon reception of the Create Session Response message from the SMF/PGW-C, the SGW-C sends the Create Session Response message to the MME.
10. The MME sends the PDN connectivity Accept message to the UE. For example, upon reception of the Create Session Response message from the SGW-C, the MME sends the PDN connectivity Accept message to the UE.
The MME in
In one example, in step 6, the SMF/PGW-C also sends Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate request with update flag set to “increase” to update the number of UEs for the S-NSSAI.
The telecommunication system 1 represents a system overview in which an end to end communication is possible. For example, UE 3 (or user equipment, ‘mobile device’ 3) communicates with other UEs 3 or service servers in the data network 20 via respective (R)AN nodes 5 and a core network 7.
The (R)AN node 5 supports any radio accesses including a 5G radio access technology (RAT), an E-UTRA radio access technology, a beyond 5G RAT, a 6G RAT and non-3GPP RAT including wireless local area network (WLAN) technology as defined by the Institute of Electrical and Electronics Engineers (IEEE).
The (R)AN node 5 may split into a Radio Unit (RU), Distributed Unit (DU) and Centralized Unit (CU). In some aspects, each of the units may be connected to each other and structure the (R)AN node 5 by adopting an architecture as defined by the Open RAN (O-RAN) Alliance, where the units above are referred to as O-RU, O-DU and O-CU respectively.
The (R)AN node 5 may be split into control plane function and user plane function. Further, multiple user plane functions can be allocated to support a communication. In some aspects, user traffic may be distributed to multiple user plane functions and user traffic over each user plane functions are aggregated in both the UE 3 and the (R)AN node 5. This split architecture may be called as ‘dual connectivity’ or ‘Multi connectivity’.
The (R)AN node 5 can also support a communication using the satellite access. In some aspects, the (R)AN node 5 may support a satellite access and a terrestrial access.
In addition, the (R)AN node 5 can also be referred as an access node for a non-wireless access. The non-wireless access includes a fixed line access as defined by the Broadband Forum (BBF) and an optical access as defined by the Innovative Optical and Wireless Network (IOWN).
The core network 7 may include logical nodes (or ‘functions’) for supporting a communication in the telecommunication system 1. For example, the core network 7 may be 5G Core Network (5GC) that includes, amongst other functions, control plane functions and user plane functions. Each function in logical nodes can be considered as a network function. The network function may be provided to another node by adapting the Service Based Architecture (SBA). In addition, for example, the core network 7 may include control plane functions and user plane functions in Evolved Packet Core (EPC). For example, the core network 7 includes MME, SGW-C, and PGW-C. The MME may include a transceiver circuit which is operable to transmit signals to and to receive signals from other nodes (including nodes in the core network 7) via a network interface, and a controller which is operable to control the operation of the MME in accordance with software stored in a memory of the MME. The SGW-C may include a transceiver circuit which is operable to transmit signals to and to receive signals from other nodes (including nodes in the core network 7) via a network interface, and a controller which is operable to control the operation of the SGW-C in accordance with software stored in a memory of the SGW-C.
A Network Function can be deployed as distributed, redundant, stateless, and scalable that provides the services from several locations and several execution instances in each location by adapting the network virtualization technology as defined by the European Telecommunications Standards Institute, Network Functions Virtualization (ETSI NFV).
The core network 7 may support the Non-Public Network (NPN). The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
As is well known, a UE 3 may enter and leave the areas (i.e. radio cells) served by the (R)AN node 5 as the UE 3 is moving around in the geographical area covered by the telecommunication system 1. In order to keep track of the UE 3 and to facilitate movement between the different (R)AN nodes 5, the core network 7 comprises at least one access and mobility management function (AMF) 70. The AMF 70 is in communication with the (R)AN node 5 coupled to the core network 7. In some core networks, a mobility management entity (MME) or a mobility management node for beyond 5G or a mobility management node for 6G may be used instead of the AMF 70.
