The present invention relates to the field of battery cells, and more particularly to core-shell nanoparticles for use in lithium/sulfur battery cells.
There is considerable interest in the development of lithium/sulfur (Li/S) cells. However, major challenges in the development of Li/S cells have yet to be addressed including a short cycle life due to loss of capacity. The short cycle life of Li/S cells is generally caused by the formation of polysulfides, which are soluble in organic electrolytes. Various approaches have been explored to improve the short cycle life. These include putting the sulfur into a porous carbon structure, reacting the sulfur with a polymer, adsorbing the sulfur onto a substrate such as carbon or silica, etc. However, such approaches have to date failed to appreciably improve the short cycle life of Li/S cells.
Described herein are embodiments of a core-shell nanoparticle that includes a lithium sulfide core with a shell that conducts electrons and lithium ions. Also described herein are a lithium/sulfur (Li/S) cell including the core-shell nanoparticles. When the core-shell nanoparticles are used in a Li/S battery cell, the shell inhibits polysulfides from developing or coming into contact with the electrolyte, and thus increases the lifespan of the cell. For example, traditional Li/S cells typically do not hold an appreciable charge after around a few tens of cycles. In contrast, Li/S cells manufactured using the core-shell nanoparticles described in embodiments of the present invention continue to hold an appreciable charge after hundreds of cycles.
Also described herein are processes to synthesize core-shell nanoparticles and processes to manufacture Li/S cells from the core-shell nanoparticles. To synthesize the core-shell nanoparticles, carbon, polyaniline or transition metal sulfide shells are formed around lithium sulfide (Li2S) nanoparticles. Polyaniline shells may be formed around the Li2S nanoparticles by mixing the Li2S nanoparticles with a polymer in an organic polar solvent, and then evaporating the solvent. The resultant core-shell nanoparticles may then be heated to convert the polyaniline shells into carbon shells. Carbon shells may also be formed by performing a chemical vapor deposition (CVD) process using an oxygen-free organic vapor that does not yield water as a decomposition product. Transition metal sulfide shells may be formed, for example, by reacting the Li2S nanoparticles with titanium tetrachloride to form titanium disulfide shells.
To manufacture an Li/S cell using the core-shell nanoparticles, a slurry or solution that includes core-shell nanoparticles, an organic solvent and a polymer binder is created. The slurry is then used to coat an electrical conductor such as a conductive foil to form a positive electrode. A Li/S cell is then formed using the positive electrode, a negative electrode and an electrolyte that separates the two electrodes. The electrolyte may be a solid electrolyte or may be a liquid electrolyte. If a liquid electrolyte is used, it may be held in the pores of a porous separator.
The core-shell nanoparticle has a thin shell 110, which may have a thickness on the scale of a few nanometers. The shell 110 prevents the Li2S nanoparticle core 105 from coming into contact with any electrolyte. Thus, the shell 110 prevents the formation of polysulfides and the migration of sulfur out of the core-shell nanoparticle. In some embodiments the shell 110 has a thickness of approximately 1-10 nm, with a thickness of about 1-2 nm in a particular embodiment. In one embodiment, the shell 110 makes up about 5-10% of the core-shell nanoparticle by weight.
The shell 110 should be electrically conductive to enable electrons to pass into and out of the Li2S nanoparticle core 105. The shell 110 should also be conductive of lithium to enable lithium atoms to pass into and out of the Li2S nanoparticle core 105. In one embodiment, the shell 110 is a carbon shell (e.g., made up of elemental carbon). In another embodiment, the shell 110 is a polymer shell. One example of a polymer that is both a lithium conductor and an electron conductor that may be used to from the shell 110 is polyaniline. In yet another embodiment, the shell 110 is a transition metal sulfide shell. One example transition metal sulfide that may be used for the shell 110 is titanium disulfide.
When the core-shell nanoparticle is used in a Li/S cell, the Li/S cell may be charged 165, which causes lithium atoms to be extracted from the core-shell nanoparticle and migrated to a negative electrode. While the Li/S cell is charged, the core-shell nanoparticle has a charged state 100B. In the charged state 100B, the core of the core-shell nanoparticle is a sulfur nanoparticle core 155. The sulfur nanoparticle core 155 may occupy a volume that is approximately 43% smaller than a volume occupied by the Li2S nanoparticle core 105. However, in some embodiments the shell 110 is a rigid shell, which does not shrink to conform to the boundaries of the sulfur nanoparticle core 155. Accordingly, the charged state 100B of the core-shell nanoparticle also includes a partial vacuum 160. The shell 110 has sufficient structural strength to approximately maintain an original shape while the core-shell nanoparticle is in the charged state 100B. Thus, the shell 110 accommodates the volume change that occurs during the charge/discharge process.
