Core plate stack assembly for permanent magnet rotor or rotating machines

Information

  • Patent Grant
  • 8310122
  • Patent Number
    8,310,122
  • Date Filed
    Wednesday, September 27, 2006
    18 years ago
  • Date Issued
    Tuesday, November 13, 2012
    12 years ago
Abstract
A rotating machine has a stator and a permanent magnet rotor that is more easily made, lower cost, and lighter by virtue of a plurality of permanent magnet assemblies mounted on a rotor body. Each magnet assembly includes two facing core plate stacks supporting a permanent magnet between them. Each core plate stack is made from a plurality of core plates of substantially identical size and shape and with on or more holes in substantially the same location to form respective bores in the stack. A tie rod is formed in each bore and retains the plates in a stack via bevels in the holes of the end plates. Preferably, the tie rods also apply compressive force as a result of placing the stacked plates in an injection mold, injecting plastic into the mold to fill each bore with plastic, and allowing the plastic to cure. As the plastic cures, it shrinks so that the tie rods pull the end plates together. To enhance the pressure, the stacked plates can be compressed before and during the injection process.
Description
PRIORITY CLAIM

This application is a national stage application of PCT/IB2006/002679, filed Sep. 27, 2006, which claims the benefit of priority to Italian Application No. BZ2005A000063, filed Nov. 29, 2005, the entire contents of which are incorporated herein.


TECHNICAL FIELD

Embodiments disclosed herein relate to permanent magnet assemblies for rotating machines, such as wind turbines, rope driven and carried transport systems, electric generators and motors, particularly for electric generator and motor rotors. More particularly, embodiments relate to magnet holders in rotating machine rotors, such as rotors in wind turbines, wind mills, electric generators, electric motors, rope or cable based transport systems, and the like.


BACKGROUND

In power generating and working rotating machinery, such as wind machines and rope or cable driven and carried transport systems, relative motion between magnetic field generators and coils produces electricity, one of these groups being mounted on a rotor and the other group being mounted on a stator of the power generating machine. The magnetic field generators are typically windings, which are electromagnets supplied with a small portion of the output of the power generating machine. However, permanent magnets can instead be used to provide a magnetic field that induces electrical current in conductors when relative motion occurs between the magnets and the conductors. But permanent magnets are relatively heavy, and when used in large scale machinery, the apparatus used to hold the magnets in place can add substantially more undesirable weight, are difficult to install, are limited in the sizes of magnets they can accommodate, or are overly costly. For example, in some applications, the magnets are glued to a rotor body, the glue being applied under pressure. Additional applications use stampings over the ends of the magnets to hold them in place. Still other applications employ clamps, each clamp having an end attached to the underside of the rotor body and another end extending over the body of the magnet.


In known magnet assemblies, core plate stacks are used to support windings or magnets and shape the magnetic fields thereof. Such core plate stacks include a plurality of sheets of metal, such as metal stampings with desired profiles. The sheets are aligned and have through holes that form a bore through which preformed tie rods or bolts are inserted that hold the plate stacks together. In the known arrangements, the tie rods are attached to the end plates of their respective stacks in various ways.


An example of such known core plate stacks is disclosed in PCT application WO/97/30504, which also discloses a core plate stack production procedure. To form a core plate stack, a plurality of substantially identical sheets or plates are placed one atop another with end plates on either end of the stack. To hold the stack together, preformed tie bolts are inserted through bores formed by aligned through holes of the plates, but the tie rods are not secured to the end plates per se. Rather, the assembly of plates and tie rods is placed within a winding body that holds the stack and rods in place while the winding is installed and until the final assembly steps are performed. The final assembly steps include placing the winding, complete with core plate stack, tie rods, and winding body, into a mold and flooding the mold with a resin, allowing the resin to cure, and removing the resin-covered and -impregnated winding assembly from the mold. It should be noted that the preformed tie rods are disclosed as being steel or aluminum.


Such known core plate stacks and windings are relatively heavy due in part to the metal preformed tie rods and the extra end plates that are typically substantially thicker than the bulk of the plates in the stack. Additionally, because of the resin in which the winding and core plate stacks are embedded, it is nearly impossible to repair should anything go wrong or to swap out a part should an operating condition change. Additionally, such known core plate assemblies are not easily adapted to use with permanent magnets


SUMMARY

Embodiments disclosed herein overcome the difficulties of known magnet assemblies, eliminating adhesive, end over-stamping, and resin impregnation. The core plate assembly of different embodiments disclosed herein is easier to manufacture, lighter than known assemblies, and is particularly suited to use with permanent magnets.