The core network 7 also includes, amongst others, a Session Management Function (SMF) 71, a User Plane Function (UPF) 72, a Policy Control Function (PCF) 73, a Network Exposure Function (NEF) 74, a Unified Data Management (UDM) 75, a Network Data Analytics Function (NWDAF) 76 and NSACF (Network Slice Admission Control Function) 77. In addition, the core network 7 may also include SMF+PGW-C. When the UE 3 is roaming to a visited Public Land Mobile Network (VPLMN), a home Public Land Mobile Network (HPLMN) of the UE 3 provides the UDM 75 and at least some of the functionalities of the SMF 71, UPF 72, and PCF 73 for the roaming-out UE 3.
The UE 3 and a respective serving (R)AN node 5 are connected via an appropriate air interface (for example the so-called “Uu” interface and/or the like). Neighboring (R)AN node 5 are connected to each other via an appropriate (R)AN node 5 to (R)AN node interface (such as the so-called “Xn” interface and/or the like). Each (R)AN node 5 is also connected to nodes in the core network 7 (such as the so-called core network nodes) via an appropriate interface (such as the so-called “N2”/“N3” interface(s) and/or the like). From the core network 7, connection to a data network 20 is also provided. The data network 20 can be an internet, a public network, an external network, a private network or an internal network of the PLMN. In case that the data network 20 is provided by a PLMN operator or Mobile Virtual Network Operator (MVNO), the IP Multimedia Subsystem (IMS) service may be provided by that data network 20. The UE 3 can be connected to the data network 20 using IPv4, IPV6, IPv4v6, Ethernet or unstructured data type.
The “Uu” interface may include a Control plane of Uu interface and User plane of Uu interface.
The User plane of Uu interface is responsible to convey user traffic between the UE 3 and a serving (R)AN node 5. The User plane of Uu interface may have a layered structure with SDAP, PDCP, RLC and MAC sublayer over the physical connection.
The Control plane of Uu interface is responsible to establish, modify and release a connection between the UE 3 and a serving (R)AN node 5. The Control plane of Uu interface may have a layered structure with RRC, PDCP, RLC and MAC sublayers over the physical connection.
For example, the following messages are communicated over the RRC layer to support AS signaling.
The UE 3 and the AMF 70 are connected via an appropriate interface (for example the so-called N1 interface and/or the like). The N1 interface is responsible to provide a communication between the UE 3 and the AMF 70 to support NAS signaling. The N1 interface may be established over a 3GPP access and over a non-3GPP access. For example, the following messages are communicated over the N1 interface.
The UE 3 may, for example, support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
The UE 3 may, for example, be an item of equipment for production or manufacture and/or an item of energy related machinery (for example equipment or machinery such as: boilers; engines; turbines; solar panels; wind turbines; hydroelectric generators; thermal power generators; nuclear electricity generators; batteries; nuclear systems and/or associated equipment; heavy electrical machinery; pumps including vacuum pumps; compressors; fans; blowers; oil hydraulic equipment; pneumatic equipment; metal working machinery; manipulators; robots and/or their application systems; tools; molds or dies; rolls; conveying equipment; elevating equipment; materials handling equipment; textile machinery; sewing machines; printing and/or related machinery; paper converting machinery; chemical machinery; mining and/or construction machinery and/or related equipment; machinery and/or implements for agriculture, forestry and/or fisheries; safety and/or environment preservation equipment; tractors; precision bearings; chains; gears; power transmission equipment; lubricating equipment; valves; pipe fittings; and/or application systems for any of the previously mentioned equipment or machinery etc.).
The UE 3 may, for example, be an item of transport equipment (for example transport equipment such as: rolling stocks; motor vehicles; motor cycles; bicycles; trains; buses; carts; rickshaws; ships and other watercraft; aircraft; rockets; satellites; drones; balloons etc.).
The UE 3 may, for example, be an item of information and communication equipment (for example information and communication equipment such as: electronic computer and related equipment; communication and related equipment; electronic components etc.).
The UE 3 may, for example, be a refrigerating machine, a refrigerating machine applied product, an item of trade and/or service industry equipment, a vending machine, an automatic service machine, an office machine or equipment, a consumer electronic and electronic appliance (for example a consumer electronic appliance such as: audio equipment; video equipment; a loud speaker; a radio; a television; a microwave oven; a rice cooker; a coffee machine; a dishwasher; a washing machine; a dryer; an electronic fan or related appliance; a cleaner etc.).