The Li/S cell may be discharged 170, which causes lithium atoms to migrate back into the core-shell nanoparticle. This causes the core of the core-shell nanoparticle to return to a Li2S nanoparticle core 105. In a transition from the sulfur nanoparticle core 155 to the Li2S nanoparticle core 105, the core grows back to approximately its original size.
The Li/S cell includes a positive electrode 240 and a negative electrode 245 separated by an electrolyte 215. The positive electrode 240 includes a conductor 205 and a polymer-nanoparticle nanocomposite 210. The conductor 205 may be a conductive foil, such as aluminum foil, carbon coated aluminum foil, stainless steel foil, zirconium foil, niobium foil or molybdenum foil. The polymer-nanoparticle nanocomposite 210 may include a polymer matrix of a polymer binder, with core-shell nanoparticles 230 held together by the polymer matrix. The core-shell nanoparticles 230 correspond to core-shell nanoparticle 100 of
The negative electrode 245 may be a lithium metal foil with a copper foil current collector. Alternatively, the negative electrode 245 may be any other material capable of accepting and releasing lithium ions. Examples of materials usable for the negative electrode 245 include carbon, a tin/carbon nanocomposite, silicon nanowires, and so on.
The electrolyte 215 may be a liquid electrolyte, a solid electrolyte or a gel electrolyte. One embodiment of a solid electrolyte is poly(ethylene oxide) (PEO) with lithium salts dispersed in the polymer matrix of the PEO. An example of a gel electrolyte is a mixture of poly(methyl methacrylate) (PMMA), a lithium salt and a small amount of liquid. A liquid electrolyte may include an ionic liquid with lithium salt dissolved therein, or a mixture of an ionic liquid and an organic liquid with a dissolved lithium salt. Examples of liquids that may be used include polyethylene glycol dimethyl ether (PEG DME) or an organic solvent such as dioxolane mixed with dimethyl ether. If a liquid electrolyte is used, the electrolyte may include a porous separator such as porous poly propylene (PP). The PP may be, for example, about 25 microns thick and about 50% porous. The porous separator may absorb the liquid electrolyte. One example electrolyte includes a composition of tetraethylene glycol dimethyl ether (PEGDME) and lithium bis(trifluorosulfonyl)imide (LiTFSI). A useful ionic liquid is methyl-butyl pyridinium trifluorosulfonyl imide (PYR14TFSI). The electrolyte may also include lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and/or lithium nitrate (LiNO3). In one example, the electrolyte has a 1:1 ratio by weight of PYR14TFSI and PEGDME, with 1 mol/kg LiTFSI.
As shown in
At block 310 of process 300, shells are formed around the Li2S nanoparticles to form core-shell nanoparticles. The shells are nano-scale shells having thicknesses on the order of a few nanometers. Thicker shells may be used in some embodiments, which increases the weight of the core-shell nanoparticles. The shells are composed of materials that conduct both electrons and lithium ions, and that will act as a barrier between the Li2S nanoparticle core and an external environment. Thus, the shell may block the Li2S nanoparticle core from coming into contact with the electrolyte and prevent sulfur from the Li2S nanoparticle core to escape in the form of polysulfides. Examples of materials that may be used to form the shells around the Li2S nanoparticles include carbon, transition metal sulfides and polyaniline. Methods for forming shells around Li2S nanoparticles are described below with reference to
At block 315 of process 300, a mixture is created from the core-shell nanoparticles, an organic solvent and a polymer binder. In one embodiment, the core-shell nanoparticles are added to a solution that includes the organic solvent and the polymer binder. In another embodiment, the core-shell nanoparticles are added to the organic solvent and polymer binder to form a slurry. The slurry and solution may be composed of the same constituents, but have different proportions of the organic solvent to the other constituents. The organic solvent may be, for example, toluene. The polymer binder may be PVDF, SBR, PTFE, and so on. In one embodiment, carbon, carbon nanofibers, and/or other conductive agents are added to the solution or slurry to improve the electronic conductivity of the resultant film.
