The present disclosure relates to igniting devices and systems for explosives and, more particularly, to fuse cord and packaging for fuse cord.
Shock tubes are a type of fuse cord or blasting cord used in non-electric blast initiation systems. A shock tube was originally described in U.S. Pat. No. 3,590,739 to Persson. Shock tubing typically comprises an elongated, hollow, flexible, small-diameter tube, the inner surface of which is coated with a reactive substance, for example, a thin layer of detonating or deflagrating explosive composition. Most commonly, this composition consists of a mixture of octogen (HMX) and aluminum powder. Later shock tube designs such as disclosed in U.S. Pat. No. 4,328,753 to Kristensen encompass multiple plastic layers to provide improved tensile strength and abrasion resistance.
In commercial blasting applications, the shock tubing provides a signal transmission device to transmit a signal to multiple blasting caps in demolition, mining, quarrying, or other applications, as known in the art. When initiated, the interior coating of the shock tube transmits a low energy shock wave that travels down the interior of the tube, without such shockwave breaching the tube sidewall. A detonator affixed to the end of the tubing is initiated by the shock wave, thereby setting off an attached explosive charge. As known in the art, shock tube-based initiation systems are typically employed and preferred over other systems because of the relative safety and reliability of such systems. The shock tube-based systems are non-electric, and thus are not affected by stray electrical currents, which could cause accidental initiation. Also, the shock tube-based systems do not require special electrical blasting machines, as is required for electric blasting cap systems.
In commercial applications, a firing device containing a percussion primer is typically used to initiate the shock tube. For military applications, a self-contained system is desirable. In military systems, an end fitting can be used to position a percussion primer on the end of the shock tube. This type of fitting and initiation system is disclosed in U.S. Pat. No. 6,272,996 B1 to O'Brien et al.
In the field, a spring loaded firing pin device is typically attached to the assembly and used to fire the percussion primer for initiating the shock tube.
More recently, products have been developed for the military with the firing device permanently affixed to the shock tube lead in the factory. This results in a totally self-contained initiation system being delivered in one package to the field. This type of initiation system is disclosed in U.S. Pat. No. 7,086,335 to O'Brien et al. As disclosed in this application, the firing devices are mounted on the flange of the spool. The shock tubing is wound around the spool and one or more detonators are crimped to the end of the shock tube.
Typically, the length of shock tube on a spool can vary from 80 feet to 1,000+ feet. The length of shock tube allows the field blaster to retreat a desired distance between the charge the detonator is initiating and the firing device that initiates the blast. This system is useful and has been deployed extensively in military field applications. However the use of a spool (and, of course, box) greatly increases the overall weight and volume of the shock tube package. For some applications, such as covert operations, it is desirable to have a self-contained detonator assembly that is easily carried by a person or one that will fit into a pocket on a vest.
According to some embodiments of the present disclosure, coreless-coil shock tube package systems and methods for packaging shock tubing are provided. The package system includes a “coreless” bundle of shock tubing, by which it is meant that the tubing bundle is not supported or contained by being wrapped around a spool or other supporting structure. The tubing bundle may be a generally cylindrical (in overall shape) coil of shock tubing. Optionally, two washer-like end caps or plates abut the ends of the tubing coil to assist in supporting the coil axially. Also, in an embodiment, a self-adhering overlapping, tape-type outer wrap partially covers the coil and end plates. The tape-type outer wrap may be formed of silicone.
Typically, one end of the tubing (referred to herein as the “inner” end) is positioned at the interior of the coil, and the other end of the tubing (referred to herein as the “outer” end) is positioned on the outside of the coil. Optionally, a detonator is attached to the tubing's inner end and is then tucked or moved into the coil, through one of the end plates, for convenient storage and transport. Also, a percussive initiator device (“igniter”) may be attached to the tubing's outer end and secured in place against the outside of the outer covering. In use, the detonator is removed from the coil and attached to an explosive device in a conventional manner. To deploy the tubing, the coil package is pulled away from the detonator and explosive, thereby uncoiling the tubing through the end plate (or through the end of the coil if no end plates are used). Then, the igniter is actuated, igniting the shock tubing, whose interior percussive “signal” in turn actuates the detonator, igniting the explosive.
