1. Field of the Invention
The present invention relates to an apparatus and method for anchoring surgical suture to bone. More specifically, the present invention relates to arthroscopic apparatus and methods for anchoring suture to cancellous bone using a suture anchor having an auger-like configuration.
2. Description of the Related Art
When soft tissue tears away from bone, reattachment becomes necessary. Various devices, including sutures alone, screws, staples, wedges, and plugs have been used to secure soft tissue to bone. Recently, various types of threaded suture anchors have been developed for this purpose.
Suture anchors have been developed that are designed to be inserted into a pre-drilled hole. Other suture anchors are self-tapping. Self-tapping screws are shown, for example, in U.S. Pat. No. 4,632,100, which discloses a cylindrical suture anchor. The suture anchor of the '100 patent includes a drill bit at a leading end for boring a hole in a bone, followed by a flight of threads spaced from the drill bit for securing the anchor into the hole created by the drill bit. U.S. Pat. No. 5,370,662 discloses a self-tapping suture anchor having a flight of threads around a solid body. U.S. Pat. No. 5,156,616 discloses a similar suture anchor having an axial opening for holding a knotted piece of suture.
All of the above-noted suture anchors rely on a flight of threads disposed on the outer surface of a shank to secure the anchor to the bone. They all provide a relatively easy method of suture fixation in hard, cortical bone.
Recent studies indicate, however, that the above-noted suture anchors may have problems related to inadequate “pull-out” strength. This is true especially in softer bone sites, such as cancellous bone, or in bone tissue that has become compromised, such as in osteoporotic bone sites. The structure of cancellous, or cancellated, bone is lattice-like, or spongy. Osteoporotic bone is the result of a condition that reduces the quantity of bone or atrophies skeletal tissue, causing a porous condition of the bones. These bone types may present a limited range of specific fixation points that are available to the surgeon.
Also, certain known suture anchors also have a tendency to “back out” of the implantation site. Moreover, substantial bone loss is incurred simply upon installation of the above-described prior art suture anchors. This problem is acute particularly during procedures that require removal or relocation of suture anchors.
Accordingly, a need exists for a suture anchor that can be secured easily and effectively, especially in softer types of bone. A need also exists for a suture anchor that displaces a minimum amount of bone upon insertion. In addition, a need exists for a suture anchor having exceptional pull-out strength, especially in soft bone. A need also exists for a suture anchor that is averse to “backing out” of the insertion site.
The suture anchor of the present invention overcomes disadvantages of the prior art, such as those noted above, and achieves the foregoing objectives by providing a corkscrew suture anchor having preferably a single thread spiralling helically around a central body.
The corkscrew suture anchor has a central body, a distal end, and a proximal end. The central body preferably tapers from the proximal end to terminate in a point at the distal end. The distal point preferably is rounded to avoid possible breakage sometimes encountered when using a sharp point. The point is approached by a concave cone having a taper more pronounced than that of the central body.
The proximal end of the corkscrew suture anchor body has a hex drive head incorporating a slotted suture eye for receiving one or more pieces of suture. At the junction between the hex drive head and the central body, the circumference of the central body advantageously is larger than the outer circumferential dimension of the hex drive head. Accordingly, the enlarged body adjacent the hex drive head forms a hole sufficient to accommodate a hex driver disposed over the hex drive head. The hex driver is described more fully below. This allows the suture anchor to be at least partially countersunk below the surface of the bone upon installation by preventing impingement of the distal end of the hex driver on the bone surface.
Advantageously, the threads of the suture anchor of the present invention provide an increased percentage of thread surface area for each turn of the screw, as compared with known suture anchors, thus providing increased pull-out strength, and a decreased tendency for back-out. The increase in the surface area of the thread is achieved in part by increasing the ratio of the outer diameter of the threads to the inner diameter of the threads. Preferably, the ratio is between 2.25 and 2.75. Most preferably, the ratio of the outer diameter to the inner diameter is 2.5.