In one embodiment, a plurality of core sheets or plates in the form of metal stampings with identical profiles are created and placed in a stack. When used to support a magnet, two assemblies are used with one stack facing the other and flipped relative to the other stack. Each core plate has two through holes that are aligned throughout a given stack to create a bore. Two end plates with beveled through holes are placed on the stack with the larger diameters of the holes on the outer surface of the end plates. Molten plastic is poured or injected into the bores to form in situ or in place a plastic tie rod that, because of the bevels, draws the end plates toward each other as it cools, thus compressing the entire stack, permanently holding the stack together.


It should be noted that the core stack assembly procedure of embodiments disclosed herein could be applied to known core stacks, such as that disclosed in the international application discussed above. The core plates would be stacked and the end plates would be modified to have bevels in the tie rod bores. Plastic could then be injected into the tie rod bores and allowed to cure, forming the tie rods in situ and drawing the core plates together. The resulting compressed core stack would be lighter than that of WO/97/30504 and could be used in the winding body in place of the core plate stack disclosed therein.


In embodiments disclosed herein, each plate can include recesses that, when stacked, form a channel that can also receive plastic during an injection step. The completed stack would then include a tooth or section that could be used to hold a permanent magnet when two facing stacks and respective teeth or sections are employed.


Additionally, embodiments disclosed herein can employ variations in the profiles of the sheets or plates to accommodate support structures or other elements that will be used with the core plate stacks. For example, a recess can be formed that interacts with an element to be coupled to the stack, or a projection can be formed that will be received in a recess of a support structure.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be described while referring to the accompanying drawings.



FIG. 1 shows a schematic cross section of a portion of a rotating machine, such as a wind turbine shown in FIG. 1.



FIG. 2 shows a schematic elevation of a core plate stack according to embodiments disclosed herein.



FIG. 3 shows a schematic plan view of a core plate stack end plate or sheet according to embodiments disclosed herein.



FIG. 4 shows a schematic plan view of a core plate stack internal plate according to embodiments disclosed herein.



FIG. 5 shows a schematic plan view of another core plate stack end plate according to embodiments disclosed herein.



FIG. 6 shows a schematic plan view of a core stack plate with tie rods and finger according to embodiments disclosed herein.





DESCRIPTION

Referring to FIG. 1, in one embodiment, a rotating machine 100, such as a wind turbine, includes a rotor 101 supported via a bearing by a stator 103. The rotor 101 includes a rotor body that supports a plurality of magnet assemblies 20, each including a magnet holder 21. A suitable magnet holder 21 is disclosed in copending international patent application PCT/IB/2006/002684, based on Italian Patent Application No. BZ2005A000062, which includes a pincer element with two claws 23, 24 that are connected by a flexible bridge 25. The claws 23, 24 form a seat 26 that can receive a portion of a magnet assembly 20. Each magnet assembly 20 includes two facing core plate stacks, such as the type of core plate stack 1 disclosed herein and as particularly seen in FIG. 2.


Each core plate stack 1 of one embodiment disclosed herein is held together by tie rods 11 and preferably includes a finger 4 that can hold a permanent magnet 22 as disclosed in copending PCT application PCT/IB/2006/002684, based on Italian Patent Application No. BZ2005A000062. The core stack 1 includes a first end plate 5, an internal or intermediate core plate 6, and a second end plate 7, each of which are seen in FIGS. 2, 3, and 4, respectively. The first end plate 5 includes two through holes 8 that are beveled such that the inner, lower diameter is closer to an adjacent intermediate core plate 6. The first end plate's through holes 8 are formed to align with through holes 9 of the intermediate core plates 6 and through holes 10 of the second end plate 7. The through holes 9 of the intermediate core plates 6 preferably do not have bevels, while the through holes 10 of the second end plate 7 have bevels that, like the first end plate, have the smaller diameter closer to the respective adjacent intermediate core plate 6.


In one embodiment, with a plurality of the intermediate core plates 6 stacked between the first and second end plates 5, 7, their through holes 8, 9, 10 align to form bores into which plastic can be poured or injected to form in place or in situ a plastic bar or tie rod 11. For example, the core plate stack can be placed in an injection mold and plastic can be injected into the molded. The plastic fills in the bevels of the end plates 5, 7, and solidifies as it cools to form the bar or tie rod 11. Because of the plastic in the bevels, and because the plastic shrinks as it cools, the in situ formed tie rod 11 pulls the end plates S, 7 toward each other, compressing the entire stack of plates 5, 6, 7 and securing them tightly together. To enhance this effect, the stack can be compressed before injection of the plastic into the bores.


