A portion of the invention of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the reproduction of the patent document or the patent invention, as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Not Applicable
Not Applicable
Not Applicable
The present invention relates generally to magnetic devices for electronic circuits and associated methods of assembly. More particularly, the present invention pertains to bobbin devices for magnetic components with an internal bobbin core passage.
Magnetic components for electronic circuits, including inductors and transformers, are known in the art. Such conventional bobbin-wound components typically include a bobbin around which one or more conductive coils are wound. Conventional bobbins for bobbin-wound magnetic components are often formed with a core passage extending through an axial length of the bobbin. The core passage is generally shaped for receiving an associated core structure such as a portion of conventional ferrite core. Some conventional configurations include opposing E-cores or modified E-cores having an air gap between middle core legs inside the core passage. However, fringing flux associated with the air gap can interact with the inner windings on the bobbin and can create unwanted losses in magnetic component efficiency. Conventional bobbin and core configurations can also lead to increased temperature rise during use, thereby reducing magnetic component performance and requiring undesirable an increase in component size.
What is needed then are improvements in bobbin devices and associated methods for magnetic components.
The present invention in some embodiments provides a bobbin apparatus for a magnetic component. The bobbin apparatus includes a bobbin body having a winding surface and a core passage defined axially through the bobbin body. The bobbin body includes a passage floor substantially facing the core passage. A first passage wall is positioned adjacent the passage floor substantially facing the core passage. A second passage wall is positioned adjacent the passage floor opposite the first passage wall also substantially facing the core passage. A first step is defined between the first passage wall and the passage floor.
In additional embodiments, the present invention provides a magnetic component having a bobbin apparatus as described above and further including a core positioned at least partially in the core passage and including a core leg positioned on the first step, wherein the first step elevates the core leg above the passage floor thereby providing a gap between the core leg and the passage floor.
In further embodiments, a heat transfer material such as a potting material is disposed in the first gap between the core leg and the passage floor, thereby enhancing the performance of the magnetic component.
In an embodiment, the present invention provides a magnetic component apparatus including a bobbin body including a winding surface. A core passage is defined axially through the bobbin body, the core passage defining a core passage interior. A passage floor is formed on the bobbin body substantially facing upwardly toward the core passage interior. A first passage wall is formed on the bobbin body adjacent the passage floor. The first passage wall faces substantially toward the core passage interior. A second passage wall is formed on the bobbin body adjacent the passage floor. The second passage wall is positioned opposite the first passage wall and faces substantially toward the core passage interior. A first step protrudes upwardly from the passage floor a first step height. A second step is disposed on the bobbin body between the passage floor and the second passage wall, the second step protruding upwardly from the passage floor a second step height. A core is positioned in the core passage. A conductive winding is disposed around the winding surface of the bobbin body. A portion of the core rests against the first and second steps.
An object of the present invention is to provide an improved bobbin apparatus for defining gap between a core and an interior surface, such as a core passage floor and/or core passage roof in the bobbin body.
Another object of the present invention is to provide an improved bobbin apparatus and corresponding magnetic component for defining a first gap below a core leg between the core and the bobbin body and also defining a second gap above the core leg between the core and the bobbin body.
Yet another object of the present invention is to provide a method of manufacturing a magnetic component, wherein the method includes positioning a core on a core passage step inside a core passage on a bobbin body, thereby forming a gap between the core and at least one interior wall in the core passage, and filling a heat transfer material at least partially into the gap between the core and the bobbin body.
Numerous other objects, advantages and features of the present invention will be readily apparent to those of skill in the art upon a review of the following drawings and description of a preferred embodiment.
Referring now to the drawings,
Bobbin body 10 includes a core passage 14 defined axially through the bobbin body 10. Core passage 14 includes a hollow passage shaped for receiving one or more core structures such as a ferrite core. Core passage 14 can have a polygonal or a curvilinear cross-sectional profile in various embodiments. For example, in some embodiments, core passage 14 can have a square, rectangular, trapezoidal, circular, oval or other suitable shape corresponding to a portion of an associated core. In some embodiments, core passage 14 may have both polygonal and curvilinear shapes. Core passage 14 in some embodiments has a cross-sectional profile shaped to correspond to a middle core leg on a corresponding ferrite core such as an E-core or a modified E-core.
