This invention generally relates to devices and methods for obtaining seabed or soil samples.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present invention. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present invention. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Deep-water geotechnical site investigation is a cost intensive activity. A conventional rotary soil boring has been the primary method used to acquire geotechnical data since the first borings were drilled. Using conventional techniques, the borehole is advanced by a drill bit and downhole samples are acquired using a wireline sampler lowered down the bore of the drill pipe. Due to high cost and potential sample quality concerns of the conventional rotary drilling, operators are continuously evaluating more economical options for acquiring high quality soil data.
Jumbo Piston Corers (JPC) are a relatively recent innovation. These devices allow for continuous large diameter piston cores to be taken to depths up to 30 meters in deep water environment. However, due to soil resistance, 30 meter penetration is rare.
Thus, there is a need for improvement in this field.
The present invention provides suction embedded coring system and methods of utilizing the same.
One non-limiting example of the present disclosure is a coring system comprising a suction carrier comprising a body defining a cavity and a top portion having an aperture; a pump positioned adjacent to the aperture and constructed and arranged to deliver fluid from the cavity; and a corer constructed and arranged to releasably engage with the suction carrier.
The foregoing has broadly outlined the features of one non-limiting example of the present disclosure in order that the detailed description that follows may be better understood. Additional features and embodiments will also be described herein.
The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings.
It should be noted that the figures are merely examples of several embodiments of the present invention and no limitations on the scope of the present invention are intended thereby. Further, the figures are generally not drawn to scale, but are drafted for purposes of convenience and clarity in illustrating various aspects of certain embodiments of the invention.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates. One non-limiting example of the invention is shown in great detail, although it will be apparent to those skilled in the relevant art that some features that are not relevant to the present invention may not be shown for the sake of clarity.
Due to high cost and dedicated geotechnical drillship availability concerns of the conventional rotary drilling, operators are continuously evaluating more economical options for acquiring high quality soil data. The proposed designs set forth in the present disclosure describe a new technology to reduce offshore geotechnical site investigation scope and cost by modifying the existing corers concepts as well as obtain longer and continuous soil samples.
Corer 151 is comprised of a body 153 and an engagement member 155 provided on the exterior of body 153. In the depicted examples, body 153 has a substantially circular cross-section, though other geometries are within the scope of the present disclosure. At least one corer barrel is provided within body 153. Conventional corer barrels essentially consist of cylindrical members having a sharp leading edge and a core catcher which maintains the core, or sample, within the corer barrel when the corer is removed from the soil. The number and arrangement of corer barrels within corer 151 can depend on application and design objectives.
The suction carrier 101 and corer 151 can be deployed from a vessel floating on the water surface. The suction carrier 101 and corer 151 can be mechanically tethered to the floating vessel. Engagement members 111, 155 can be attached to carrier body 105 and corer body 153, respectively, through known techniques. Engagement members 111, 155 can take a variety of forms, such as, but not limited to, latching devices.
The first depth can be in the range of, but not limited to, 15-20 meters. In some non-limiting examples, the length of corer 151 is longer (greater) than the length of carrier body 105.
As depicted, the engagement member 111 of suction carrier 101 has also been positioned to align with engagement member 155 of corer 151. Engagement members 111, 155 allow for releasable engagement between suction carrier 101 and corer 151. Engagement members 111, 155 can be configured to engage and lock such that any upward and downward force provided by suction carrier 101 is transferred to corer 151. Engagement members can also be configured such that the mechanical engagement between members 111, 155 will only allow the suction carrier 101 to provide downward force on corer 151. In either configuration, the alignment of engagement members 111, 155 enables any downward force from suction carrier 101 to be applied to carrier 151.
In order to drive corer 151 further into the subsea soil 205, a suction force is then applied to the suction carrier 105, and in turn to corer 151, by pumping out the water enclosed within the carrier cavity 303. The differential pressure between the top of the carrier and within cavity 303 drives the carrier body 105 into the seabed soil 205.
The second phase of penetration can be an additional 25-40 meters, though different penetration depths can be achieved based on suction carrier design, soil type, and other factors. The second depth can be in the range of, but not limited to, 40-60 meters. In such non-limiting examples, 45-60 meter continuous soil sampling can be achieved.
Again, in order to generate the differential pressure required to install/remove the suction carrier body 105 into/from the seabed (or other soil), pump 107 is positioned adjacent to top portion 103 and is configured to pump fluid either into or out of the area interior to the carrier body 105. Top portion 103 has at least one opening or aperture 601 which allows pump 107 to deliver fluid to and from the interior of carrier body 105.
As depicted in
An inflatable seal 717 is disposed between the interior of internal pipe 715 and the portion of the exterior of corer 711 positioned within internal pipe 715. Though an inflatable seal is depicted, any actuatable sealing device may be used. In order to create the necessary pressure differential to embed or remove the suction carrier 701 into or out of the sea bed soil 205, the inflatable seal 715 can provide a fluid seal between the carrier cavity 719 and the surrounding water 201. The inflatable seal 715 can also provide a releasable mechanical or physical engagement between corer 711 and suction carrier 701. Inflatable seal 717 can receive air pressure from pump 707 or from a separate pump. In other non-limiting examples, inflatable seal 717 can be replaced by a hydraulic clamp or other device.
In the configuration depicted in
Coring system 700 allows for the corer 711 to be driven further into the seabed soil 205 in a ratcheting-like manner. By releasing the engagement between the suction carrier 701 and corer 711, the carrier body 705 can then move freely in the vertical directly without affecting the depth of corer 711. By reverse operation of pump 707 or through other mechanical means, the suction carrier 701 can be raised or lifted out of the seabed soil 205 and allowed to come to rest on the seafloor 203. Such a configuration is depicted in
In order to drive corer 711 even further into the subsea soil 205, the inflatable seal 717 is again engaged, thereby reestablishing the physical engagement between the carrier 701 and the corer 711, and the pump 707 is operated to pump water from carrier cavity 719. The generated differential pressure will drive the suction carrier 701 and corer 711 into the subsea soil 205.