As seen in the FIGS., in different embodiments, the profile of the plates 5, 6, 7 can include features 12, 13, 14, 15, such as recesses 12, 13, 14 and projections 15, for engagement with other components. For example, the plates 5, 6, 7 can include recesses 12, 13, 14 that, when the plates are stacked, form a channel for holding a tooth 4 that can be used to hold a permanent magnet 22 of a magnet assembly 20 as discussed above.


The embodiments disclosed herein thus provide a simple, relatively inexpensive permanent magnet rotor for electricity producing wind machines. Forming a magnet assembly 20 by placing two core plate stacks 1 opposite one another with a permanent magnet 22 therebetween, then placing the stacks 1 and magnet 22 in a magnet holder 2, provides easy, relatively low-cost and lightweight rotor construction with permanent magnets. Additionally, while the rotor body 1 of embodiments has been described in the context of an electrical generator, specifically a wind-powered electrical generator, it should be noted that embodiments disclosed herein could be applied as the rotor body of an electric motor. Additionally, if the rotor body were linearized, the embodiments disclosed herein could be employed in a linear electric motor or generator without departing from the spirit of the invention.


It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. It will also be appreciated that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims
  • 1. A rotating machine comprising: a stator; anda rotor having: a rotor body, anda plurality of magnet holders mounted on the rotor body, the magnet holders configured to receive a plurality of magnet assemblies, each magnet assembly including two core plate stacks configured to support a permanent magnet, each core plate stack including: two end plates of substantially identical size and shape, each end plate defining at least one beveled through hole, a smaller diameter of each beveled through hole defined by one of said end plates being closer to the other end plate when the end plates are aligned;a plurality of intermediate core plates of substantially identical size and shape to each other and to the two end plates, each intermediate core plate defining a through hole corresponding to and aligned with a respective one of the at least one beveled through holes to form a plurality of respective bores extending between the end plates and through all of the intermediate plates; anda separate in situ plastic tie rod extending through each formed bore, each in situ plastic tie rod being distinct from the two end plates, each in situ plastic tie rod engaging the bevels of the respective beveled through holes of the two end plates to retain the end plates and the intermediate core plates in a stacked relationship to form said core plate stack.
  • 2. The rotating machine of claim 1, wherein each plastic tie rod applies compressive force via the bevels to compress the core plate stack together.
  • 3. The rotating machine of claim 1, wherein the two end plates and the intermediate core plates each include a plurality of aligned features configured to interact with a plurality of other components of the rotor.
  • 4. The rotating machine of claim 3, wherein the aligned features comprise at least one recess that forms a channel in the assembled core plate stack.
  • 5. The rotating machine of claim 4, wherein the channel is configured to receive a holding tooth that engages a permanent magnet in one of the magnet assemblies.
  • 6. The rotating machine of claim 3, wherein the features comprise at least one projection configured to engage a corresponding recess of one of the magnet holders of the rotor.