The UE 3 may, for example, be an electrical application system or equipment (for example an electrical application system or equipment such as: an x-ray system; a particle accelerator; radio isotope equipment; sonic equipment; electromagnetic application equipment; electronic power application equipment etc.).
The UE 3 may, for example, be an electronic lamp, a luminaire, a measuring instrument, an analyzer, a tester, or a surveying or sensing instrument (for example a surveying or sensing instrument such as: a smoke alarm; a human alarm sensor; a motion sensor; a wireless tag etc.), a watch or clock, a laboratory instrument, optical apparatus, medical equipment and/or system, a weapon, an item of cutlery, a hand tool, or the like.
The UE 3 may, for example, be a wireless-equipped personal digital assistant or related equipment (such as a wireless card or module designed for attachment to or for insertion into another electronic device (for example a personal computer, electrical measuring machine)).
The UE 3 may be a device or a part of a system that provides applications, services, and solutions described below, as to “internet of things (IoT)”, using a variety of wired and/or wireless communication technologies.
Internet of Things devices (or “things”) may be equipped with appropriate electronics, software, sensors, network connectivity, and/or the like, which enable these devices to collect and exchange data with each other and with other communication devices. IoT devices may comprise automated equipment that follow software instructions stored in an internal memory. IoT devices may operate without requiring human supervision or interaction. IoT devices might also remain stationary and/or inactive for a long period of time. IoT devices may be implemented as a part of a (generally) stationary apparatus. IoT devices may also be embedded in non-stationary apparatus (e.g. vehicles) or attached to animals or persons to be monitored/tracked.
It will be appreciated that IoT technology can be implemented on any communication devices that can connect to a communications network for sending/receiving data, regardless of whether such communication devices are controlled by human input or software instructions stored in memory.
It will be appreciated that IoT devices are sometimes also referred to as Machine-Type Communication (MTC) devices or Machine-to-Machine (M2M) communication devices or Narrow Band-IoT UE (NB-IoT UE). It will be appreciated that a UE 3 may support one or more IoT or MTC applications.
The UE 3 may be a smart phone or a wearable device (e.g. smart glasses, a smart watch, a smart ring, or a hearable device).
The UE 3 may be a car, or a connected car, or an autonomous car, or a vehicle device, or a motorcycle or V2X (Vehicle to Everything) communication module (e.g. Vehicle to Vehicle communication module, Vehicle to Infrastructure communication module, Vehicle to People communication module and Vehicle to Network communication module).
The communications control module 552 (using its transceiver control sub-module) is responsible for handling (generating/sending/receiving) signalling between the (R)AN node 5 and other nodes, such as the UE 3, another (R)AN node 5, the AMF 70 and the UPF 72 (e.g. directly or indirectly). The signalling may include, for example, appropriately formatted signalling messages relating to a radio connection and a connection with the core network 7 (for a particular UE 3), and in particular, relating to connection establishment and maintenance (e.g. RRC connection establishment and other RRC messages), NG Application Protocol (NGAP) messages (i.e. messages by N2 reference point) and Xn application protocol (XnAP) messages (i.e. messages by Xn reference point), etc. Such signalling may also include, for example, broadcast information (e.g. Master Information and System information) in a sending case.
The controller 54 is also configured (by software or hardware) to handle related tasks such as, when implemented, UE mobility estimates and/or moving trajectory estimation. The (R)AN node 5 may support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
The (R)AN node 5 based on O-RAN architecture represents a system overview in which the (R)AN node is split into a Radio Unit (RU) 60, Distributed Unit (DU) 61 and Centralized Unit (CU) 62. In some aspects, each unit may be combined. For example, the RU 60 can be integrated/combined with the DU 61 as an integrated/combined unit, the DU 61 can be integrated/combined with the CU 62 as another integrated/combined unit. Any functionality in the description for a unit (e.g. one of RU 60, DU 61 and CU 62) can be implemented in the integrated/combined unit above. Further, CU 62 can separate into two functional units such as CU Control plane (CP) and CU User plane (UP). The CU CP has a control plane functionality in the (R)AN node 5. The CU UP has a user plane functionality in the (R)AN node 5. Each CU CP is connected to the CU UP via an appropriate interface (such as the so-called “E1” interface and/or the like).