In addition, the suture anchor has a higher thread pitch than prior art screws, thus increasing the area of thread for each turn of the screw, which also leads to greater pull-out strength. Significantly, due to the increased pitch, fewer turns of the corkscrew screw thread are required to advance the suture anchor into position. Accordingly, the suture anchor is easy to install, and displaces less tissue material upon insertion than known suture anchors.
The pull-out strength and minimal tissue damage are enhanced by the relatively compressed cross-sectional aspect of the thread, particularly in relation to the broad axial faces of the threads. The distal and proximal faces of the threads preferably form a square or rounded break edge at the outer diameter of the thread. In addition, the thickness of the thread increases proximally, such that at least the most proximal flight is thicker than each of the more distal flights.
Increased back-out resistance is enhanced by surface features, such as radial ridges, on the top and/or bottom faces of the screw threads. The surface features augment the engagement between the thread surfaces and the surrounding tissue once the suture anchor is installed.
The present invention also provides a suture anchor and driver assembly for driving the corkscrew suture anchor into bone. The driver is formed of a cannulated tube secured to a cannulated handle. A hexagonal socket formed on the distal end of the tube holds the suture anchor for rotation and installation into the bone. The outer diameter of the tube is equal to or less than the outer diameter of the proximal end of the suture anchor's central body.
The driver is provided with a cleat on the side of the handle. Consequently, suture threaded through the cannulated driver can be wrapped around the cleat and fixed for shipping in a slot in the cleat using adhesive foam. One or more sutures, threaded through the suture anchor eye and up through the cannulated driver, can be pulled and secured around the cleat, whereby the suture is pinched under tension. Advantageously, the tensioned suture helps to hold the suture anchor in place at the distal tip of the driver. The suture anchor and driver assembly can be shipped, pre-loaded with suture, as a sterile, surgery-ready unit.
The present invention also provides a method of anchoring suture in bone using the suture anchor of the present invention. The method includes threading suture through the suture eye on the proximal end of the suture anchor. The driver is then turned to advance the suture anchor into the bone.
The anchors of the present invention can be used for arthroscopic procedures. Advantageously, the suture anchor can be installed using a hollow, cannulated grasper as described in U.S. Pat. No. 5,466,243 to Schmieding, the disclosure of which is incorporated herein by reference. The anchors also are advantageous for open and mini-open surgical procedures, such as open rotator cuff repair, as described in U.S. Pat. No. 5,575,801 to Habermeyer et al.
Other features and advantages of the present invention will become apparent from the following description of the invention, which refers to the accompanying drawings.
Referring to
Suture anchor 2 is provided at a proximal end 8 of body 4 with hexagonal drive head 10 having a suture eye 12. The suture eye 12 preferably is in the form of an oval aperture in the drive head for holding at least one, and preferably two or more pieces of braided suture. Channels 14, also shown in
A tip 18 is provided. Tip 18 terminates in a rounded point 20, which is approached by a concave, conically tapered surface 22. Conical taper 22 begins at the distal end of the screw thread, and features an angle of taper deeper than the taper of body 4.
The body preferably is formed of a biocompatible material such as stainless steel or titanium alloy. The central core preferably is circular in cross-section, and tapers from a maximum diameter near proximal end 8 to a minimum diameter toward distal end 14.
Corkscrew thread 6 has a proximal face 24, a distal face 26 and a break edge 28. Referring to
The major, outside diameter of the suture anchor thread of the present invention preferably is about 2.5 times the minor, inner diameter of the thread, or the minor diameter of the body toward distal end 16. Accordingly, on a 5 mm. diameter suture anchor, for example, where central core 4 is approximately 2 mm. in diameter, the outer diameter of the thread is 5 mm.
Preferably, between two and three flights or turns of thread 6 are provided along body 4, between proximal end 8 and distal end 16. The thickness of the thread increases proximally, such that at least the outer edge of the most proximal flight is thicker than the edge of each of the more distal flights, as shown in
Referring again to
Table II shows the results of various pullout tests performed with suture anchors according to the present invention, as follows:
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. Therefore, the present invention is to be limited not by the specific disclosure herein, but only by the appended claims.