  • 7. A method of using each of a plurality of magnet holders on a rotor body of a wind turbine including a stator, a rotor with the rotor body, and a plurality of magnet assemblies in the magnet holders, each magnet holder having: two opposed claws connected by a bridge; a first seat formed on one side of the bridge by the claws; a second seat formed on another side of the bridge by a plurality of terminal expansions of the claws; and a tightening section configured to apply expansive force to the terminal expansions when the tightening section is drawn away from the bridge, the expansive force causing the claws to pivot about the bridge and apply compressive force at opposite ends of the claws from their terminal expansion ends; said method of using each magnet holder comprising: stacking a plurality of intermediate plates with a plurality of end plates on either end of the stack, wherein each plate defines a beveled through hole, the plurality of beveled through holes defined by each of the plates are aligned to form a bore extending between the end plates and through the intermediate plates, and the plurality of end plates are each oriented with a smaller diameter of their beveled through holes closer to the plurality of intermediate stacks;injecting a plastic into the bore formed by the aligned beveled through holes; andallowing the plastic to cure to form at least one tie rod in situ which applies compressive force via the bevels to compress and hold the plates together, the in situ tie rod being distinct from the end plates.
  • 8. The method of claim 7, further comprising trimming the plastic to be flush with a plurality of outer surfaces of the end plates.
  • 9. The method of claim 7, further comprising placing the stack in an injection mold and injecting the plastic into the mold, thereby injecting the plastic into each bore.
  • 10. The method of claim 7, further comprising compressing the stack and retaining the stack in a compressed state while injecting the plastic and while the plastic cures.
  • 11. A wind machine permanent magnet rotor core plate stack comprising: a plurality of intermediate core plates of substantially identical size and shape stacked in alignment, the core plates each defining a plurality of mutually aligned through holes forming at least one bore through the stack,a first end plate on one end of the stack having substantially identical size and shape to the intermediate core plates and defining a beveled through hole with a smaller diameter equal to a diameter of a corresponding bore of the stack, the smaller diameter being adjacent a corresponding end of the stack,a second end plate on another end of the stack having substantially identical size and shape to the intermediate core plates and defining a beveled through hole with a smaller diameter equal to a diameter of a corresponding bore of the stack, the smaller diameter being adjacent a corresponding end of the stack, andan in situ formed tie rod formed in each bore to hold the plates together, the in situ formed tie rod being distinct from the two end plates and a first end of the in situ formed tie rod being flush with an outer surface of the first end plate and a second end of the in situ formed tie rod being flush with an outer surface of the second end plate.
  • 12. The core plate stack of claim 11, wherein the tie rod applies compressive force on the end plates via the bevels of the end plate through holes.
  • 13. The core plate stack of claim 11, wherein the tie rod is formed from a hardened fluid.
  • 14. The core plate stack of claim 13, wherein the tie rod is made from a plastic.
  • 15. The core plate stack of claim 14, wherein the tie rod is formed by placing the stack of intermediate core plates and end plates in an injection mold and injecting the plastic into the mold to fill each bore with the plastic, allowing the plastic to cure, and removing the stack from the mold.
