This application claims priority from South African provisional patent application number 2015/01609 filed on 10 Mar. 2015, which is incorporated by reference herein.
This invention relates to what are commonly termed continuous coreless augers of helically formed flat steel wire and are widely used in conveying tubes of conveyor systems for conveying loose particulate and pulverized materials such as animal feeds, fertilizers and other agricultural soil or growth enhancing or controlling materials as well as minerals in processing plants.
An auger is, for use, typically installed loosely in a relatively stationery conveying tube and is rotated about a longitudinal axis in order to move the particulate material along the length of the conveying tube from an inlet to one or more discharge points in the manner of a screw conveyor.
Various methods have been used in order to manufacture coreless augers. All of those of which the applicant is aware result in an auger being produced that emerges from the auger manufacturing machine with a linear motion component and a rotational motion component; that is, it rotates about its own axis consequent on its formation from flattened wire. Existing manufacturing facilities temporarily feed the rotating auger product into a long tubular storage space of some form that typically assumes the form of a long pipe. The rotating auger is fed into this tubular space until a required length has been manufactured, or the maximum length of the tubular storage space has been reached, at which stage the auger is cut to release it from the auger manufacturing machine and thus stop it from rotating about its axis. The auger can then be coiled onto a transverse bobbin or mandrel while there is no rotation of the auger about its longitudinal axis.
This type of temporary storage facility limits the length of auger that can be continuously manufactured consequent on the limitation inherent in the temporary storage length required as well as by the frictional drag between the auger that has been produced and the walls of the tubular storage space. The maximum length is usually from about 100 metres to about 300 metres, depending on the gauge and weight of the auger.
There is a need for an auger manufacturing facility that can overcome, at least to some extent, the problem identified above.
The preceding discussion of the background to the invention is intended only to facilitate an understanding of the present invention. It should be appreciated that the discussion is not an acknowledgment or admission that any of the material referred to was part of the common general knowledge in the art as at the priority date of the application.
In accordance with one aspect of this invention there is provided a method for the handling of coreless auger produced by an auger production machine from which the coreless auger emerges with a linear motion component and a rotational motion component, the method including the steps of guiding the rotating auger for linear movement away from the production machine towards a temporary storage facility that has a cylindrical receptacle rotatable about its own axis and a coaxial rotatable feed guide having an axial inlet for formed auger and an outwardly directed outlet for directing formed auger towards an inner periphery of the cylindrical receptacle; rotating the cylindrical receptacle and allowing the feed guide to rotate about the axis of its inlet that is roughly coincident with the axis of auger entering the axial inlet of the feed guide such that the outwardly directed outlet may move around the interior of the receptacle in a circular path to direct auger towards the inner periphery of the cylindrical receptacle and form a coil thereof, wherein the cylindrical receptacle is rotated at a speed selected to counteract the rotation of the auger about its own axis.
Further features of the first aspect of the invention provide for the speed of rotation of the feed guide about its inlet axis to be substantially the same as the speed of rotation of the auger about its axis; for the speed of rotation of the cylindrical receptacle to be selected according to the peripheral speed of the receptacle and the axial speed of movement of the coreless auger; for the inlet axis to be located in a generally vertical orientation to receive downwardly moving auger; for the feed guide to be movable axially relative to the cylindrical receptacle so that the feed guide can be moved axially away from a remote end of the cylindrical receptacle as auger is coiled therein; for the feed guide to be mounted on a carriage movable along a plurality of tracks extending parallel to the axis of the cylindrical receptacle; and for the cylindrical receptacle to be an open topped drum supported on a coaxial rotatable support.
A still further feature of the first aspect of the invention provides for auger stored in the temporary cylindrical receptacle to be periodically withdrawn from storage and wound onto a conventional bobbin or mandrel to produce auger that is packaged in a suitable manner for storage and transport purposes.
In accordance with a second aspect of the invention there is provided a temporary storage facility for use in an auger production facility, the temporary storage facility comprising a frame supporting a relatively rotatable cylindrical receptacle and a feed guide rotatable about the axis of the rotatable cylindrical receptacle and having an inlet for receiving auger in an axial direction and an outlet directed outwardly towards a remote end of the cylindrical receptacle wherein the cylindrical receptacle has a drive for rotating it at a speed selected to accommodate a linear motion component of received auger.
A further feature of the second aspect of the invention provides for the feed guide to be carried by a carriage that is movable in the axial direction relative to the cylindrical receptacle along co-operating tracks carried by the frame.
Additional features of the second aspect of the invention will become apparent from the foregoing in relation to the first aspect being the method of the invention and from what follows.
In order that the above and other features of the invention may be more fully understood, one embodiment thereof will now be described, by way of example only, with reference to the accompanying drawings.