The UE 3 and a respective serving RU 60 are connected via an appropriate air interface (for example the so-called “Uu” interface and/or the like). Each RU 60 is connected to the DU 61 via an appropriate interface (such as the so-called “Front haul”, “Open Front haul”, “F1” interface and/or the like). Each DU 61 is connected to the CU 62 via an appropriate interface (such as the so-called “Mid haul”, “Open Mid haul”, “E2” interface and/or the like). Each CU 62 is also connected to nodes in the core network 7 (such as the so-called core network nodes) via an appropriate interface (such as the so-called “Back haul”, “Open Back haul”, “N2”/“N3” interface(s) and/or the like). In addition, a user plane part of the DU 61 can also be connected to the core network nodes 7 via an appropriate interface (such as the so-called “N3” interface(s) and/or the like).
Depending on functionality split among the RU 60, DU 61 and CU 62, each unit provides some of the functionality that is provided by the (R)AN node 5. For example, the RU 60 may provide functionalities to communicate with a UE 3 over air interface, the DU 61 may provide functionalities to support MAC layer and RLC layer, the CU 62 may provide functionalities to support PDCP layer, SDAP layer and RRC layer.
The communications control module 6052 (using its transceiver control sub-module) is responsible for handling (generating/sending/receiving) signalling between the RU 60 and other nodes or units, such as the UE 3, another RU 60 and DU 61 (e.g. directly or indirectly). The signalling may include, for example, appropriately formatted signalling messages relating to a radio connection and a connection with the RU 60 (for a particular UE 3), and in particular, relating to MAC layer and RLC layer.
The controller 604 is also configured (by software or hardware) to handle related tasks such as, when implemented, UE mobility estimates and/or moving trajectory estimation.
The RU 60 may support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
As described above, the RU 60 can be integrated/combined with the DU 61 as an integrated/combined unit. Any functionality in the description for the RU 60 can be implemented in the integrated/combined unit above.
The DU 61 may support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
As described above, the RU 60 can be integrated/combined with the DU 61 or CU 62 as an integrated/combined unit. Any functionality in the description for DU 61 can be implemented in one of the integrated/combined unit above.
The CU 62 may support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
As described above, the CU 62 can be integrated/combined with the DU 61 as an integrated/combined unit. Any functionality in the description for the CU 62 can be implemented in the integrated/combined unit above.
<AMF>
The AMF 70 may support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
The SMF 71 may support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
Note that SMF+PGW-C (or SMF/PGW-C) may have same components to the SMF 71. In addition, the SMF+PGW-C (or the SMF/PGW-C) has function of the SMF 71 and function of the PGW-C. The function of the PGW-C can be achieved by the components of the SMF+PGW-C (or the SMF/PGW-C).
The UDM 75 may support the Non-Public Network (NPN), The NPN may be a Stand-alone Non-Public Network (SNPN) or a Public Network Integrated NPN (PNI-NPN).
Detailed aspects have been described above. As those skilled in the art will appreciate, a number of modifications and alternatives can be made to the above aspects whilst still benefiting from the disclosures embodied therein. By way of illustration only a number of these alternatives and modifications will now be described.
In the above description, the UE 3 and the network apparatus are described for ease of understanding as having a number of discrete modules (such as the communication control modules). Whilst these modules may be provided in this way for certain applications, for example where an existing system has been modified to implement the disclosure, in other applications, for example in systems designed with the inventive features in mind from the outset, these modules may be built into the overall operating system or code and so these modules may not be discernible as discrete entities. These modules may also be implemented in software, hardware, firmware or a mix of these.
Each controller may comprise any suitable form of processing circuitry including (but not limited to), for example: one or more hardware implemented computer processors; microprocessors; central processing units (CPUs); arithmetic logic units (ALUs); input/output (IO) circuits; internal memories/caches (program and/or data); processing registers; communication buses (e.g. control, data and/or address buses); direct memory access (DMA) functions; hardware or software implemented counters, pointers and/or timers; and/or the like.