  • 16. A method of forming a core plate stack comprising: stacking a plurality of intermediate core plates of substantially identical size and shape with their edges aligned, each of said plurality of intermediate core plates defining at least one hole, wherein the at least one hole of each intermediate core plate is aligned to form a respective bore;placing two end plates of substantially identical size and shape with the intermediate core plates, each end plate defining a beveled hole corresponding to each of the at least one hole of the intermediate core plates, wherein each end plate is on a respective end of the stacked intermediate core plates;forming a tie rod in situ in each bore to hold the stacked plates together by applying compressive force via the bevels of the end plates to compress the stacked plates together, wherein the tie rod is distinct from the two end plates; andtrimming the tie rod such that a first end of the tie rod is flush with an outer surface of a first of the two end plates and a second end of the tie rod is flush with an outer surface of a second of the two end plates.
  • 17. The method of claim 16, wherein forming a tie rod in each bore comprises placing the stacked plates in an injection mold, injecting a plastic into the mold, and allowing the plastic to cure.
  • 18. The method of claim 16, further comprising applying pressure to the stacked plates while forming the tie rods.
  • 19. A method of forming a wind turbine core plate stack, said method comprising: aligning at least two end plates and at least one intermediate plate between the end plates, the end plates and intermediate plate each defining at least one mutually aligned beveled hole forming at least one respective bore, andfor each formed bore, injecting a plastic into the formed bore to form a tie rod in situ to apply compressive force via the bevels to compress and hold the plates together, wherein the formed tie rod is distinct from the end plates and a first end of the tie rod is flush with an outer surface of a first of the end plates and a second end of the tie rod is flush with an outer surface of a second of the end plates.
  • 20. The method of claim 19, further comprising stacking the plates before forming the tie rod.
  • 21. The rotating machine of claim 1, wherein a first end of the in situ plastic tie rod is flush with an outer surface of a first of the two end plates and a second end of the in situ plastic tie rod is flush with an outer surface of a second of the two end plates.
Priority Claims (1)
Number Date Country Kind
BZ2005A0063 Nov 2005 IT national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2006/002679 9/27/2006 WO 00 10/13/2008
Publishing Document Publishing Date Country Kind
WO2007/063369 6/7/2007 WO A
US Referenced Citations (297)
Number Name Date Kind
1894357 Manikowske Jan 1933 A
1948854 Heath Feb 1934 A
1979813 Reis Nov 1934 A
2006172 Klappauf Jun 1935 A
2040218 Soderberg May 1936 A
2177801 Arnold Oct 1939 A
2469734 Ledwith May 1949 A
2496897 Strickland Feb 1950 A
2655611 Sherman Oct 1953 A
2739253 Plumb Mar 1956 A
2806160 Brainard Sep 1957 A
2842214 Prewitt Jul 1958 A
2903610 Bessiere Sep 1959 A
3004782 Meermans Oct 1961 A
3072813 Reijnst et al. Jan 1963 A
3083311 Krasnow Mar 1963 A
3131942 Ertaud May 1964 A
3168686 King et al. Feb 1965 A
3221195 Hoffmann Nov 1965 A
3363910 Toronchuk Jan 1968 A
3364523 Schippers Jan 1968 A
3392910 Tanzberger Jul 1968 A
3468548 Webb Sep 1969 A
3700247 Butler et al. Oct 1972 A
3724861 Lesiecki Apr 1973 A
3746349 Smale et al. Jul 1973 A
3748089 Boyer et al. Jul 1973 A
3789252 Abegg Jan 1974 A
3841643 McLean Oct 1974 A
3860843 Kawasaki et al. Jan 1975 A