At block 320, an electrical conductor such as a conductive foil (e.g., aluminum foil) is coated with the slurry or solution to form a film on the electrical conductor. The thickness of the film may range from a few microns to tens of microns (e.g., 2-99 microns). In one embodiment, the film has a thickness of 10-50 microns. The electrical conductor and film may be used as a positive electrode for a Li/S cell. Increasing the thickness of the film increases the percentage of active core-shell nanoparticles to other constituents by weight, and may increase Li/S cell capacity. However, diminishing returns may be exhibited beyond certain thicknesses (e.g., beyond several tens of microns). In one embodiment, the film has a thickness of between 5 and 200 microns. In a further embodiment, the film has a thickness of between 10 and 100 microns.
Various coating techniques may be used to apply the solution or slurry to the electrical conductor. Examples of such techniques include a doctor blade process, spin coating, extrusion, spray coating, dip coating, and so on. In addition, large-scale production techniques such as ink jet printing may also be used to deposit the solution or slurry onto the electrical conductor.
At block 325, a Li/S battery cell is formed using the positive electrode, an electrolyte and a negative electrode. The electrolyte is used to separate the positive electrode and the negative electrode, and to provide an ionically-conductive path of the Li ions. The electrolyte may have a solid, gel or liquid state. Regardless of the electrolyte's state, the electrolyte should be a lithium ion conductor. The electrolyte may include a dissolved lithium salt to improve lithium conduction. Where a liquid electrolyte is used, the liquid electrolyte may be soaked into a porous separator such as porous PP. The electrolyte may be approximately 10-50 microns thick, and in one embodiment has a thickness of about 25 microns. One example electrolyte includes a composition of tetraethylene glycol dimethyl ether (TEGDME) and PYR14TFSI, along with a lithium salt such as LiTFSI. The electrolyte may also include lithium nitrate (LiNO3).
At block 330, the Li/S cell is hermetically sealed. This prevents unwanted exposure to the atmosphere, which may cause the Li2S nanoparticles to react with moisture in the air to form lithium oxide and lithium hydroxide. After sealing the Li/S cell undergoes an initial charge up to a specified end-of-charge voltage, which may be in the range of 2.8V to about 4V over an extended time period (e.g., up to about 50 hours). This initial charge causes microstructuring in the positive electrode in accordance with changing operating conditions of the Li/S cell. Subsequently, the Li/S cell may be discharged down to about 1.5 V in about 5 hours. The cell may then be charged and discharged between voltages of about 2.8V at the charged state and 1.5 V at the discharged state. Such charging and discharging may occur over various time periods ranging from a fraction of an hour to tens of hours
S+2LiET3BH→Li2S+ET3B+H2 (1)
At block 510, the CVD furnace (and the Li2S nanoparticles therein) is heated. The temperature to which the furnace is heated may depend on the organic vapor that is used for the CVD process. If acetylene is to be used as a carbon precursor, then the furnace may be heated to about 400° C. If ethylene is used as the carbon precursor, then the furnace may be heated to about 700° C. If methane is used as the carbon precursor, then the furnace may be heated to about 800° C. A flow rate of about 50 SCCM may be used for the organic vapor. A lower temperature may prevent sintering of Li2S nanoparticles. Li2S particle size may affect sintering. For example, use of smaller Li2S particles may increase sintering. Accordingly, optimized coating conditions may be a function of the gas precursor used, temperature, time, and Li2S nanoparticle size.
At block 515, a gas mixture of argon and an oxygen free organic vapor are flowed into the CVD furnace. Examples of organic vapors that may be used include acetylene, methane and ethylene. Note that it is preferable that the organic vapor not decompose into products that include water.
The organic vapor is a carbon source. In the heated state, the oxygen-free organic vapor reacts via pyrolysis with surfaces of the Li2S nanoparticles to form carbon shells around the exposed portions of the Li2S nanoparticles.
At block 520, it is determined whether the Li2S nanoparticles are completely coated by carbon. This may be performed by a visual inspection, because uncoated Li2S nanoparticles have an off-white color and carbon coated Li2S nanoparticles have a black color. Accordingly, if any white is visible, then it can be determined that the Li2S nanoparticles are not completely coated. Experimentation has shown that the Li2S nanoparticles that are remixed 2-3 times during the CVD process will be completely coated. Accordingly, it may be determined whether the Li2S nanoparticles are sufficiently coated based on a number of times that the Li2S nanoparticles have been mixed. For example, if the Li2S nanoparticles have been mixed fewer than 2 times, then it may be determined that the Li2S nanoparticles are not completely coated. If the Li2S nanoparticles are not completely coated, the method proceeds to block 525. Otherwise, the method ends, and the resultant core-shell nanoparticles of carbon coated Li2S nanoparticles are removed from the CVD furnace.