As should be appreciated, the coreless-coil shock tube package system relies upon the inherent resiliency of the shock tube itself for eliminating the need for a bulky internal core structure, for example, a spool. The self-adhering overlapping, tape-type outer wrap envelops the exterior of the coiled shock tube, resulting in a compact, lightweight package that can be readily carried in a backpack or concealed on one's person.
To manufacture one embodiment of the shock tube package system, the end plates are placed on a mandrel, spaced apart by a distance generally corresponding to the desired length of the shock tube package. Each end plate has a central hole whose diameter corresponds to the mandrel's diameter. Then, a desired length of shock tubing is wrapped around the mandrel between the end plates to form a coil. Subsequently, the coil and end plates are at least partially wrapped by the self-adhering overlapping, tape-type outer wrap (no heat is applied), which enables a tight constricting against the coil by the tape. Before the self-adhering overlapping, tape-type outer wrap is applied, the tubing ends may be positioned or secured for easy access after wrapping. Then, the mandrel is removed, and an igniter and detonator are attached to the tubing's ends.
Embodiments of the present disclosure and the invention will be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein:
With reference to
Typically, one end of the coil 22 (e.g., an “inner” end 30) is positioned at an interior 24 of the coil 22, and the other end of the tubing (e.g., an “outer” end 32) is positioned on the outside of the coil 22. Optionally (e.g., as shown in
In use, the detonator 34 is removed from the coil 22 by pulling on a portion of the coil 22 (e.g., an end of the tubing) that may be left protruding through a central hole 40 in the end plate 26a. Alternatively, a pull string or tab may be attached to the detonator 34 or proximate tubing for use in removing the detonator from the interior 24 of the coil 22. The detonator 34 may then be attached to an explosive device (not shown) in a conventional manner. To deploy the tubing of the coil 22, the entire coreless-coil shock tube package system 20 is pulled away from the detonator and explosive, thereby uncoiling the tubing through the end cap 26a and out of the self-adhesive tape covering 28. Then, once at a desired distance, the igniter 36 is actuated, igniting the unspooled tubing of the coil 22, which in turn actuates the detonator 34, igniting the explosive device.
In some embodiments, the end plates 26a, 26b are generally the same size, shape, and dimensions (e.g., weight). In some embodiments, the end plates 26a, 26b may be washer-shaped, having the a central hole 40 formed therein. In some non-limiting embodiments, the end plates 26a, 26b may be thin and generally lightweight metal or polymer/composite. The end plates 26a, 26b may be manufactured from aluminum or other lightweight material such as nylon or other polymer, or from other materials such as steel. In some embodiments, an outer diameter of the end plates 26a, 26b is selected to match the outer diameter of the coil 22. Further, in some embodiments, a diameter of the central hole 40 of the end plates 26a, 26b may be selected to correspond to a desired diameter of the interior 24 of the coil 22.
The coil 22 can be formed from any length of tubing, as desired. For example, the length of the tubing used to form the coil 22 may range from tens to hundreds of feet in length or more. The tubing of the coil 22 may be similar to that described in U.S. Pat. No. 4,328,753, or the shock tubing as described in U.S. Pat. No. 5,597,973, but with an outside diameter of approximately 0.100 inches, the contents of these patents hereby incorporated by reference in their entireties. This size of small-diameter shock tubing will yield the desired degree of resiliency and stress at the inside diameter of the coiled shock tubing, after removal from a mandrel in the manufacturing method described below. However, as should be appreciated, shock tubing with different diameters may be used.