3942026 Carter Mar 1976 A
3963247 Nommensen Jun 1976 A
3968969 Mayer et al. Jul 1976 A
4022479 Orlowski May 1977 A
4061926 Peed Dec 1977 A
4087698 Myers May 1978 A
4273343 Visser Jun 1981 A
4289970 Deibert Sep 1981 A
4291235 Bergey, Jr. Sep 1981 A
4292532 Leroux Sep 1981 A
4336649 Glaser Jun 1982 A
4339874 Mc'Carty et al. Jul 1982 A
4348604 Thode Sep 1982 A
4350897 Benoit Sep 1982 A
4354126 Yates Oct 1982 A
4368895 Okamoto et al. Jan 1983 A
4398773 Boden et al. Aug 1983 A
4452046 Valentin Jun 1984 A
4482831 Notaras et al. Nov 1984 A
4490093 Chertok et al. Dec 1984 A
4517483 Hucker et al. May 1985 A
4517484 Dacier May 1985 A
4521026 Eide Jun 1985 A
4585950 Lund Apr 1986 A
4613779 Meyer Sep 1986 A
4638200 Le Corre et al. Jan 1987 A
4648801 Wilson Mar 1987 A
4694654 Kawamura Sep 1987 A
4700096 Epars Oct 1987 A
4714852 Kawada et al. Dec 1987 A
4720640 Anderson Jan 1988 A
4722661 Mizuno Feb 1988 A
4724348 Stokes Feb 1988 A
4761590 Kaszman Aug 1988 A
4792712 Stokes Dec 1988 A
4801244 Stahl Jan 1989 A
4837468 Froment Jun 1989 A
4866321 Blanchard et al. Sep 1989 A
4900965 Fisher Feb 1990 A
4906060 Claude Mar 1990 A
4954736 Kawamoto et al. Sep 1990 A
4973868 Wust Nov 1990 A
4976587 Johnston et al. Dec 1990 A
5004944 Fisher Apr 1991 A
5063318 Anderson Nov 1991 A
5090711 Becker Feb 1992 A
5091668 Cuenot et al. Feb 1992 A
5177388 Hotta et al. Jan 1993 A
5191255 Kloosterhouse et al. Mar 1993 A
5275139 Rosenquist Jan 1994 A
5280209 Leupold et al. Jan 1994 A
5281094 McCarty et al. Jan 1994 A
5298827 Sugiyama Mar 1994 A
5302876 Iwamatsu et al. Apr 1994 A
5311092 Fisher May 1994 A
5315159 Gribnau May 1994 A
5331238 Johnsen Jul 1994 A
5410997 Rosenquist May 1995 A
5419683 Peace May 1995 A
5456579 Olson Oct 1995 A
5483116 Kusase et al. Jan 1996 A
5506453 McCombs Apr 1996 A
5579800 Walker Dec 1996 A
5609184 Apel et al. Mar 1997 A
5663600 Baek et al. Sep 1997 A
5670838 Everton Sep 1997 A
5696419 Rakestraw Dec 1997 A
5704567 Maglieri Jan 1998 A
5746576 Bayly May 1998 A
5777952 Nishimura et al. Jul 1998 A
5783894 Whither Jul 1998 A
5793144 Kusase et al. Aug 1998 A
5798632 Muljadi Aug 1998 A
5801470 Johnson et al. Sep 1998 A
5806169 Trago et al. Sep 1998 A
5811908 Iwata et al. Sep 1998 A
5814914 Caamaño Sep 1998 A
5844333 Sheerin Dec 1998 A
5844341 Spooner Dec 1998 A
5857762 Schwaller Jan 1999 A
5886441 Uchida et al. Mar 1999 A
5889346 Uchida et al. Mar 1999 A
5894183 Borchert Apr 1999 A
5925964 Kusase et al. Jul 1999 A
5952755 Lubas Sep 1999 A
5961124 Muller Oct 1999 A
5973435 Irie et al. Oct 1999 A
5986374 Kawakami Nov 1999 A
5986378 Caamano Nov 1999 A
6013968 Lechner et al. Jan 2000 A
6037692 Miekka et al. Mar 2000 A
6047460 Nagate et al. Apr 2000 A
6064123 Gislason May 2000 A
6067227 Katsui et al. May 2000 A
6089536 Watanabe et al. Jul 2000 A
6093984 Shiga et al. Jul 2000 A
6127739 Appa Oct 2000 A
6172429 Russell Jan 2001 B1
6177746 Tupper et al. Jan 2001 B1
6193211 Watanabe et al. Feb 2001 B1
6194799 Miekka et al. Feb 2001 B1
6215199 Lysenko et al. Apr 2001 B1
6232673 Schoo et al. May 2001 B1
6278197 Appa Aug 2001 B1
6285090 Brutsaert et al. Sep 2001 B1
6326711 Yamaguchi et al. Dec 2001 B1
6365994 Watanabe et al. Apr 2002 B1
6373160 Schrödl Apr 2002 B1
6376956 Hosoya Apr 2002 B1
6378839 Watanabe et al. Apr 2002 B2
6384504 Elrhart et al. May 2002 B1
6417578 Chapman Jul 2002 B1
6428011 Oskouei Aug 2002 B1
6452287 Looker Sep 2002 B1
6452301 Van Dine et al. Sep 2002 B1
6455976 Nakano Sep 2002 B1
6472784 Miekka et al. Oct 2002 B2
6474653 Hintenlang et al. Nov 2002 B1
6476513 Gueorguiev Nov 2002 B1
6483199 Umemoto et al. Nov 2002 B2
6492743 Appa Dec 2002 B1
6492754 Weiglhofer et al. Dec 2002 B1
6499532 Williams Dec 2002 B1
6504260 Debleser Jan 2003 B1
6515390 Lopatinsky et al. Feb 2003 B1
6520737 Fischer et al. Feb 2003 B1