Once the corer has reached the necessary depth, the corer system 700 can be retrieved through operation of pump 707 or through mechanical means. The suction carrier 701 and the corer 711 can be retrieved together or individually.
The penetration depths achieved by the suction carrier can be in the range of, but are not limited to, 25-40 meters. In some non-limiting examples, continuous soil sampling can be achieved up to 80 meters.
Like coring system 700, coring system 1200 has a corer 711 which is concentrically located within suction carrier 1201. More specifically, corer body 713 is positioned within an internal pipe 1211 which is concentrically disposed within carrier body 1205. Unlike coring system 700 depicted in
A clamp member 1215 is also attached to the top portion 1203 of the suction carrier. Clamp member 1215 can be actuated between an engaged and a dis-engaged position.
In order to drive the suction carrier into the seabed, the suction carrier pump is operated to create the necessary pressure differential (step 1307). Once the corer has reached a suitable depth, the corer and the soil sample contained therein can be retrieved (step 1309). The corer and the suction carrier can be retrieved through known techniques. The corer and suction carrier can be retrieved together or independently.
In order to drive the suction carrier into the seabed, the suction carrier pump is operated to create the necessary pressure differential (step 1405). Next, the corer depth is evaluated and it is determined whether the necessary depth has been achieved (step 1407). If the desired depth has been achieved, then the corer is retrieved (step 1409). The corer and suction carrier can be retrieved together or independently.
However, if the desired depth has not been achieved, the suction carrier is released from the corer (step 1411). The suction carrier is then repositioned relative to the corer (step 1413). The process then continues back at step 1403. Process 1400 allows for the corer to be driven further into the seabed with each repositioning and operation of the suction carrier.
While for purposes of simplicity of explanation, the illustrated methodologies are shown and described as a series of blocks, it is to be appreciated that the methodologies are not limited by the order of the blocks, as some blocks can occur in different orders and/or concurrently with other blocks from that shown and described. Moreover, less than all the illustrated blocks may be required to implement an example methodology. Blocks may be combined or separated into multiple components. Furthermore, additional and/or alternative methodologies can employ additional blocks not shown herein. While the figures illustrate various actions occurring serially, it is to be appreciated that various actions could occur in series, substantially in parallel, and/or at substantially different points in time.
The computer system 1500 may also include computer components such as non-transitory, computer-readable media. Examples of computer-readable media include a random access memory (RAM) 1505, which may be SRAM, DRAM, SDRAM, or the like. The computer system 1500 may also include additional non-transitory, computer-readable media such as a read-only memory (ROM) 1507, which may be PROM, EPROM, EEPROM, or the like. RAM 1505 and ROM 1507 hold user and system data and programs, as is known in the art. The computer system 1500 may also include graphics processing unit(s) (GPU(s)) 1513, an input/output (I/O) adapter 1509, a communications adaptor 1521, a user interface adapter 1523, a display driver 1515, and a display adapter 1517.
The I/O adapter 1509 may connect additional non-transitory, computer-readable media such as a storage device(s) 1511, including, for example, a hard drive, a compact disc (CD) drive, a floppy disk drive, a tape drive, and the like to computer system 1500. The storage device(s) may be used when RAM 1505 is insufficient for the memory requirements associated with storing data for operations of embodiments of the present techniques. The data storage of the computer system 1500 may be used for storing information and/or other data used or generated as disclosed herein. For example, storage device(s) 1511 may be used to store configuration information or additional plug-ins in accordance with a non-limiting example of the present techniques. Further, user interface adapter 1523 couples user input devices, such as a keyboard 1527, a pointing device 1525 and/or output devices to the computer system 1500. The display adapter 1517 is driven by the CPU 1501 to control the display on a display device 1519 to, for example, present information to the user regarding available plug-ins.
The architecture of system 1500 may be varied as desired. For example, any suitable processor-based device may be used, including without limitation personal computers, laptop computers, computer workstations, and multi-processor servers. Moreover, embodiments may be implemented on application specific integrated circuits (ASICs) or very large scale integrated (VLSI) circuits. In fact, persons of ordinary skill in the art may use any number of suitable hardware structures capable of executing logical operations according to the embodiments. The term “processing circuit” includes a hardware processor (such as those found in the hardware devices noted above), ASICs, and VLSI circuits. In a non-limiting example, input data to the computer system 1500 may include various plug-ins and library files. Input data may additionally include configuration information.
It should be understood that the preceding is merely a detailed description of specific embodiments of this invention and that numerous changes, modifications, and alternatives to the disclosed embodiments can be made in accordance with the disclosure here without departing from the scope of the invention. The preceding description, therefore, is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents. It is also contemplated that structures and features embodied in the present examples can be altered, rearranged, substituted, deleted, duplicated, combined, or added to each other. The articles “the”, “a” and “an” are not necessarily limited to mean only one, but rather are inclusive and open ended so as to include, optionally, multiple such elements.
This application claims the benefit of U.S. Provisional Application No. 61/975,529, filed Apr. 4, 2014, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4234046 | Haynes | Nov 1980 | A |
6394192 | Frazer | May 2002 | B1 |
7918287 | Foley | Apr 2011 | B2 |
20080179091 | Foley | Jul 2008 | A1 |
20100021241 | Thomas et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
1 671 769 | Jun 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20150285020 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61975529 | Apr 2014 | US |