In the above aspects, a number of software modules were described. As those skilled in the art will appreciate, the software modules may be provided in compiled or un-compiled form and may be supplied to the UE 3 and the network apparatus as a signal over a computer network, or on a recording medium. Further, the functionality performed by part or all of this software may be performed using one or more dedicated hardware circuits. However, the use of software modules is preferred as it facilitates the updating of the UE 3 and the network apparatus in order to update their functionalities.
In the above aspects, a 3GPP radio communications (radio access) technology is used. However, any other radio communications technology (e.g. WLAN, Wi-Fi, WiMAX, Bluetooth, etc.) and other fix line communications technology (e.g. BBF Access, Cable Access, optical access, etc.) may also be used in accordance with the above aspects.
Items of user equipment might include, for example, communication devices such as mobile telephones, smartphones, user equipment, personal digital assistants, laptop/tablet computers, web browsers, e-book readers and/or the like. Such mobile (or even generally stationary) devices are typically operated by a user, although it is also possible to connect so-called ‘Internet of Things’ (IoT) devices and similar machine-type communication (MTC) devices to the network. For simplicity, the present application refers to mobile devices (or UEs) in the description but it will be appreciated that the technology described can be implemented on any communication devices (mobile and/or generally stationary) that can connect to a communications network for sending/receiving data, regardless of whether such communication devices are controlled by human input or software instructions stored in memory.
Various other modifications will be apparent to those skilled in the art and will not be described in further detail here.
The whole or part of the example Aspects disclosed above can be described as, but not limited to, the following.
<5.15.11.5 Support of Network Slice Admission Control and Interworking with EPC>
If EPS counting is required for a network slice, the Network Slice Admission Control for maximum number of UEs and/or for maximum number of PDU Sessions per network slice is performed at the time of PDN connection establishment in case of EPC interworking. To support the NSAC for maximum number of UEs and/or for maximum number of PDU Sessions per network slice in EPC, the SMF+PGW-C is configured with the information indicating which network slice is subject to NSAC. During PDN connection establishment in EPC, the SMF+PGW-C selects an S-NSSAI associated with the PDN connection as described in clause 5.15.7.1. If the selected S-NSSAI by the SMF+PGW-C is subject to the NSAC, the SMF+PGW-C triggers interaction with NSACF to check the availability of the network slice, before the SMF+PGW-C provides the selected S-NSSAI to the UE. If the network slice is available, the SMF+PGW-C continues to proceed with the PDN connection establishment procedure.
The NSACF performs the following for checking network slice availability prior to returning a response to the SMF+PGW-C:
If:
When the UE with ongoing PDN connection(s) moves from EPC to 5GC, the SMF+PGW-C triggers a request to decrease the number of the UE registration in NSACF and the AMF triggers a request to increase the number of the UE registration in NSACF when the UE is registered in the new AMF. If there are more than one PDN connections associated with the S-NSSAI, the NSACF may receive multiple requests for the same S-NSSAI from different SMF+PGW-Cs. When the UE with ongoing PDU session(s) moves from 5GC to EPC, the SMF+PGW-C triggers a request to increase the number of the UE registration in NSACF and the old AMF triggers a request to decrease the number of the UE registration in NSACF when the UE is deregistered in old AMF. If there are more than one PDU sessions associated with the S-NSSAI, the NSACF may receive multiple requests for the same S-NSSAI from different SMF+PGW-Cs. The NSACF maintains a list of UE IDs based on the requests from SMF+PGW-C(s) and AMF, and adjusts the current number of registrations accordingly.
When the UE with ongoing PDN connection(s) moves from EPC to 5GC, or from 5GC to EPC, the session continuity is guaranteed as the admission was granted at the time of PDN connection establishment, i.e. the number of PDU session is not counted again in 5GC.
Editor's note: NSAC mechanism during the mobility between EPC and 5GC can be revisited to make it align with 5GC mechanism, i.e. mobility between AMFs.