6548932 Weiglhofer et al. Apr 2003 B1
6590312 Seguchi Jul 2003 B1
6603232 Van Dine et al. Aug 2003 B2
6617747 Petersen Sep 2003 B1
6629358 Setiabudi Oct 2003 B2
6664692 Kristoffersen Dec 2003 B1
6676122 Wobben Jan 2004 B1
6683397 Gauthier et al. Jan 2004 B2
6700260 Hsu Mar 2004 B2
6700288 Smith Mar 2004 B2
6707224 Petersen Mar 2004 B1
6720688 Schiller Apr 2004 B1
6727624 Morita et al. Apr 2004 B2
6746217 Kim et al. Jun 2004 B2
6759758 Torres Martinez Jul 2004 B2
6762525 Maslov et al. Jul 2004 B1
6781276 Stiesdal et al. Aug 2004 B1
6784564 Wobben Aug 2004 B1
6794781 Razzell et al. Sep 2004 B2
6828710 Gabrys Dec 2004 B1
6856042 Kubota Feb 2005 B1
6879075 Calfo et al. Apr 2005 B2
6888262 Blakemore May 2005 B2
6891299 Coupart et al. May 2005 B2
6903466 Mercier et al. Jun 2005 B1
6903475 Ortt Jun 2005 B2
6906444 Hattori et al. Jun 2005 B2
6911741 Pettersen et al. Jun 2005 B2
6921243 Canini et al. Jul 2005 B2
6931834 Jones Aug 2005 B2
6933645 Watson Aug 2005 B1
6933646 Kinoshita Aug 2005 B2
6942454 Ohlmann Sep 2005 B2
6945747 Miller Sep 2005 B1
6949860 Hama et al. Sep 2005 B2
6951443 Blakemore Oct 2005 B1
6972498 Jamieson et al. Dec 2005 B2
6983529 Ortt Jan 2006 B2
6984908 Rinholm et al. Jan 2006 B2
6987342 Hans Jan 2006 B2
6998729 Wobben Feb 2006 B1
7004724 Pierce et al. Feb 2006 B2
7008172 Selsam Mar 2006 B2
7008348 Labath Mar 2006 B2
7016006 Song Mar 2006 B2
7021905 Torrey et al. Apr 2006 B2
7028386 Kato et al. Apr 2006 B2
7033139 Wobben Apr 2006 B2
7038343 Agnes May 2006 B2
7042109 Gabrys May 2006 B2
7057305 Krügen-Gotzmann et al. Jun 2006 B2
7075192 Bywaters et al. Jul 2006 B2
7081696 Ritchey Jul 2006 B2
7088024 Agnes Aug 2006 B2
7091642 Agnes Aug 2006 B2
7095128 Canini et al. Aug 2006 B2
7098552 McCoin Aug 2006 B2
7109600 Bywaters et al. Sep 2006 B1
7111668 Rürup Sep 2006 B2
7116006 McCoin Oct 2006 B2
7119469 Ortt et al. Oct 2006 B2
7154191 Jansen et al. Dec 2006 B2
7161260 Krüger-Gotzmann et al. Jan 2007 B2
7166942 Yokota Jan 2007 B2
7168248 Sakamoto et al. Jan 2007 B2
7179056 Siegfriedsen Feb 2007 B2
7180204 Grant et al. Feb 2007 B2
7183665 Bywaters et al. Feb 2007 B2
7196446 Hans Mar 2007 B2
7205678 Casazza et al. Apr 2007 B2
7217091 LeMieux May 2007 B2
7259472 Miyake et al. Aug 2007 B2
7281501 Leufen et al. Oct 2007 B2
7285890 Jones et al. Oct 2007 B2
7323792 Sohn Jan 2008 B2
7345376 Costin Mar 2008 B2
7358637 Tapper Apr 2008 B2
7377163 Miyagawa May 2008 B2
7385305 Casazza Jun 2008 B2
7385306 Casazza Jun 2008 B2
7431567 Bevington et al. Oct 2008 B1
7443066 Salamah et al. Oct 2008 B2
7458261 Miyagawa Dec 2008 B2
7482720 Gordon et al. Jan 2009 B2
7548008 Jansen et al. Jun 2009 B2
7687932 Casazza et al. Mar 2010 B2
20020047418 Seguchi et al. Apr 2002 A1
20020047425 Coupart et al. Apr 2002 A1
20020056822 Watanabe et al. May 2002 A1
20020063485 Lee et al. May 2002 A1
20020089251 Tajima et al. Jul 2002 A1
20020148453 Watanabe et al. Oct 2002 A1
20030011266 Morita et al. Jan 2003 A1
20030102677 Becker et al. Jun 2003 A1
20030137149 Northrup et al. Jul 2003 A1
20030230899 Martinez Dec 2003 A1
20040086373 Page, Jr. May 2004 A1
20040094965 Kirkegaard et al. May 2004 A1
20040119292 Datta et al. Jun 2004 A1
20040150283 Calfo et al. Aug 2004 A1
20040151577 Pierce et al. Aug 2004 A1
20040189136 Kolomeitsev et al. Sep 2004 A1
20050000083 Edwards et al. Jan 2005 A1
20050002783 Hiel et al. Jan 2005 A1
20050002787 Wobben Jan 2005 A1
20050082839 McCoin Apr 2005 A1
20050230979 Bywaters et al. Oct 2005 A1
20050280264 Nagy Dec 2005 A1
20060000269 LeMieux et al. Jan 2006 A1
20060001269 Jansen et al. Jan 2006 A1
20060006658 McCoin Jan 2006 A1
20060012182 McCoin Jan 2006 A1
20060028025 Kikuchi et al. Feb 2006 A1
20060066110 Jansen et al. Mar 2006 A1
20060071575 Jansen et al. Apr 2006 A1
20060091735 Song et al. May 2006 A1
20060125243 Miller Jun 2006 A1