In the drawings:
In the embodiment of the invention illustrated in the drawings, a temporary storage facility (1) for use in an auger production facility comprises a frame (2) supporting a relatively rotatable cylindrical receptacle (3) in the form of an open topped drum that is rotatable about a vertical axis (4) by means of a suitable drive (5). A feed guide (6) that is carried by a vertically movable carriage (7) is rotatable about the axis of the rotatable cylindrical receptacle.
The feed guide has an uppermost inlet (11) that is directed upwards and is co-axial with the axis of the cylindrical receptacle for receiving auger (12) moving downwards in an axial direction. That inlet merges with a smoothly curved guide path through the feed guide that terminates in an outwardly and downwardly directed outlet (13) directed towards a blind remote end (14) of the cylindrical receptacle. The feed guide is carried by the carriage (7) that is movable in the axial direction relative to the cylindrical receptacle along upright rails (16) supported by the frame. The feed guide is arranged to rotate it at a speed selected to counteract the rotation of auger around its own axis and therefore eliminate that rotation.
The drive (5) of the cylindrical receptacle is selected to rotate it at a speed selected to accommodate the linear motion component and the axial motion component of movement of an auger produced in a conventional auger production machine (21).
The temporary storage facility described above enables the method on this invention to be implemented. The method for handling coreless auger produced by an auger production machine (21) from which the coreless auger (12) emerges with both a linear motion component and a rotational motion component includes guiding the rotating auger for linear movement away from the production machine and towards the temporary storage facility (1). As a general rule, the axis of the coreless auger is generally horizontal when it moves out of the auger production machine, and in this embodiment of the invention, the temporary storage facility has a vertical axis. The auger production machine is supplied with flat wire (22) from a de-coiler (23).
A suitable guide tube or pipe (24) is used to guide the auger from the auger production machine to the vertical inlet (11) of the feed guide (6) of the temporary storage facility. The stationary guide tube or pipe (24) terminates in a vertical communication chamber (25) in order to feed formed auger vertically downwards into the rotating inlet (11) of the feed guide (6) that is directed upwards. The auger is flexed by the feed guide to deviate from the downwards vertical direction to an outwardly inclined direction from the outlet (13) that serves to direct the auger towards an inner periphery of the cylindrical receptacle. Rotating the feed guide about the axis of its inlet which is roughly coincident with the axis of auger entering the feed guide causes the outwardly directed outlet to sweep around the interior of the receptacle in a circular path with the result that it directs the auger towards the inner periphery of the cylindrical receptacle.
The speed and direction of rotation of the feed guide about its inlet axis are selected to counteract, and in fact cancel, the rotational movement of the auger about its own axis. The speed of rotation of the feed guide about its inlet axis is substantially the same as the speed of rotation of the auger about its axis at the time of entry into the feed guide inlet. Nevertheless, the speed may vary slightly to achieve a sufficient coiling effect of the auger within the cylindrical receptacle.
As indicated above, the feed guide is carried by the carriage (7) that is movable in the axial direction relative to the cylindrical receptacle along the upright rails (16). Movement of the carriage can be effected in any suitable manner but conveniently, is effected by multiple chains or cable (not shown) that are operated in unison in respect of the four rails (16). This drive arrangement for the carriage can be activated electronically by suitable sensors or can be co-ordinated with the revolutions of the feed guide for a particular size of auger. It will be clear from a reference to
The cylindrical receptacle is simultaneously rotated at a speed controlled to receive the auger being coiled and accommodate the linear motion component of the produced auger. The speed of rotation of the cylindrical receptacle is thus selected according to the peripheral speed of the receptacle and the axial speed of movement of the coreless auger.
As indicated above, once an appropriate length of auger has been coiled in the temporary cylindrical receptacle it needs to be withdrawn from such temporary storage and wound onto a conventional bobbin or mandrel (28) to produce auger that is packaged in a suitable manner for storage and transport purposes. This can easily be achieved by allowing the cylindrical receptacle to rotate whilst the auger is withdrawn through the feed guide that may be allowed to remain approximately stationary during this second stage of the process.
It will be understood that the capacity of the cylindrical receptacle can be selected such that a substantially greater length of auger can be accommodated in it in a coiled condition depending on the gauge and configuration of the auger than in the instance of prior art tubular storage units that have a finite length and occupy considerable space. It is envisaged that it may be possible to store up to about 5000 metres of a smaller diameter auger and up to about 1000 metres of a larger diameter auger. The indication of estimates given above is not intended in any way to be limiting on the scope of the invention that may be implemented simply for convenience reasons or for the purpose of saving space occupied by a production facility.
Numerous variations may be made to the embodiment of the invention and its implementation that are described above without departing from the scope hereof.
Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.
Throughout the specification and claims unless the contents requires otherwise the word ‘comprise’ or variations such as ‘comprises’ or ‘comprising’ will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
Number | Date | Country | Kind |
---|---|---|---|
2015/01609 | Mar 2015 | ZA | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2016/051325 | 3/9/2016 | WO | 00 |