If the PDN connection associated with S-NSSAI is released in EPC or the N1 mode is disabled or the Core Network Type Restriction disallows the UE to access 5GC, the SMF+PGW-C triggers a request (i.e. decrease) to NSACF for maximum number of PDU sessions per network slice control. The NSACF determines to decrease the current number of registrations and remove the UE identity from the list of UE IDs if the PDN connection(s) associated with S-NSSAI are all released in EPC.
Editor's note: It is FFS whether one NSACF is in charge of registration and session admission control, or there are respective NSCAFs for registration and session admission control, depending on the deployment scenarios.
NOTE: Network Slice Admission Control in EPC is not performed for the attachment without PDN connectivity.
If EPS counting is not required for a network slice, the Network Slice Admission Control for maximum number of UEs and/or for maximum number of PDU Sessions per network slice is performed when the UE moves from EPC to 5GC, i.e. when the UE performs mobility Registration procedure from EPC to 5GC (Network Slice Admission Control for maximum number of UEs per network slice) and/or when the PDN connections are handed over from EPC to 5GC (Network Slice Admission Control for maximum number of PDU Sessions per network slice). The SMF+PGW-C is configured with the information indicating the network slice is subject to NSAC only in 5GS. The PDN connection interworking procedure is performed as described in clause 5.15.7.1.
Editor's note: It is FFS whether and how to support session continuity if either the current number of UE registration or the current number of PDU sessions reaches the maximum number when the UE moves from EPC to 5GC.
The UE Requested PDN Connectivity Procedure specified in clause 5.10.2 of TS 23.401 is impacted as shown in in FIG. 4.11.1.5.4.1-1 when interworking with 5GS is supported.
FIG. 4.11.1.5.4.1-1: Impacts to UE Requested PDN Connectivity Procedure (See
1. UE sends a PDN connectivity Request to the MME as specified in Step 1 in clause 5.10.2 of TS 23.401 with the following modification:
2. The relevant steps of the procedure as specified in the figure above are executed. In step 4 of TS 23.401 [13], IP Session Establishment/Modification procedure is replaced by SM Policy Association Establishment/Modification procedure as specified in clauses 4.16.4 and 4.16.5. Upon reception of the create session request message for an APN, the SMF+PGW-C determines the associated S-NSSAI of the APN. If the S-NSSAI is already registered with the NSCAF for the UE counting of the S-NSSAI, then the SMF+PGW-C sends Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckAndUpdate_Requ est message with Update flag set to increment to the NSCAF, otherwise the SMF+PGW-C sends Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Reque st with update flag set to increase. Upon the SMF+PGW-C receives the Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Respo nse message indicating successful operation procedure, the SMF+PGW-C stores the S-NSSA is successfully registered in the NSACF and sends Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckAndUpdate_Requ est message with Update flag set to increment to the NSCAF. In case the number of PDU session for the S-NSSAI has already been reached the maximum threshold for the S-NSSAI, the NSCAF returns message indicating the operation is not successful, in this case, the PDN connection establishment procedure fails and the NSACF sends Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Reque st message with update flag set to decrease.
The Nnsacf_NumberOfUEsPerSliceAvailabilityCheckAndUpdate_Reque st message or Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckAndUpdate_Requ est message may contain APN of the PDN connection or the current location of the UE (e.g. current Tracking Area identity). NSACF stores the APN for the UE ID in its database. It also stores the UE current location. The MME sends the current location to the S-GW in Create Session Request message or in an existing message between the MME and S-GW. The S-GW forwards the current location to the SMF+PGW-C. The current location may also be sent by SMF+PGW-C to NRF which will use current location to determine the NSCAF for the number of UE counting or number of PDU session counting.
3. Step 6 as specified in clause 5.10.2 of TS 23.401 is executed with the following modification:
4. The relevant steps of the procedure as specified in the figure above are executed.
5. Step 8 as specified in clause 5.10.2 of TS 23.401 with the following modification:
6. The relevant steps of the procedure as specified in the figure above are executed.
While the disclosure has been particularly shown and described with reference to exemplary Aspects thereof, the disclosure is not limited to these Aspects. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by this document. For example, the Aspects above are not limited to 5GS or EPS, and the Aspects are also applicable to communication system other than 5GS or EPS.