This application is a continuation of U.S. application Ser. No. 10/285,553, filed Nov. 1, 2002, now U.S. Pat. No. 6,916,333, which is a continuation of U.S. application Ser. No. 09/823,988, filed Apr. 3, 2001, now U.S. Pat. No. 6,511,499, which is a continuation of U.S. application Ser. No. 09/588,065, filed Jun. 5, 2000, now U.S. Pat. No. 6,214,031, which is a continuation of U.S. application Ser. No. 08/954,206, filed Oct. 20, 1997, now U.S. Pat. No. 6,117,162, which is a continuation of U.S. application Ser. No. 08/905,393, filed Aug. 4, 1997, now abandoned. This application also claims the benefit of U.S. Provisional Application Ser. No. 60/023,011, filed Aug. 5, 1996.
Number | Name | Date | Kind |
---|---|---|---|
4175555 | Herbert | Nov 1979 | A |
4289124 | Zickel | Sep 1981 | A |
4537185 | Stednitz | Aug 1985 | A |
4631100 | Somers et al. | Dec 1986 | A |
4870957 | Goble et al. | Oct 1989 | A |
4988351 | Paulos et al. | Jan 1991 | A |
5061118 | Niznick | Oct 1991 | A |
5067956 | Buford, III et al. | Nov 1991 | A |
5100417 | Cerier et al. | Mar 1992 | A |
5102414 | Kirsch | Apr 1992 | A |
5139499 | Small et al. | Aug 1992 | A |
5152790 | Rosenberg et al. | Oct 1992 | A |
5156616 | Meadows et al. | Oct 1992 | A |
5180382 | Frigg et al. | Jan 1993 | A |
5242447 | Borzone | Sep 1993 | A |
5246441 | Ross et al. | Sep 1993 | A |
5364400 | Rego, Jr. et al. | Nov 1994 | A |
5370662 | Stone et al. | Dec 1994 | A |
5417533 | Lasner | May 1995 | A |
5443482 | Stone et al. | Aug 1995 | A |
5447401 | Jones et al. | Sep 1995 | A |
5456685 | Huebner | Oct 1995 | A |
5470334 | Ross et al. | Nov 1995 | A |
5492442 | Lasner | Feb 1996 | A |
5522843 | Zang | Jun 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5573548 | Nazre et al. | Nov 1996 | A |
5607432 | Fucci | Mar 1997 | A |
5618314 | Harwin et al. | Apr 1997 | A |
5626613 | Schmieding | May 1997 | A |
5643269 | Harle | Jul 1997 | A |
D385352 | Bales et al. | Oct 1997 | S |
5683401 | Schmieding et al. | Nov 1997 | A |
5690676 | DiPoto et al. | Nov 1997 | A |
5697950 | Fucci et al. | Dec 1997 | A |
5720766 | Zang et al. | Feb 1998 | A |
5733307 | Dinsdale | Mar 1998 | A |
5738685 | Halm et al. | Apr 1998 | A |
5743914 | Skiba | Apr 1998 | A |
5792142 | Galitzer | Aug 1998 | A |
5824011 | Stone et al. | Oct 1998 | A |
5827291 | Fucci et al. | Oct 1998 | A |
5851219 | Goble et al. | Dec 1998 | A |
6117162 | Schmieding et al. | Sep 2000 | A |
6214031 | Schmieding et al. | Apr 2001 | B1 |
6511499 | Schmieding et al. | Jan 2003 | B2 |
Number | Date | Country |
---|---|---|
258 8332 | Apr 1987 | FR |
103 4734 | Aug 1983 | SU |
Number | Date | Country | |
---|---|---|---|
20060004365 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60023011 | Aug 1996 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10285553 | Nov 2002 | US |
Child | 11177365 | US | |
Parent | 09823988 | Apr 2001 | US |
Child | 10285553 | US | |
Parent | 09588065 | Jun 2000 | US |
Child | 09823988 | US | |
Parent | 08954206 | Oct 1997 | US |
Child | 09588065 | US | |
Parent | 08905393 | Aug 1997 | US |
Child | 08954206 | US |