At block 525, the CVD process is interrupted, and the Li2S nanoparticles are mixed to expose new surfaces of the Li2S nanoparticles. Alternatively, the Li2S nanoparticles may be mixed in-situ during the CVD process. The method then returns to block 505, and is repeated until all surfaces of the Li2S nanoparticles are coated. Note that if the Li2S nanoparticles are mixed in-situ, then the method may return to block 520 rather than to block 505. Alternatively, a rotating tube furnace can be used, whereby all of the particles are tumbled during the CVD procedure, so that all of the surface of all of the particles are covered by the carbon coating.
At block 610, the organic solvent is evaporated, leaving behind core-shell nanoparticles that include Li2S nanoparticle cores having polymer shells formed thereon. In some embodiments, method 600 terminates after completion of block 610. For example, some polymers such as polyaniline may form shells that are electronic conductors and lithium ion conductors, and that will block transmission of polysulfides. In alternative embodiments, method 600 continues to block 615.
At block 615, the core-shell nanoparticles are heated. By heating the core-shell nanoparticles, the polymer shell may be converted into a carbon shell. In one embodiment, the core-shell nanoparticles are heated to a temperature of about 400-500 degrees centigrade.
In one embodiment, a transition metal sulfide shell may be formed around the Li2S nanoparticles. For example, TiS2 may be formed around Li2S nanoparticles by reacting titanium tetrachloride with the Li2S nanoparticles to from a TiS2 coating around the Li2S nanoparticles. v
Plot 800 shows charge capacity 805 and discharge capacity 810 during 200 charge/discharge cycles of the Li/S cell. A first charge may be a charge to 4V at a rate of 0.02 C (50 hours to full charge). Subsequent charges may be to 2.8V at 0.2 C (5 hours), and discharges may be to 1.5V at 0.2 C (5 hours). As shown, the charge capacity 805 and discharge capacity 810 started at around 600 mAh/g S and gradually decreased with time to around 200 mAh/g S. This indicates that a complete shell was likely not formed over the Li2S nanoparticles used to form the positive electrode.
Plot 900 shows charge capacity 905 and discharge capacity 910 after 10 charge/discharge cycles of the Li/S cell. A first charge may be a charge to 4V at a rate of 0.02 C. Subsequent charges may be to 2.8V at 0.2 C, and discharges may be to 1.5V at 0.2 C. As shown, the charge capacity 905 and discharge capacity 910 started at around 1200 mAh/g S and gradually decreased with time to around 1000 mAh/g S after 10 cycles. These capacities are very high, and compare to about 150-200 mAh/g for lithium ion cell cathode materials.
Plot 1000 shows charge capacity 1005 and discharge capacity 1010 after 16 charge/discharge cycles of the Li/S cell. A first charge may be a charge to 4V at a rate of 0.02 C. Subsequent charges may be to 2.8V at 0.1 C, and discharges may be to 1.5V at 0.1 C. As shown, the charge capacity 1005 and discharge capacity 1010 started at around 1200 mAh/gs and gradually decreased with time to around 1000 mAh/gs after 16 cycles.
The above examples are provided to illustrate embodiments of the present invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a divisional of U.S. patent application Ser. No. 16/682,950, filed Nov. 13, 2019, which is a continuation of U.S. patent application Ser. No. 14/440,962, filed May 6, 2015, now U.S. Pat. No. 10,505,180 which claims priority to PCT Application PCT/US2013/032504, filed Mar. 15, 2013, which claims priority to U.S. Provisional Patent Application No. 61/723,619, filed Nov. 7, 2012, the entire contents of which are herein incorporated by reference.
The invention described and claimed herein was made in part utilizing funds supplied by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 between the U.S. Department of Energy and the Regents of the University of California for the management and operation of the Lawrence Berkeley National Laboratory. The government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
61723619 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16682950 | Nov 2019 | US |
Child | 17369241 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14440962 | May 2015 | US |
Child | 16682950 | US |