20060131985 Qu et al. Jun 2006 A1
20060152012 Wiegel et al. Jul 2006 A1
20060152015 Bywaters et al. Jul 2006 A1
20060152016 Bywaters et al. Jul 2006 A1
20070020109 Takahashi et al. Jan 2007 A1
20070116567 Luetze May 2007 A1
20070187954 Struve et al. Aug 2007 A1
20070187956 Wobben Aug 2007 A1
20070222226 Casazza et al. Sep 2007 A1
20070222227 Casazza et al. Sep 2007 A1
20080107526 Wobben May 2008 A1
20080118342 Seidel et al. May 2008 A1
20080197636 Tilscher et al. Aug 2008 A1
20080197638 Wobben Aug 2008 A1
20080246224 Pabst et al. Oct 2008 A1
20080290664 Kruger Nov 2008 A1
20080303281 Krueger Dec 2008 A1
20080309189 Pabst et al. Dec 2008 A1
20080315594 Casazza et al. Dec 2008 A1
20090302702 Pabst et al. Dec 2009 A1
20100019502 Pabst et al. Jan 2010 A1
20100026010 Pabst Feb 2010 A1
20100117362 Vihriala et al. May 2010 A1
20100123318 Casazza et al. May 2010 A1
Foreign Referenced Citations (131)
Number Date Country
2 404 939 Apr 2004 CA
2518742 Sep 2004 CA
1554867 Dec 2004 CN
1130913 Jun 1962 DE
2164135 Jul 1973 DE
2322458 Nov 1974 DE
2506160 Aug 1976 DE
2922885 Dec 1980 DE
3638129 May 1988 DE
3718954 Dec 1988 DE
3844505 Jul 1990 DE
3903399 Aug 1990 DE
4304577 Aug 1994 DE
4402184 Aug 1995 DE
4415570 Nov 1995 DE
4444757 Jun 1996 DE
29706980 Jul 1997 DE
19636591 Mar 1998 DE
19644355 Apr 1998 DE
19652673 Jun 1998 DE
19711869 Sep 1998 DE
19748716 Nov 1998 DE
29819391 Feb 1999 DE
19801803 Apr 1999 DE
19932394 Jan 2001 DE
19947915 Apr 2001 DE
19951594 May 2001 DE
10000370 Jul 2001 DE
20102029 Aug 2001 DE
1 021 9190 Nov 2003 DE
10246690 Apr 2004 DE
102004018524 Nov 2005 DE
102004028746 Dec 2005 DE
0013157 Jul 1980 EP
0232963 Aug 1987 EP
0313392 Apr 1989 EP
0 495 872 Jul 1992 EP
0 627 805 Dec 1994 EP
1108888 Jun 2001 EP
1167754 Jan 2002 EP
1 289 097 Mar 2003 EP
1291521 Mar 2003 EP
1309067 May 2003 EP
1363019 Nov 2003 EP
1 375 913 Jan 2004 EP
1 394 406 Mar 2004 EP
1394451 Mar 2004 EP
1 589 222 Oct 2005 EP
1 612 415 Jan 2006 EP
1641102 Mar 2006 EP
1677002 Jul 2006 EP
1772624 Apr 2007 EP
1 780 409 May 2007 EP
1829762 Sep 2007 EP
2140301 Feb 2000 ES
806292 Dec 1936 FR
859844 Dec 1940 FR
1348765 Jan 1964 FR
2401091 Mar 1979 FR
2445053 Jul 1980 FR
2519483 Jul 1983 FR
2594272 Aug 1987 FR
2760492 Sep 1998 FR
2796671 Jan 2001 FR
2798168 Mar 2001 FR
2810374 Dec 2001 FR
2882404 Aug 2006 FR
191317268 Jan 1914 GB
859176 Jan 1961 GB
1524477 Sep 1978 GB
1537729 Jan 1979 GB
2041111 Sep 1980 GB
2 050 525 Jan 1981 GB
2075274 Nov 1981 GB
2 131 630 Jun 1984 GB
2144587 Mar 1985 GB
2208243 Mar 1989 GB
2266937 Nov 1993 GB
2 372 783 Sep 2002 GB
57059462 Apr 1982 JP
03 145 945 Jun 1991 JP
05 122 912 May 1993 JP
6002970 Jan 1994 JP
06 269 141 Sep 1994 JP
10-070858 Mar 1998 JP
11236977 Aug 1999 JP
11-299197 Oct 1999 JP
2000-134885 May 2000 JP
2001-057750 Feb 2001 JP
3 453 072 Jul 2003 JP
2004-153913 May 2004 JP
2004-297947 Oct 2004 JP
2005-006375 Jan 2005 JP
2005-020906 Jan 2005 JP
2005-312150 Nov 2005 JP
8902534 May 1991 NL
2 000 466 Sep 2003 RU
2229621 May 2004 RU
WO8402382 Jun 1984 WO
WO9105953 May 1991 WO
9212343 Jul 1992 WO
9730504 Aug 1997 WO
9733357 Sep 1997 WO
WO9840627 Sep 1998 WO
WO9930031 Jun 1999 WO
WO9933165 Jul 1999 WO
WO9937912 Jul 1999 WO
WO9939426 Aug 1999 WO
0001056 Jan 2000 WO
0106623 Jan 2001 WO
WO0106121 Jan 2001 WO
WO0107784 Feb 2001 WO
WO0121956 Mar 2001 WO
WO0125631 Apr 2001 WO
WO0129413 Apr 2001 WO
0135517 May 2001 WO
WO0134973 May 2001 WO
0169754 Sep 2001 WO
0233254 Apr 2002 WO
WO02057624 Jul 2002 WO
WO02083523 Oct 2002 WO
WO03036084 May 2003 WO
03067081 Aug 2003 WO
WO03076801 Sep 2003 WO
2004017497 Feb 2004 WO
WO2005103489 Nov 2005 WO
WO2006013722 Feb 2006 WO
WO2006032515 Mar 2006 WO
2007063370 Jun 2007 WO
WO2007063370 Jun 2007 WO
WO2008078342 Jul 2008 WO
Related Publications (1)
Number Date Country
20090096309 A1 Apr 2009 US