The self-adhesive tape covering 28 may be a wrapping of wound tape applied to envelope and surround the outer edges of the end plates 26a, 26b and the coil 22. The self-adhesive tape covering 28 is arranged to overlap or wrap around the end plates 26a, 26b, but does not need to extend as far as the central openings 40 of the end plates 26a, 26b. The optional second layer 38 for holding the igniter 36 in place (e.g., as shown in
It is noted that the self-adhesive tape covering 28 is self-adhering. That is, the strings of self-adhesive tape covering 28 do not attach or bond to the coil 22 but rather only adhere at the overlap 29 between sections of the self-adhesive tape covering 28. The overlap may be as small or as large as needed to provide adequate binding and constraint to the coil 22 contained therein. During manufacture, a strip of self-adhesive tape may be wound about the coil 22, with the overlap 29 provided to ensure that once applied, the wound strip of tape will form a covering that contains the coil 22. The amount of overlap 29 may be selected to ensure that the tape does not unbind during use or transport.
As noted, the detonator 34 is operably connected to the inner end 30 of the coil 22 of shock tube. The detonator 34 may be a device made in accordance with U.S. Pat. No. 6,272,996. Also, the detonator 34 may be positioned inside the coil 22 for reducing the volume of the resulting coreless-coil shock tube package system 20. The igniter 36 is operably connected to the outer end 32 of the tubing of the coil 22, and is held in place by the second layer 38. The igniter 36 may be a device constructed in accordance with U.S. Pat. No. 6,272,996. This patent is hereby incorporated by reference in its entirety. Optionally, the coreless-coil shock tube package system 20 may be provided without a detonator or igniter, in which case these or similar devices would be connected to the coil 22 by a user in the field or otherwise. As should be appreciated, the igniter may be attached to the package of the coil 22 using an adhesive, elastic bands, or the like, in the field or during manufacturing. The igniter and detonator are sometimes collectively referred to herein as “shock tube devices,” by which is meant a device either for actuating a shock tube or being acted upon by a shock tube signal.
As noted above, the shock tubing is provided as a “bundle,” which refers generally to configurations where a length of shock tubing is wound in a compact manner or otherwise compactly arranged. Thus, the shock tubing bundle may be in the form of a coil, or, for example, it could comprise successive short lengths of the tubing folded back over on one another. The bundle does not have to be cylindrical in overall shape, and could be other shapes. Thus, in one non-limiting embodiment of the present disclosure, the bundle of shock tube may be characterized as packaged shock tubing comprising a bundle consisting of a compactly arranged length of shock tubing (e.g., no spool or other support) and a self-adhering tape cover that maintains the length of shock tubing in a bundled manner, for example, in a compact arrangement.
The coreless-coil shock tube package system 20 is optionally provided with a tear strip (not shown) integral with and/or operably attached to the outer cover 28 for quickly and easily removing the outer cover if desired. For example, for some applications, and especially those involving short lengths of shock tubing, the user may want to remove the outer cover for deploying the coil 22 of shock tubing without having to uncoil it through end plates 26a, 26b and/or self-adhesive tape covering 28. One such example, of a tear strip may be to unbind or unwind the self-adhering tape strip. In another example, the tear strip may be arranged to cut through or separate the tape of the self-adhesive tape covering 28. In other applications, the self-adhesive tape covering 28 may be cut using a knife, scissors, or other cutting implement. In some such embodiments, the cutting implement may be selected to prevent cutting or damaging the tubing of the bundle or coil.