Referring further to
A first passage wall 18, or first passage surface, extends upwardly from passage floor 16 and is positioned adjacent passage floor 16. A passage wall and passage floor, or any two passage surfaces, may be described as being adjacent one another when the two items of the same type (i.e. walls, major surfaces, etc.) are close to or nearby one another. A passage wall 18, 28, etc. and passage floor 16 may be described as being adjacent one another even when a core passage step 22, 32, etc. is located at the intersection of the wall 18, 28, etc. and floor 16. First passage wall 18 is generally positioned to be substantially facing toward core passage 14. As such, first passage wall 18 may be described as an interior wall, or an interior surface, on bobbin body 10 because first passage wall 18 is located on the interior of core passage 14 substantially facing inwardly toward the interior of core passage 14. In some embodiments, first passage wall 18 is generally oriented perpendicularly to passage floor 16. In other embodiments, first passage wall 18 may also be oriented at a non-perpendicular angle, or may have a curved orientation, relative to passage floor 16.
A second passage wall 28, or second passage surface, is also positioned adjacent passage floor 16 in some embodiments. Second passage wall 28 extends upwardly from passage floor 16 and is generally positioned opposite first passage wall 18 substantially facing toward core passage 14. Second passage wall 28 may be described as an interior wall, or interior surface, on bobbin body 10 because second passage wall 28 is located on the interior of core passage 14 substantially facing inwardly toward the interior of core passage 14. In some embodiments, second passage wall 28 is generally oriented perpendicularly to passage floor 16. In other embodiments, second passage wall 28 may be also oriented at a non-perpendicular angle or a curved orientation relative to passage floor 16.
Referring further to
First step 22 provides a ledge protruding inwardly from first passage wall 18 generally toward core passage 14 in some embodiments. First step 22 may also be described as protruding upwardly from passage floor 16 generally toward core passage 14. First step 22 has a first step height 24 and a first step width 56, as seen in
Referring further to
Second step 32 provides a ledge protruding inwardly from second passage wall 28 generally toward core passage 14. Second step 32 may also be described as protruding upwardly from passage floor 16 generally toward core passage 14. Second step 32 has a second step height 34 and a second step width 58, as seen in
First and second steps 22, 32 together provide a spaced platform for positioning a core, or a portion of a core such as a core leg, above passage floor 16, as seen in
Referring further to
A magnetic component 100, as seen in
As seen in
First gap 104 provides a space for air flow in some embodiments of magnetic component 100 and may allow enhanced cooling of component 100. In additional embodiments, thermal transfer potting material may be disposed in first gap 104 between the core and core passage floor 116. The thermal transfer potting material helps to remove heat from the core and the inner windings on the bobbin body, thus reducing the temperature rise of the magnetic component 100.
In additional applications, the first gap 104 provides a space between the inner windings of the coil and the core and may keep the fringing flux created by a space or void between core halves inside the core passage from reaching the inner winding of the coil. For example, in some embodiments, the middle core legs 110 on adjacent, opposing cores 102a, 102b, may include an air void or space defined therebetween when both middle core legs 110 are located inside core passage 14. The air void or space between opposing core legs inside core passage 14 can be due to the length of one or both core legs. A fringing flux may be associated with the air space or void between the opposing core legs inside core passage 14. The negative effects of the fringing flux, including unwanted losses and increased temperature rise, can thus be mitigated in some embodiments by the presence of first gap 104 between the core halves 102a, 102b and passage floor 16.
Also seen in
In some embodiments, second gap 106 is formed by a space between passage roof 52 and the upper surface of first and second core halves 102a, 102b. Second gap 106 may be defined by third and fourth steps 62, 72 in bobbin body 10.