The whole or part of the example Aspects disclosed above can be described as, but not limited to, the following supplementary notes.
supplementary note1. A method of a core network apparatus comprising:
sending, to the NSACF apparatus, Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request in a case of receiving Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response,
supplementary note2. A method of a User Equipment (UE) comprising:
supplementary note3. A method of a core network apparatus comprising:
supplementary note4. The method according to supplementary note 3, further comprising:
receiving, from the NSACF apparatus, second Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response,
supplementary note5. The method according to supplementary note 3, further comprising:
supplementary note6. A core network apparatus comprising: means for receiving, from Serving Gateway-C(SGW-C), a Create Session Request message,
supplementary note7. A User Equipment (UE) comprising: means for performing ATTACH procedure related to Access Point Name (APN) or UE requested PDN connectivity procedure related to the APN;
supplementary note8. A core network apparatus comprising:
supplementary note9. The core network apparatus according to supplementary note 8, further comprising:
means for receiving, from the NSACF apparatus, second Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response,
means for sending, to the NSACF apparatus, second Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate request in a case of receiving the second Nnsacf_NumberOfUEsPerSliceAvailabilityCheckUpdate response,
means for receiving, from the NSACF apparatus, second Nnsacf_NumberOfPDUsPerSliceAvailabilityCheckUpdate response,
supplementary note10. The core network apparatus according to supplementary note 8, further comprising:
supplementary note 11. A method of a first core network apparatus comprising:
supplementary note12. The method according to supplementary note 11, wherein the first core network apparatus comprising:
supplementary note13. A method of a first core network apparatus comprising:
supplementary note14. A method of a first core network apparatus comprising:
supplementary note15. A method of a first core network apparatus comprising:
supplementary note16. A first core network apparatus comprising:
supplementary note 1.
A core network node comprising:
supplementary note 2.
The core network node according to supplementary note 1, further comprising means for invoking update information related to the number of the UE to decrease an UE count.
supplementary note 3.
The core network node according to supplementary note 2, wherein
supplementary note 4.
The core network node according to any one of supplementary note 1 to 3, wherein
supplementary note 5.
The core network node according to any one of supplementary note 1 to 3, wherein
supplementary note 6.
The core network node according to any one of supplementary note 1 to 3, wherein
supplementary note 7.
A network node for a network slice management comprising:
supplementary note 8.
The network node for a network slice management according to supplementary note 7, wherein
supplementary note 9.
The network node for a network slice management according to supplementary note 7 or 8, wherein
supplementary note 10.
The network node for a network slice management according to supplementary note 7 or 9, wherein
supplementary note 11.
The network node for network slice management according to any one of supplementary note 7 to 10, wherein
supplementary note 12.
The network node for network slice management according to any one of supplementary note 7 to 11, wherein
supplementary note 13.
A method for a core network node comprising:
supplementary note 14.
The method according to supplementary note 13, further comprising
supplementary note 15.
The method according to supplementary note 14, wherein
supplementary note 16.
The method according to any one of supplementary note 13 to 15, wherein
supplementary note 17.
The method according to any one of supplementary note 13 to 16, wherein
supplementary note 18.
The method according to any one of supplementary note 13 to 17, wherein
supplementary note 19.
A method for a network node for a network slice management comprising:
supplementary note 20.
The method according to supplementary note 19, wherein
supplementary note 21.
The method according to supplementary note 19 or 20, wherein
supplementary note 22.
The method according to any one of supplementary note 19 to 21, wherein
supplementary note 23.
The network node for network slice management according to any one of supplementary note 7 to 10, wherein
supplementary note 24.
The network node for network slice management according to any one of supplementary note 7 to 11, wherein
While the invention has been particularly shown and described with reference to example embodiments thereof, the invention is not limited to these embodiments. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the claims.
This application is based upon and claims the benefit of priority from Indian provisional patent application No. 20/211,1032117, filed on Jul. 16, 2021, the disclosure of which is incorporated herein in its entirety by reference.
Number | Date | Country | Kind |
---|---|---|---|
202111032117 | Jul 2021 | IN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2022/027447 | 7/12/2022 | WO |