The distance “d” also corresponds to the final coreless-coil shock tube package system. Step 102 (
Next, at Step 104 (
As an alternative to the type of mandrel shown in
As noted above, optionally, a detonator 34 may be attached to the inner end 30 of the tubing 23 and inserted into the opening provided at one end of the coil 22, as shown in
As should be appreciated by those of skill in the art in view of the teachings herein, instead of tucking in or placing whichever device is attached to the inner tubing end, such device can be left on the outside of the coil and, optionally, removably secured to, for example, the end of the coil. Also, for use in certain applications, instead of attaching a detonator 34 to the inner end 30 of the tubing 23 and an igniter 36 to the outer end 32 of the coil 22, the igniter may be attached to the inner end and the detonator to the outer end. In this configuration, the detonator and coil would remain with the explosive device while the igniter is moved away from both. It might also be the case that the igniter would remain stationary (e.g., held by a soldier or other user) while the coil and detonator are moved in a direction of interest.
With or without the end caps 26a, 26b, the above-described method results in a convenient package that avoids the need for a bulky spool, thereby providing a lightweight and compact assembly that can be easily transported by those in the field. This method, and the product made in accordance with the method, obviates the need for relatively heavy spools of the type formerly used to provide the explosives expert in the field with shock tube in an easily transportable form.
Further, advantageously, by employed the self-adhesive tape covering, the use of a shrink wrap covering may be eliminated. As such, the application of heat to the coil 23 (or other components) may be avoided
The advantages of embodiments of the present disclosure can be optimized if shock tubing of a minimum size is wound on a mandrel of minimum diameter. The above-noted small-diameter size shock tubing can yield a product of minimum dimensions (e.g., where the inside diameter is just large enough to accommodate a typical detonator, and where the outside diameter is on the order of 2 inches or less). Thus, in one non-limiting example, if the diameter of the end plate central opening 40 is approximately 0.75 of an inch, the outside diameter of the entire assembly (i.e., the coreless-coil shock tube package system) can be 2 inches or less. The axial length of a coil of these proportions will be dictated by the length of the shock tube to be accommodated, but typically can be on the order of approximately 4 to 6 inches in length, given the multiple (e.g., seven) layers of tubing which can be wound within these parameters using small-diameter shock tubing.
Since certain changes may be made in the above-described coreless-coil shock tube package system and method of manufacturing, without departing from the spirit and scope of the invention herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the invention.
Number | Name | Date | Kind |
---|---|---|---|
1631756 | Olin | Jun 1927 | A |
2514542 | Guest | Jul 1950 | A |
3590739 | Persson | Jul 1971 | A |
4102428 | Kelly et al. | Jul 1978 | A |
4166418 | Calder, Jr. | Sep 1979 | A |
4328753 | Kristensen et al. | May 1982 | A |
4699059 | Kelly | Oct 1987 | A |
5147040 | Koike | Sep 1992 | A |
5555978 | Elsner | Sep 1996 | A |
5597973 | Gladden et al. | Jan 1997 | A |
5622030 | Steed et al. | Apr 1997 | A |
5714712 | Ewick et al. | Feb 1998 | A |
6272996 | O'Brien et al. | Aug 2001 | B1 |
7086335 | O'Brien et al. | Aug 2006 | B2 |
7650993 | Bawabe | Jan 2010 | B2 |
8684178 | Solomon | Apr 2014 | B1 |
9470571 | Huang et al. | Oct 2016 | B2 |
10473323 | Squashic et al. | Nov 2019 | B2 |
20040200372 | Gladden | Oct 2004 | A1 |
20050034748 | Gadd et al. | Feb 2005 | A1 |
20060144279 | Bawabe | Jul 2006 | A1 |
20140036519 | Cloward | Feb 2014 | A1 |
20170122710 | Scheid et al. | May 2017 | A1 |
20180080750 | Olivares et al. | Mar 2018 | A1 |
20180106583 | Montano Rueda et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2018188690 | Oct 2018 | WO |
2019004495 | Jan 2019 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2020/023319, International Filing Date Mar. 18, 2020, dated Jun. 25, 2020, 5 pages. |
Written Opinion for Internaional Application No. PCT/US2020/023319, International Filing Date Mar. 18, 2020, dated Jun. 25, 2020, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20200318938 A1 | Oct 2020 | US |