In some embodiments, a third step 62 is disposed between passage roof 52 and first passage wall 18. Third step 62 may also be described as a third shoulder formed integrally in bobbin body. For example, in some embodiments, bobbin body 10 is integrally molded from a suitable material such as a plastic, and third step 62 is formed as part of bobbin body 10 in a unitary, one-piece construction. In various other embodiments within the scope of the present invention, third step 62 may include a separate component that is installed into core passage 14 between first passage wall 18 and passage roof 52 following fabrication of bobbin body 10.
Third step 62 provides a ledge protruding inwardly from first passage wall 18 generally toward core passage 14 in some embodiments. Third step 62 may also be described as protruding downwardly from passage roof 52 generally toward core passage 14. Third step 62 has a third step height and a third step width 46, as seen in
Referring further to
Fourth step 72 provides a ledge protruding inwardly from second passage wall 28 generally toward core passage 14 in some embodiments. Fourth step 72 may also be described as protruding downwardly from passage roof 52 generally toward core passage 14. Fourth step 72 has a fourth step height and a fourth step width 48, as seen in
When core halves 102a, 102b are disposed on bobbin body 10 such that middle core legs 110 extend into core passage 14, the upper edge of each middle core leg 110 may engage third and fourth steps 62, 72 from below, thereby providing a second gap 106 between the core halves and the passage roof 52. Second gap 106 has a second gap height substantially the same as first gap height associated with first gap 104 in some embodiments. In various other embodiments, first and second gap heights may be different.
Second gap 106 may provide a similar function as first gap 104 in some applications. Second gap 106 provides a space for air flow in some embodiments and may allow enhanced cooling of component 100. In additional embodiments, thermal transfer potting material may be disposed in second gap 106 between the core and core passage roof 52.
In additional applications, second gap 106 provides space between the inner windings of the coil and the core and may keep the fringing flux created by the air space, or void, between opposing core legs inside core passage 14 from reaching the inner winding of the coil. The negative effects of the fringing flux, including unwanted losses and increased temperature rise, can thus be mitigated in some embodiments by the presence of second gap 106 between the core and passage roof 52.
Referring further to
Also seen in
Referring further to
Referring now to
In various other embodiments, the present invention also provides a method of assembling a magnetic component. The method includes the steps of: (a) providing a bobbin body having an axial core passage, a passage floor substantially facing toward the core passage, and at least one passage wall extending upwardly from the passage floor adjacent the passage floor, the bobbin body including at least one core passage step extending upwardly from the passage floor; (b) positioning a core in the core passage such that a portion of the core rests on the step, thereby forming a first gap between the passage floor and the portion of the core; and (c) introducing a potting material into the first gap.
In some embodiments, the core includes a first core half and a second core half, each core half including a middle core leg disposed in the core passage, an air space defined inside the core passage between the opposing middle core legs on the first and second core halves.
In additional embodiments, the method includes the bobbin body including a passage roof opposite the passage floor; forming a second gap between the core and the passage roof; and introducing a potting material into the second gap.
Thus, although there have been described particular embodiments of the present invention of new and useful CORE PASSAGE STEP APPARATUS AND METHODS, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3354417 | Davis | Nov 1967 | A |
3525966 | Wierzbinski | Aug 1970 | A |
5138545 | Godawski | Aug 1992 | A |
5534839 | Mackin et al. | Jul 1996 | A |
5977855 | Matsumura | Nov 1999 | A |
6154113 | Murai | Nov 2000 | A |
6771157 | Nishikawa et al. | Aug 2004 | B2 |
6853284 | Nagai et al. | Feb 2005 | B2 |
6958673 | Suzuki | Oct 2005 | B2 |
8022803 | Park et al. | Sep 2011 | B2 |
8299886 | Won et al. | Oct 2012 | B2 |
20020175798 | Sigl | Nov 2002 | A1 |
20060125590 | Pilniak | Jun 2006 | A1 |
20110001598 | Moon et al. | Jan 2011 | A1 |
20120188044 | Song | Jul 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
61636808 | Apr 2012 | US |